Relative Factors in Performance Analysis of Java Virtual Machines

Total Page:16

File Type:pdf, Size:1020Kb

Relative Factors in Performance Analysis of Java Virtual Machines Relative Factors in Performance Analysis of Java Virtual Machines Dayong Gu Clark Verbrugge Etienne M. Gagnon School of Computer Science D´epartement d’informatique McGill University Universit´eduQu´ebeca ` Montr´eal Montr´eal, Qu´ebec, Canada Montr´eal, Qu´ebec, Canada {dgu1, clump}@cs.mcgill.ca [email protected] Abstract perturbing performance measurements. This resulting lack of guid- Many new Java runtime optimizations report relatively small, ance often means that optimization researchers do not always give single-digit performance improvements. On modern virtual and a sufficiently wide or deep consideration to potential confounding actual hardware, however, the performance impact of an optimiza- factors from the underlying systems. tion can be influenced by a variety of factors in the underlying In this paper we focus on two main concerns. First, an expo- systems. Using a case study of a new garbage collection optimiza- sition of various external, and benchmark specific factors that can tion in two different Java virtual machines, we show the relative influence a VM or source-level optimization, and second a quanti- effects of issues that must be taken into consideration when claim- tative evaluation and comparison of the different influences. Using ing an improvement. We examine the specific and overall perfor- an in-depth case study of a simple garbage collection optimization mance changes due to our optimization and show how unintended we are able to show that a combination of instruction cache changes side-effects can contribute to, and distort the final assessment. Our due to trivial code modifications, and subtle, consequent data lay- experience shows that VM and hardware concerns can generate out and usage differences can induce almost a 10% whole program variances of up to 9.5% in whole program execution time. Consid- performance variation. We are able to show significant variations eration of these confounding effects is critical to a good, objective in both interpreter and JIT environments. As the largest contribu- understanding of Java performance and optimization. tors to variance are not unique to our case study, other optimiza- tions achieving single-digit performance improvements (or degra- Categories and Subject Descriptors C.4 [Performance of Sys- dations) may thus be affected by the same issues. tems]: Measurement Techniques, Design Studies Previous studies on the complexity of measuring performance in modern VMs have argued for the importance of a holistic view General Terms Experimentation, Measurement, Performance of program performance [19], or have pointed out some of the fac- Keywords performance analysis, Java, garbage collection, hard- tors that can directly affect and distort the measurement of specific ware counters, caches optimizations, such as garbage collection [4]. In this paper we ex- tend these concerns showing the wide range of issues that must be addressed to ensure a well-informed interpretation of performance 1. Introduction change due to optimization, and the surprisingly large potential im- Compiler and runtime optimizations are typically deemed success- pact of low-level concerns on high level performance. ful if a measurable, reasonably stable performance improvement Specific contributions of our work include: can be shown over a selection of benchmarks, even if the effect is • We give experimental results from both an interpreter and a JIT relatively small or not uniformly positive. In the case of Java virtual environment showing that side-effects of lower level execution machine (VM) or software level optimizations, low-level hardware can account for almost 10% of measured performance. and VM effects are often presumed amortized through the com- • plexity of interaction, or by considering average case behaviour. We provide guidance on which factors are most critical by giving Many optimizations, however, result in small, single-digit per- a quantitative and comparative analysis of a variety of potential formance changes, and in these cases uncontrolled factors aris- confounding factors in assessing JVM performance. ing from lower levels of execution may account for a significant • Using both VM and low-level hardware counter information, we amount of the performance difference, greatly distorting the per- provide an analysis and unique characterization of the SPECjvm98 ceived effect of an optimization. Unfortunately, not only is the [28] and the DaCapo [23] benchmarks with respect to their in- breadth of potential influences not always obvious, but it is also struction and data cache sensitivity. not always clear which factors are most important with respect to • Our optimization case study is also a new garbage collection optimization that can improve GC performance in both JIT (Jikes RVM) and interpreter (SableVM) environments. Permission to make digital or hard copies of all or part of this work for personal or The remainder of this paper is organized as follows. In Section classroom use is granted without fee provided that copies are not made or distributed 2, we discuss related work on GC and Java performance measure- for profit or commercial advantage and that copies bear this notice and the full citation ment and analysis. Section 3 then describes our garbage collection on the first page. To copy otherwise, to republish, to post on servers or to redistribute optimization, and Section 4 gives initial data on its performance. In to lists, requires prior specific permission and/or a fee. Section 5, we refine our investigation and give more detail on the VEE’06 June 14–16, 2006, Ottawa, Ontario, Canada. Copyright c 2006 ACM 1-59593-332-6/06/0006. $5.00. 111 impact of various performance influences. Section 6 provides di- Our optimization case study is based on a simple and general rections for future work in this area and presents our conclusions. improvement to tracing garbage collectors. Tracing GCs are found in most Java virtual machines. 2. Related work Starting from a set of root references (static variables, stack ref- erences), a tracing GC visits each reachable object seeking refer- Measuring the performance and understanding the behaviour of ences to other reachable objects. Once the live set is determined Java programs is challenging. Many factors, from program charac- the memory storage of non-reachable objects is reclaimed. Gagnon teristics, VM techniques and implementations, and OS strategies, and Hendren proposed a bi-directional object layout [14] aiming to hardware platform performance, can affect the final measured to improve the performance of GC tracing, and here we present a performance. B. Dufour et al. provides a set of concise and pre- reference section tracing strategy that attempts to validate and im- cisely defined dynamic metrics for Java programs [10]. At a lower prove that work. level, L. Eeckhout et al. [11] analyze the interaction between Java virtual machine and microarchitectural platform factors by using 3.1 Bi-directional layout and reference section scanning principal component analysis to reduce the data dimensionality. M. Hauswirth et al. suggest an approach named vertical profiling [19] Bi-directional layout is an alternative way of physically represent- to understand how Java programs interact with the underlying ab- ing objects in memory. Traditionally, all the fields of an object are straction levels, from application, virtual machine, and OS, to hard- located after the object header. The left graph in Figure 1 shows the ware. To understand the behaviour of a particular program execu- traditional layout of an object of type C extending type B extend- tion, they first obtain profiling data from different levels, then visu- ing type A. The right graph in Figure 1 shows the bi-directional alize the data and discover the correlations between the anomalous layout of the same object. The basic idea of bi-directional layout performance and the profiling data visually or using statistical met- is to relocate reference fields before the object header and group rics. Our examination here is in the same spirit of a multi-levelled them together in a contiguous section; we denote these sections as view of performance, though focusing on the variance due to opti- reference sections. The main advantage of the bi-directional layout mizations rather than for program development. is the simplicity of locating all references in an object during GC. Our investigations are motivated through a case study of a References are contiguous, and only a single count of reference garbage collection (GC) optimization. GC has been a target of section size must be stored (usually in the object header). There is optimization for decades, and from a variety of directions. Ungar’s no need to access a table of offsets in the object’s type information generational scavenging [32] technique and more recent works on block to identify references, as must be done with the traditional Age-based GC [30] Older-first GC [29] and Beltway GC [5], for layout. instance, all aim to improve performance by adjusting collection time according to object lifetimes. Alternatively, live objects can be aggregated into regions in the heap based on a selection of object attributes. This either aims to improve data locality in the program [20, 17], or to reduce the memory access overhead of the collector [24]. Optimizations on data prefetching and lazy sweeping [8, 6] aim to improve data cache performance. Our approach tries to reduce the GC workload, although the implementation design is also helpful in reducing data cache misses. Some other works specifically study GC performance. S. Black- burn et al. [4] discuss performance myths of canonical GC algo- rithms on widely used Java benchmarks. They compare the perfor- mance of classic GC and memory allocation algorithms in differ- ent configurations and environments. The impact of special imple- mentation factors, such as “write barriers” and the size of nursery space of generational collectors, on mutator and GC performance are carefully studied. In this paper we extend their results to a fur- ther range of factors and influences, particularly unintended cache effects.
Recommended publications
  • Bypassing Portability Pitfalls of High-Level Low-Level Programming
    Bypassing Portability Pitfalls of High-level Low-level Programming Yi Lin, Stephen M. Blackburn Australian National University [email protected], [email protected] Abstract memory-safety, encapsulation, and strong abstraction over hard- Program portability is an important software engineering consider- ware [12], which are desirable goals for system programming as ation. However, when high-level languages are extended to effec- well. Thus, high-level languages are potential candidates for sys- tively implement system projects for software engineering gain and tem programming. safety, portability is compromised—high-level code for low-level Prior research has focused on the feasibility and performance of programming cannot execute on a stock runtime, and, conversely, applying high-level languages to system programming [1, 7, 10, a runtime with special support implemented will not be portable 15, 16, 21, 22, 26–28]. The results showed that, with proper ex- across different platforms. tension and restriction, high-level languages are able to undertake We explore the portability pitfall of high-level low-level pro- the task of low-level programming, while preserving type-safety, gramming in the context of virtual machine implementation tasks. memory-safety, encapsulation and abstraction. Notwithstanding the Our approach is designing a restricted high-level language called cost for dynamic compilation and garbage collection, the perfor- RJava, with a flexible restriction model and effective low-level ex- mance of high-level languages when used to implement a virtual tensions, which is suitable for different scopes of virtual machine machine is still competitive with using a low-level language [2]. implementation, and also suitable for a low-level language bypass Using high-level languages to architect large systems is bene- for improved portability.
    [Show full text]
  • Here I Led Subcommittee Reports Related to Data-Intensive Science and Post-Moore Computing) and in CRA’S Board of Directors Since 2015
    Vivek Sarkar Curriculum Vitae Contents 1 Summary 2 2 Education 3 3 Professional Experience 3 3.1 2017-present: College of Computing, Georgia Institute of Technology . 3 3.2 2007-present: Department of Computer Science, Rice University . 5 3.3 1987-2007: International Business Machines Corporation . 7 4 Professional Awards 11 5 Research Awards 12 6 Industry Gifts 15 7 Graduate Student and Other Mentoring 17 8 Professional Service 19 8.1 Conference Committees . 20 8.2 Advisory/Award/Review/Steering Committees . 25 9 Keynote Talks, Invited Talks, Panels (Selected) 27 10 Teaching 33 11 Publications 37 11.1 Refereed Conference and Journal Publications . 37 11.2 Refereed Workshop Publications . 51 11.3 Books, Book Chapters, and Edited Volumes . 58 12 Patents 58 13 Software Artifacts (Selected) 59 14 Personal Information 60 Page 1 of 60 01/06/2020 1 Summary Over thirty years of sustained contributions to programming models, compilers and runtime systems for high performance computing, which include: 1) Leading the development of ASTI during 1991{1996, IBM's first product compiler component for optimizing locality, parallelism, and the (then) new FORTRAN 90 high-productivity array language (ASTI has continued to ship as part of IBM's XL Fortran product compilers since 1996, and was also used as the foundation for IBM's High Performance Fortran compiler product); 2) Leading the research and development of the open source Jikes Research Virtual Machine at IBM during 1998{2001, a first-of-a-kind Java Virtual Machine (JVM) and dynamic compiler implemented
    [Show full text]
  • Techniques for Real-System Characterization of Java Virtual Machine Energy and Power Behavior Gilberto Contreras Margaret Martonosi
    Techniques for Real-System Characterization of Java Virtual Machine Energy and Power Behavior Gilberto Contreras Margaret Martonosi Department of Electrical Engineering Princeton University 1 Why Study Power in Java Systems? The Java platform has been adopted in a wide variety of devices Java servers demand performance, embedded devices require low-power Performance is important, power/energy/thermal issues are equally important How do we study and characterize these requirements in a multi-layer platform? 2 Power/Performance Design Issues Java Application Java Virtual Machine Operating System Hardware 3 Power/Performance Design Issues Java Application Garbage Class Runtime Execution Collection LoaderJava VirtualCompiler MachineEngine Operating System Hardware How do the various software layers affect power/performance characteristics of hardware? Where should time be invested when designing power and/or thermally aware Java virtual Machines? 4 Outline Approaches for Energy/Performance Characterization of Java virtual machines Methodology Breaking the JVM into sub-components Hardware-based power/performance characterization of JVM sub-components Results Jikes & Kaffe on Pentium M Kaffe on Intel XScale Conclusions 5 Power & Performance Analysis of Java Simulation Approach √ Flexible: easy to model non-existent hardware x Simulators may lack comprehensiveness and accuracy x Thermal studies require tens of seconds granularity Accurate simulators are too slow Hardware Approach √ Able to capture full-system characteristics
    [Show full text]
  • Fedora Core, Java™ and You
    Fedora Core, Java™ and You Gary Benson Software Engineer What is Java? The word ªJavaº is used to describe three things: The Java programming language The Java virtual machine The Java platform To support Java applications Fedora needs all three. What Fedora uses: GCJ and ECJ GCJ is the core of Fedora©s Java support: GCJ includes gcj, a compiler for the Java programming language. GCJ also has a runtime and class library, collectively called libgcj. The class library is separately known as GNU Classpath. ECJ is the Eclipse Compiler for Java: GCJ©s compiler gcj is not used for ªtraditionalº Java compilation. More on that later... Why libgcj? There are many free Java Virtual machines: Cacao, IKVM, JamVM, Jikes RVM, Kaffe, libgcj, Sable VM, ... There are two main reasons Fedora uses libgcj: Availability on many platforms. Ability to use precompiled native code. GNU Classpath Free core class library for Java virtual machines and compilers. The JPackage Project A collection of some 1,600 Java software packages for Linux: Distribution-agnostic RPM packages. Both runtimes/development kits and applications. Segregation between free and non-free packages. All free packages built entirely from source. Multiple runtimes/development kits may be installed. Fedora includes: JPackage-compatible runtime and development kit packages. A whole bunch of applications. JPackage JOnAS Fedora©s Java Compilers gcj can operate in several modes: Java source (.java) to Java bytecode (.class) Java source (.java) to native machine code (.o) Java bytecode (.class, .jar) to native machine code (.o) In Fedora: ECJ compiles Java source to bytecode. gcj compiles that bytecode to native machine code.
    [Show full text]
  • Java in Embedded Linux Systems
    Java in Embedded Linux Systems Java in Embedded Linux Systems Thomas Petazzoni / Michael Opdenacker Free Electrons http://free-electrons.com/ Created with OpenOffice.org 2.x Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 1 Rights to copy Attribution ± ShareAlike 2.5 © Copyright 2004-2008 You are free Free Electrons to copy, distribute, display, and perform the work [email protected] to make derivative works to make commercial use of the work Document sources, updates and translations: Under the following conditions http://free-electrons.com/articles/java Attribution. You must give the original author credit. Corrections, suggestions, contributions and Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license translations are welcome! identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/2.5/legalcode Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 2 Best viewed with... This document is best viewed with a recent PDF reader or with OpenOffice.org itself! Take advantage of internal
    [Show full text]
  • Effective Inline-Threaded Interpretation of Java Bytecode
    Effective Inline-Threaded Interpretation of Java Bytecode Using Preparation Sequences Etienne Gagnon1 and Laurie Hendren2 1 Sable Research Group Universit´eduQu´ebec `a Montr´eal, [email protected] 2 McGill University Montreal, Canada, [email protected] Abstract. Inline-threaded interpretation is a recent technique that im- proves performance by eliminating dispatch overhead within basic blocks for interpreters written in C [11]. The dynamic class loading, lazy class initialization, and multi-threading features of Java reduce the effective- ness of a straight-forward implementation of this technique within Java interpreters. In this paper, we introduce preparation sequences, a new technique that solves the particular challenge of effectively inline-threa- ding Java. We have implemented our technique in the SableVM Java virtual machine, and our experimental results show that using our tech- nique, inline-threaded interpretation of Java, on a set of benchmarks, achieves a speedup ranging from 1.20 to 2.41 over switch-based inter- pretation, and a speedup ranging from 1.15 to 2.14 over direct-threaded interpretation. 1 Introduction One of the main advantages of interpreters written in high-level languages is their simplicity and portability, when compared to static and dynamic compiler-based systems. One of their main drawbacks is poor performance, due to a high cost for dispatching interpreted instructions. In [11], Piumarta and Riccardi introduced a technique called inlined-threading which reduces this overhead by dynamically inlining instruction sequences within basic blocks, leaving a single instruction dispatch at the end of each sequence. To our knowledge, inlined-threading has not been applied to Java interpreters before.
    [Show full text]
  • Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine
    Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine Entwurf und Analyse einer Scala Benchmark Suite für die Java Virtual Machine Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation von Diplom-Mathematiker Andreas Sewe aus Twistringen, Deutschland April 2013 — Darmstadt — D 17 Fachbereich Informatik Fachgebiet Softwaretechnik Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine Entwurf und Analyse einer Scala Benchmark Suite für die Java Virtual Machine Genehmigte Dissertation von Diplom-Mathematiker Andreas Sewe aus Twistrin- gen, Deutschland 1. Gutachten: Prof. Dr.-Ing. Ermira Mezini 2. Gutachten: Prof. Richard E. Jones Tag der Einreichung: 17. August 2012 Tag der Prüfung: 29. Oktober 2012 Darmstadt — D 17 For Bettina Academic Résumé November 2007 – October 2012 Doctoral studies at the chair of Prof. Dr.-Ing. Er- mira Mezini, Fachgebiet Softwaretechnik, Fachbereich Informatik, Techni- sche Universität Darmstadt October 2001 – October 2007 Studies in mathematics with a special focus on com- puter science (Mathematik mit Schwerpunkt Informatik) at Technische Uni- versität Darmstadt, finishing with a degree of Diplom-Mathematiker (Dipl.- Math.) iii Acknowledgements First and foremost, I would like to thank Mira Mezini, my thesis supervisor, for pro- viding me with the opportunity and freedom to pursue my research, as condensed into the thesis you now hold in your hands. Her experience and her insights did much to improve my research as did her invaluable ability to ask the right questions at the right time. I would also like to thank Richard Jones for taking the time to act as secondary reviewer of this thesis.
    [Show full text]
  • Android Cours 1 : Introduction `Aandroid / Android Studio
    Android Cours 1 : Introduction `aAndroid / Android Studio Damien MASSON [email protected] http://www.esiee.fr/~massond 21 f´evrier2017 R´ef´erences https://developer.android.com (Incontournable !) https://openclassrooms.com/courses/ creez-des-applications-pour-android/ Un tutoriel en fran¸caisassez complet et plut^ot`ajour... 2/52 Qu'est-ce qu'Android ? PME am´ericaine,Android Incorporated, cr´e´eeen 2003, rachet´eepar Google en 2005 OS lanc´een 2007 En 2015, Android est le syst`emed'exploitation mobile le plus utilis´edans le monde (>80%) 3/52 Qu'est-ce qu'Android ? Cinq couches distinctes : 1 le noyau Linux avec les pilotes ; 2 des biblioth`equeslogicielles telles que WebKit/Blink, OpenGL ES, SQLite ou FreeType ; 3 un environnement d'ex´ecutionet des biblioth`equespermettant d'ex´ecuterdes programmes pr´evuspour la plate-forme Java ; 4 un framework { kit de d´eveloppement d'applications ; 4/52 Android et la plateforme Java Jusqu'`asa version 4.4, Android comporte une machine virtuelle nomm´eeDalvik Le bytecode de Dalvik est diff´erentde celui de la machine virtuelle Java de Oracle (JVM) le processus de construction d'une application est diff´erent Code Java (.java) ! bytecode Java (.class/.jar) ! bytecode Dalvik (.dex) ! interpr´et´e L'ensemble de la biblioth`equestandard d'Android ressemble `a J2SE (Java Standard Edition) de la plateforme Java. La principale diff´erenceest que les biblioth`equesd'interface graphique AWT et Swing sont remplac´eespar des biblioth`equesd'Android. 5/52 Android Runtime (ART) A` partir de la version 5.0 (2014), l'environnement d'ex´ecution ART (Android RunTime) remplace la machine virtuelle Dalvik.
    [Show full text]
  • Compiler Analyses for Improved Return Value Prediction
    Compiler Analyses for Improved Return Value Prediction Christopher J.F. Pickett Clark Verbrugge {cpicke,clump}@sable.mcgill.ca School of Computer Science, McGill University Montreal,´ Quebec,´ Canada H3A 2A7 Overview Introduction and Related Work Contributions Framework Parameter Dependence Analysis Return Value Use Analysis Conclusions Future Work CDP04 – 1/48 Introduction and Related Work Speculative method-level parallelism (SMLP) allows for dynamic parallelisation of single-threaded programs speculative threads are forked at callsites suitable for Java virtual machines Perfect return value prediction can double performance of SMLP (Hu et al., 2003) Implemented accurate return value prediction in SableVM, our group’s JVM (Pickett et al., 2004) Current goals: Reduce memory requirements Achieve higher accuracy CDP04 – 2/48 Speculative Method-Level Parallelism // execute foo non-speculatively r = foo (a, b, c); // execute past return point // speculatively in parallel with foo() if (r > 10) { ... } else { ... } CDP04 – 3/48 Impact of Return Value Prediction RVP strategy return value SMLP speedup none arbitrary 1.52 best predicted 1.92 perfect correct 2.76 26% speedup over no RVP with Hu’s best predictor 82% speedup over no RVP with perfect prediction Improved hybrid accuracy is highly desirable S. Hu., R. Bhargava, and L. K. John. The role of return value prediction in exploiting speculative method-level parallelism. Journal of Instruction-Level Parallelism, 5:1–21, Nov. 2003. CDP04 – 4/48 Return Value Prediction in SableVM Implemented all of Hu et al.’s predictors in SableVM Introduced new memoization predictor into hybrid C.J.F. Pickett and C. Verbrugge. Return value prediction in a Java virtual machine.
    [Show full text]
  • Full-System Simulation of Java Workloads with RISC-V and the Jikes Research Virtual Machine
    Full-System Simulation of Java Workloads with RISC-V and the Jikes Research Virtual Machine Martin Maas Krste Asanović John Kubiatowicz University of California, Berkeley University of California, Berkeley University of California, Berkeley [email protected] [email protected] [email protected] ABSTRACT architecture research. Specifically, all of the major approaches fall Managed languages such as Java, JavaScript or Python account for short when applied to managed-language applications: a large portion of workloads, both in cloud data centers and on • High-level full-system simulators do not provide the fidelity mobile devices. It is therefore unsurprising that there is an inter- to fully capture managed-language workloads. These work- est in hardware-software co-design for these languages. However, loads often interact at very small time-scales. For example, existing research infrastructure is often unsuitable for this kind of garbage collectors may introduce small delays of ≈ 10 cycles research: managed languages are sensitive to fine-grained inter- each, scattered through the application [10]. Cumulatively, actions that are not captured by high-level architectural models, these delays add up to substantial overheads but individually, yet are also too long-running and irregular to be simulated using they can only be captured with a high-fidelity model. cycle-accurate software simulators. • Software-based cycle-accurate simulators are too slow for Open-source hardware based on the RISC-V ISA provides an managed workloads. These simulators typically achieve on opportunity to solve this problem, by running managed workloads the order of 400 KIPS [17], or 1s of simulated time per 1.5h on RISC-V systems in FPGA-based full-system simulation.
    [Show full text]
  • A Deployable Sampling Strategy for Data Race Detection
    A Deployable Sampling Strategy for Data Race Detection Yan Cai1, Jian Zhang1, Lingwei Cao1, and Jian Liu2 1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China 2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China [email protected], [email protected], [email protected], [email protected] ABSTRACT to a shared memory location should be protected by a common set Dynamic data race detection incurs heavy runtime overheads. of locks. However, even violating such a discipline, no data race Recently, many sampling techniques have been proposed to detect may occur [8][12][19]. The Happens-before relation [29] is usual- data races. However, some sampling techniques (e.g., Pacer) are ly implemented via vector clocks [19]. Each vector clock contains based on traditional happens-before relation and incur a large n clock elements, where n is the number of threads. They are used basic overhead. Others utilize hardware to reduce their sampling to track statuses of threads, locks, and memory locations. Race overhead (e.g., DataCollider) and they, however, detect a race detectors implementing vector clocks incur higher overhead than only when the race really occurs by delaying program executions. the lockset based ones. FastTrack [19] further improves the over- In this paper, we study the limitations of existing techniques and head of the happens-before based race detectors to be the same propose a new data race definition, named as Clock Races, for low level as that of lockset based ones by avoiding most of O(n) oper- overhead sampling purpose.
    [Show full text]
  • Jikes RVM and IBM DK for Java ƒ Understanding System Behavior ƒ Other Issues 4
    Dynamic Compilation and Adaptive Optimization in Virtual Machines Instructor: Michael Hind Material contributed by: Matthew Arnold, Stephen Fink, David Grove, and Michael Hind © 2006 IBM Corporation IBM Research Who am I? Helped build Jikes RVM (1998-2006) – GC Maps, live analysis, dominators, register allocation refactoring – Adaptive optimization system – Management, project promotion, education, etc. Work for IBM, home of 2 other Java VMs – IBM DK for Java, J9 In previous lives, worked on – Automatic parallelization (PTran) – Ada implementation (Phd Thesis) – Interprocedural ptr analysis – Professor for 6 years Excited to share what I know – And learn what I don’t! 2 ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation IBM Research Course Goals Understand the optimization technology used in production virtual machines Provide historical context of dynamic/adaptive optimization technology Debunk common misconceptions Suggest avenues of future research 3 ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation IBM Research Course Outline 1. Background 2. Engineering a JIT Compiler 3. Adaptive Optimization 4. Feedback-Directed and Speculative Optimizations 5. Summing Up and Looking Forward 4 ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation IBM Research Course Outline 1. Background Why software optimization matters Myths, terminology, and historical context How programs are executed 2. Engineering a JIT Compiler What is a JIT compiler? Case studies: Jikes RVM, IBM DK for Java, HotSpot High level language-specific optimizations VM/JIT interactions 3. Adaptive Optimization Selective optimization Design: profiling and recompilation Case studies: Jikes RVM and IBM DK for Java Understanding system behavior Other issues 4.
    [Show full text]