Guide for Use of Wood Preservatives in Historic Structures Stan Lebow, Research Forest Products Technologist Forest Products Laboratory, Madison, Wisconsin Ronald W

Total Page:16

File Type:pdf, Size:1020Kb

Guide for Use of Wood Preservatives in Historic Structures Stan Lebow, Research Forest Products Technologist Forest Products Laboratory, Madison, Wisconsin Ronald W United States Department of Agriculture Guide for Use of Forest Service Wood Preservatives Forest Products Laboratory in Historic Structures General Stan Lebow Technical Report Ronald W. Anthony FPL–GTR–217 Independence Mine Historical Park, Alaska Abstract treatments and for selection and specification of pressure- treated wood are provided in this document. This document provides guidance on wood preservation options in the context of historic preservation. Preserving Keywords: Guide, historic structures, preservative treat- wooden building materials is critical to historic preservation ments, remedial treatments, pressure treatments practitioners. Biodeterioration can be minimized through design, construction practices, maintenance, and, if neces- Acknowledgments sary, by use of wood preservatives. Moisture is the primary This document was developed under a grant from the cause of biodeterioration, and if exposure to moisture cannot National Park Service and the National Center for Preserva- be prevented, the application of preservatives or use of tion Technology and Training. Its contents are solely the pressure-treated wood may be warranted. The Secretary of responsibility of the authors and do not necessarily represent Interior’s Standards for the Treatment of Historic Proper- the official position or policies of the National Park Service ties emphasize retaining the historic character of a property, or the National Center for Preservation Technology and including distinctive materials, features, and spatial relation- Training. The authors express their appreciation to Kimberly ships. Existing conditions should be carefully evaluated to D. Dugan and Deborah J. Anthony for their contributions to determine the appropriate level of intervention. the technical content, providing photographs and assistance with editing of this document. The authors also thank Ms. Wood preservatives are generally grouped into two cat- Mary Striegel from the National Center for Preservation egories: preservatives used for in-place field (remedial) Technology and Training for her constructive comments. We treatment and preservatives used for pressure treatments. also gratefully acknowledge the assistance of Madelon Wise A limitation of in-place treatments is that they cannot be and Tivoli Gough (USDA, Forest Products Laboratory) for forced deeply into the wood under pressure. However, they their assistance in producing and refining the publication. can be applied into the center of large wooden members Finally, we express our appreciation to the reviewers whose via treatment holes. These preservatives may be available comments greatly improved the content and clarity of the as liquids, rods, or pastes. Pressure-treated wood has much guide. deeper and more uniform preservative penetration than wood treated with other methods. The type of pressure- treated wood is often dependent on the requirements of the Conversion table specific application. To guide selection of pressure-treated English unit Conversion factor SI unit wood, the American Wood Protection Association developed inch (in.) 25.4 millimeter (mm) Use Category System standards. Other preservative charac- foot (ft) 0.3048 meter (m) teristics, such as color, odor, and surface oiliness may also be relevant. Guidelines for selection and application of field October 2012 Lebow, Stan; Anthony, Ronald W. 2012. Guide for use of wood preserva- tives in historic structures. General Technical Report FPL-GTR-217. Madi- son, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 59 p. A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726–2398. This publication is also available online at www.fpl.fs.fed.us. Laboratory publications are sent to hundreds of libraries in the United States and elsewhere. The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. The use of trade or firm names in this publication is for reader information and does not imply endorsement by the United States Department of Agriculture (USDA) of any product or service. The USDA prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orienta- tion, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program informa- tion (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimi- nation, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250–9410, or call (800) 795–3272 (voice) or (202) 720–6382 (TDD). USDA is an equal opportunity provider and employer. Contents Standardization ............................................................. 34 Executive Summary ............................................................1 Treatment Specifications ............................................... 35 Introduction .........................................................................1 Environmental Considerations for Pressure-Treated Wood ............................................................................. 37 Intended Audience ..........................................................2 Alternatives to Pressure-Treated Wood ......................... 38 Wood Preservatives and Historic Preservation Philosophy.......................................................................2 Summary ........................................................................... 39 Wood Preservatives and Pressure-Treated Wood in Sources of Information ..................................................... 41 Historic Preservation .......................................................4 Appendix A—Pressure-Treated Wood Dichotomous Assessing the Need for Preservative Treatment ..................4 Key .................................................................................... 44 Causes of Wood Degradation ...........................................4 A. Sawn Lumber or Timbers ......................................... 44 Role of Wood Cellular Structure ................................... 11 B. Sawn Lumber or Timbers for Highway Construction ............................................................. 46 Problem Areas for Deterioration in Historic Structures ...................................................................... 11 C. Round Piles .............................................................. 46 Nonpreservative Approaches to Preventing D. Round Posts.............................................................. 46 Deterioration ................................................................. 15 E. Poles ......................................................................... 47 Wood Preservative Overview ............................................ 17 F. Glued-Laminated Members ...................................... 48 What Is a Wood Preservative? ...................................... 17 G. Plywood ................................................................... 49 When Is Application of Preservatives Appropriate? ..... 17 H. Permanent Wood Foundations ................................. 50 Historical Use of Wood Preservatives........................... 20 I. Wood in Seawater ...................................................... 51 Options for In-Place Preservative Treatment .................... 21 Appendix B—Description of Pressure Treatment Characteristics of In-Place Treatments ......................... 21 Preservatives (Grouped by Exposure Hazard) .................. 52 Application Guidelines .................................................. 24 Applications Protected from Moisture .......................... 52 Summary of In-Place Treatment Application Applications Above Ground with Partial Protection ..... 52 Conversion table Concepts ........................................................................ 27 Applications Above Ground but Fully Exposed to English unit Conversion factor SI unit Example In-Place Treatment Applications .................... 28 the Weather.................................................................... 53 inch (in.) 25.4 millimeter (mm) Who Can Apply In-Place Preservative Treatments? ..... 30 Applications in Direct Contact with the Ground or Fresh Water ................................................................... 54 foot (ft) 0.3048 meter (m) Using Pressure-Treated Wood ........................................... 32 Marine (Seawater) Applications ................................... 59 When to Consider Using Pressure-Treated Wood ......... 32 Preservative Penetration ................................................ 33 Treated Wood Use Category System ............................ 34 Guide for Use of Wood Preservatives in Historic Structures Stan Lebow, Research Forest Products Technologist Forest Products Laboratory, Madison, Wisconsin Ronald W. Anthony, Wood Scientist Anthony & Associates, Inc., Fort Collins, Colorado Executive Summary preservative applied is often dependent on the requirements of the specific application. To guide selection of the types Extending the life of (preserving) wooden building
Recommended publications
  • LP Solidstart LVL Technical Guide
    U.S. Technical Guide L P S o l i d S t a r t LV L Technical Guide 2900Fb-2.0E Please verify availability with the LP SolidStart Engineered Wood Products distributor in your area prior to specifying these products. Introduction Designed to Outperform Traditional Lumber LP® SolidStart® Laminated Veneer Lumber (LVL) is a vast SOFTWARE FOR EASY, RELIABLE DESIGN improvement over traditional lumber. Problems that naturally occur as Our design/specification software enhances your in-house sawn lumber dries — twisting, splitting, checking, crowning and warping — design capabilities. It ofers accurate designs for a wide variety of are greatly reduced. applications with interfaces for printed output or plotted drawings. Through our distributors, we ofer component design review services THE STRENGTH IS IN THE ENGINEERING for designs using LP SolidStart Engineered Wood Products. LP SolidStart LVL is made from ultrasonically and visually graded veneers arranged in a specific pattern to maximize the strength and CODE EVALUATION stifness of the veneers and to disperse the naturally occurring LP SolidStart Laminated Veneer Lumber has been evaluated for characteristics of wood, such as knots, that can weaken a sawn lumber compliance with major US building codes. For the most current code beam. The veneers are then bonded with waterproof adhesives under reports, contact your LP SolidStart Engineered Wood Products pressure and heat. LP SolidStart LVL beams are exceptionally strong, distributor, visit LPCorp.com or for: solid and straight, making them excellent for most primary load- • ICC-ES evaluation report ESR-2403 visit www.icc-es.org carrying beam applications. • APA product report PR-L280 visit www.apawood.org LP SolidStart LVL 2900F -2.0E: AVAILABLE SIZES b FRIEND TO THE ENVIRONMENT LP SolidStart LVL 2900F -2.0E is available in a range of depths and b LP SolidStart LVL is a building material with built-in lengths, and is available in standard thicknesses of 1-3/4" and 3-1/2".
    [Show full text]
  • Installation, Care, and Maintenance of Wood Shake and Shingle Siding
    United States Department of Agriculture Installation, Care, and Forest Service Maintenance of Wood Forest Products Laboratory Shake and Shingle Siding General Jack Dwyer Technical Report Tony Bonura FPL–GTR–202 Arnie Nebelsick Sam Williams Christopher G. Hunt Abstract Contents This article gives general guidelines for selection, instal- Introduction ......................................................................... 1 lation, finishing, and maintenance of wood shakes and Selection .............................................................................. 1 shingles. The authors gathered information from a variety of Shakes ............................................................................. 1 sources: research publications on wood finishing, technical data sheets from paint manufacturers, installation instruc- Shingles ........................................................................... 2 tions for shake and shingle siding, and interviews with Specialty Sidewall Products ............................................ 3 experts having experience constructing and inspecting shake Installation ........................................................................... 5 and shingle siding. If research reports could not be found, the recommendations are based on opinions of experts and Rain-Screen Method ....................................................... 5 practices that have been shown to give good service life for Direct Application ........................................................... 6 shakes and shingles.
    [Show full text]
  • Potential of Cross Laminated Timber in Residential Design
    POTENTIAL OF CROSS LAMINATED TIMBER IN SINGLE FAMILY RESIDENTIAL CONSTRUCTION by Brad Burback A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Civil and Environmental Engineering). Golden, Colorado Date____________________ Signed: ________________________ Brad Burback Signed: ________________________ Dr. Shiling Pei Thesis Advisor Golden, Colorado Date__________________ Signed: ________________________ Dr. John McCray Department Head of Civil and Environmental Engineering ii ABSTRACT Cross laminated timber (CLT) is a panelized engineered wood product that is gaining popularity in the United States as a structural material for massive timber buildings. CLT is shown to be cost competitive to steel and concrete in large building construction projects, but is seen as uncompetitive for smaller scale projects, especially light frame wood (LFW) residential construction. The purpose of this study is to provide a detailed comparison of the cost to construct a CLT home versus a LFW home to quantify the cost difference between both options in the single family home (SFH) market. Based on a realistic floor plan, three different designs were compared based on cost and construction timeline to determine the realistic cost differences between SFH constructions using LFW or CLT. The final results show that the CLT option results in a 21% increase in total construction cost from the LFW option. While it is difficult to justify this
    [Show full text]
  • Western BCI ® and VERSA-LAM ® Specifier Guide
    WESTERN SPECIFIER GUIDE for products manufactured in White City, Oregon WSG 03/14/2013 2 The SIMPLE FRAMING SYSTEM® Makes Designing Homes Easier Architects, engineers, and designers trust Boise Cascade's engineered wood products to provide a better system for framing floors and roofs. It's the SIMPLE FRAMING SYSTEM®, conventional framing methods when cross­ventila tion and wiring. featuring beams, joists and rim boards the resulting reduced labor and Ceilings Framed with BCI® Joists materials waste are con sidered. that work together as a system, so you The consistent size of BCI® Joists spend less time cutting and fitting. In There's less sorting and cost associ­ ated with disposing of waste because helps keep gypsum board flat and fact, the SIMPLE FRAMING SYSTEM® you order only what you need. free of unsightly nail pops and ugly uses fewer pieces and longer lengths Although our longer lengths help your shadows, while keeping finish work than conventional framing, so you'll clients get the job done faster, they to a minimum. complete jobs in less time. cost no more. VERSA­LAM® Beams for Floor You'll Build Better Homes Environmentally Sound and Roof Framing with the These highly­stable beams are ® As an added bonus, floor and roof free of the large­scale defects that SIMPLE FRAMING SYSTEM ® systems built with BCI Joists require plague dimension beams. The Now it's easier than ever to design about half the number of trees as and build better floor systems. When result is quieter, flatter floors (no those built with dimension lumber.
    [Show full text]
  • UFGS 06 10 00 Rough Carpentry
    ************************************************************************** USACE / NAVFAC / AFCEC / NASA UFGS-06 10 00 (August 2016) Change 2 - 11/18 ------------------------------------ Preparing Activity: NAVFAC Superseding UFGS-06 10 00 (February 2012) UNIFIED FACILITIES GUIDE SPECIFICATIONS References are in agreement with UMRL dated July 2021 ************************************************************************** SECTION TABLE OF CONTENTS DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES SECTION 06 10 00 ROUGH CARPENTRY 08/16, CHG 2: 11/18 PART 1 GENERAL 1.1 REFERENCES 1.2 SUBMITTALS 1.3 DELIVERY AND STORAGE 1.4 GRADING AND MARKING 1.4.1 Lumber 1.4.2 Structural Glued Laminated Timber 1.4.3 Plywood 1.4.4 Structural-Use and OSB Panels 1.4.5 Preservative-Treated Lumber and Plywood 1.4.6 Fire-Retardant Treated Lumber 1.4.7 Hardboard, Gypsum Board, and Fiberboard 1.4.8 Plastic Lumber 1.5 SIZES AND SURFACING 1.6 MOISTURE CONTENT 1.7 PRESERVATIVE TREATMENT 1.7.1 Existing Structures 1.7.2 New Construction 1.8 FIRE-RETARDANT TREATMENT 1.9 QUALITY ASSURANCE 1.9.1 Drawing Requirements 1.9.2 Data Required 1.9.3 Humidity Requirements 1.9.4 Plastic Lumber Performance 1.10 ENVIRONMENTAL REQUIREMENTS 1.11 CERTIFICATIONS 1.11.1 Certified Wood Grades 1.11.2 Certified Sustainably Harvested Wood 1.11.3 Indoor Air Quality Certifications 1.11.3.1 Adhesives and Sealants 1.11.3.2 Composite Wood, Wood Structural Panel and Agrifiber Products SECTION 06 10 00 Page 1 PART 2 PRODUCTS 2.1 MATERIALS 2.1.1 Virgin Lumber 2.1.2 Salvaged Lumber 2.1.3 Recovered Lumber
    [Show full text]
  • 2010 Directory of Maine's Primary Wood Processors
    Maine State Library Digital Maine Forest Service Documents Maine Forest Service 9-14-2011 2010 Directory of Maine's Primary Wood Processors Maine Forest Service Forest Policy and Management Division Follow this and additional works at: https://digitalmaine.com/for_docs Recommended Citation Maine Forest Service, "2010 Directory of Maine's Primary Wood Processors" (2011). Forest Service Documents. 253. https://digitalmaine.com/for_docs/253 This Text is brought to you for free and open access by the Maine Forest Service at Digital Maine. It has been accepted for inclusion in Forest Service Documents by an authorized administrator of Digital Maine. For more information, please contact [email protected]. 2010 Directory of Maine’s Primary Wood Processors Robert J. Lilieholm, Peter R. Lammert, Greg R. Lord and Stacy N. Trosper Maine Forest Service Department of Conservation 22 State House Station Augusta, Maine 04333-0022 School of Forest Resources University of Maine Orono, Maine 04469-5755 December 2010 Table of Contents Introduction ......................................................................................................................... 1 Maine's Primary Wood Processors I. Stationary Sawmills ............................................................................................. 4 II. Portable Sawmills ............................................................................................. 67 III. Pulp and Paper Manufacturers ...................................................................... 106 IV. Stand-Alone
    [Show full text]
  • Hardieshingle® Siding Product Description
    General Product Product Information Safely Working Working Tools for Tools Fastening Cutting and General Installation Requirements HardieShingle your local dealer for details and availability of products, colorsandaccessories. your localdealerfordetailsandavailabilityofproducts, See sidingandtrimproducts. coating isafactoryapplied,oven-bakedfinishavailableonvarietyofJamesHardie HardieShingle HardieShingle siding is available as a prefinished James Hardie product withColorPlus product JamesHardie sidingisavailableasaprefinished HardieShingle dealerforlocalavailabilityoftheseproducts. 6.75 in,7.25in&10widths.PleaseseeyourJamesHardie alsoavailablein4.2in,5.5 individualshinglesare shingles.Forsmallercoverageareas, decorative half-round panels alsocomeas panels48in.longby16inhigh.HardieShingle as straight-edgepanelsorstaggered-edge Straight EdgePanel Half-Round General Fastener Requirements ® siding is fiber-cement shingle siding for sidewall applications. HardieShingle sidingisavailable shinglesidingforsidewall applications.HardieShingle sidingisfiber-cement Maintenance Finishing and ® ® HardieWrap SidingProductDescription Weather Barrier Weather ® HardieTrim Boards/Battens ® 96 Panels HardieSoffit ® Individual Shingles EdgePanel Staggered Lap Siding HardiePlank ® Siding HardieShingle ® ® Technology. TheColorPlus Technology. HardiePanel Vertical Siding Vertical Glossary Appendix/ ESR-1844 & 2290 Report Information Product Product General Installation of HardieShingle® Siding Working Working Safely INDIVIDUAL SHINGLES Water resistive barrier
    [Show full text]
  • E-Mount QMSE
    E-Mount QMSE ,7(0 7+,6('*(72:$5'6522)5,'*( 12 '(6&5,37,21 47< )/$6+,1*;;0,// 4%/2&.&/$66,&$&$67$/0,// +$1*(5%2/73/$,1&(17(5[ 66 :$6+(56($/,1*,';2' (3'0%21'('66 5$&.,1*&20321(176 187+(;81&%66 127,1&/8'(' :$6+(5)/$7,'[2'[ (3'0 :$6+(5)(1'(5,';2'66 :$6+(563/,7/2&.,'66 7,7/( 406(4039(02817 $9$,/$%/(,10,//$1' %521=($12',=('),1,6+(6 81/(6627+(5:,6(63(&,),(' 6,=( '5$:1%< 5$' 5(9 ',0(16,216$5(,1,1&+(6 72/(5$1&(6 )5$&7,21$/ $ '$7( 35235,(7$5<$1'&21),'(17,$/ 7:23/$&('(&,0$/ 7+(,1)250$7,21&217$,1(',17+,6'5$:,1*,67+(62/(3523(57<2)48,&.0281739$1<5(352'8&7,21,13$5725$6 '21276&$/('5$:,1* $:+2/(:,7+2877+(:5,77(13(50,66,212)48,&.0281739,6352+,%,7(' 7+5((3/$&('(&,0$/ 6&$/( :(,*+7 6+((72) Lag pull-out (withdrawal) capacities (lbs) in typical lumber: Lag Bolt Specifications Specific Gravity 5/16" shaft per 3" thread depth 5/16" shaft per 1" thread depth Douglas Fir, Larch .50 798 266 Douglas Fir, South .46 705 235 Engelmann Spruce, Lodgepole Pine (MSR 1650 f & higher) .46 705 235 Hem, Fir .43 636 212 Hem, Fir (North) .46 705 235 Southern Pine .55 921 307 Spruce, Pine, Fir .42 615 205 Spruce, Pine, Fir (E of 2 million psi and higher grades of MSR and MEL) .50 798 266 Sources: American Wood Council, NDS 2005, Table 11.2 A, 11.3.2 A Notes: 1) Thread must be embedded in a rafter or other structural roof member.
    [Show full text]
  • Timberpeg.Com ®
    7759_01.qxd 6/19/07 3:26 PM Page 1 06 13 23/TIM BuyLine 7759 ® timberpeg.com 7759_02.qxd 6/19/07 3:28 PM Page 2 ® PROJECT: HERMITS OF CARMEL ARCHITECT: EDWARD S. MILLER, AIA imberpeg® is a national company with four sales offices and Independent Representatives across the United TStates. No matter where you are located, local technical assistance is only a phone call away. Since 1974 Timberpeg® has been offering timber framing solutions to architects, designers, builders and individuals. Over the years we have designed and produced thousands of true mortise and tenon timber framed structures for satisfied customers. We look forward to working with architects on their projects, whether residential or commercial. In fact, dozens of architects have chosen the TIMBERPEG® brand for their own homes. Timberpeg® uses the highest quality components available, including Select Structural grade Douglas fir and eastern white pine timbers. We precut traditional mortise and tenon frames, and ship them with the exterior building shell components to sites across the country and abroad. The Timberpeg® package includes structural insulated panels (SIPs) for the wall enclosure and features our vented “Wrap & Strap” system with tongue and groove panels for the roof enclosure. (SIPs as a roof enclosure and “Wrap & Strap” as a wall enclosure are available upon request but are not considered part of the standard Timberpeg® package.) Timberpeg® has a modular framing system, but also produces many custom frames, bent-style structures and trusses. In fact, our framing solutions are only limited by the capacity of the timber and your imagination.
    [Show full text]
  • Annex 2B: OSB (Oriented Strand Board)
    Panel Guide Version 4 Annex 2B: OSB (oriented strand in panels from different manufacturers; in panels from different manufacturers it is possible to obtain ratios board) of property levels in the machine- to cross-direction of Description 1.25:1 to 2.5:1, thereby emulating the ratios found in OSB is an engineered wood-based panel material in plywood. which long strands of wood are bonded together with a synthetic resin adhesive. OSB is usually composed Appearance of three layers, with the strands of the outer two layers OSB is readily identified by its larger and longer wood orientated in a particular direction, more often than strands, compared to particleboard. The orientation not in the long direction of the panel. While there is an of the surface strands is not always visually apparent, orientation, it is often hard to see because there is quite especially in small pieces of panel. The panel tends to a large degree of variability in this orientation among have a number of holes on the surface due to the overlap adjacent strands in the panels from any one production of strands, but a smoother surface can be obtained by line, as well as between panels from different producers. sanding. However, OSB will never possess the smooth- ness of surface found in fibreboards and particleboards: rather its merits lie in the field of mechanical perfor- mance which is directly related to the use of longer and larger strands of wood. OSB varies in colour from a light straw colour to a medium brown depending on species used, resin system adopted and pressing conditions employed.
    [Show full text]
  • Wood Preservation: Improvement of Mechanical Properties by Vacuum Pressure Process
    International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-2, Issue-4, April 2015 Wood Preservation: Improvement of Mechanical Properties by Vacuum Pressure Process Md. Fazle Rabbi, Md. Mahmudul Islam, A.N.M. Mizanur Rahman timber. The amount of damage by the second is negligible in comparison to the first enemies. By applying proper Abstract— Wood, being a biological product, is liable to preservation technique, it is possible to protect the timber deterioration unless it is properly protected. The main reasons of deterioration of timber in service are decay due to fungal from these enemies. Preservation is the only appropriate way infection, attack by insects (borers and white ants), marine to make the timber toxic and protect it [1]. organisms and fire. Protection of wood is carried out from these agents by using preservative which can properly be used by proper design of preservation plant. Proper design of such plant The primary importance of the preservation treatment of is very essential to increase the lifespan of wood economically. wood is to increase the life of the material in service, thus Among the various wood preservation techniques, pressure decreasing the ultimate cost of the product and avoiding the processes are the most permanent technique around the world need for frequent replacements [2]. The extension of the today. In the Full cell process, wood is allowed to absorb as much liquid chemicals as possible during the pressure period, service life of timber by the application of appropriate thus leaving the maximum concentration of preservatives in the preservatives has another significant effect in the field of treated area.
    [Show full text]
  • EXTERIOR WOODWORK Township of Hopewell Historic Preservation Commission GUIDELINES for EXTERIOR WOODWORK
    GUIDELINES FOR EXTERIOR WOODWORK Township of Hopewell Historic Preservation Commission GUIDELINES FOR EXTERIOR WOODWORK WOOD SIDING, SHINGLES AND TRIM Wood siding, shingles and trim on a building’s wall surface serve both functional and aesthetic purposes. Functionally, exterior woodwork acts as the skin of the building, shedding water and deflecting sunlight and wind. Aesthetically, woodwork is an important design feature and can be applied as siding, shingles and ornamental trim. Exterior woodwork: • Establishes a weather-tight enclosure, providing Wood clapboard siding is one of the most common historic exterior protection from rain, wind and sun wall materials in Hopewell Township. • Is affected by temperature variation and building PURPOSE movement • Establishes a building’s scale, mass and proportion These Guidelines were prepared to assist property owners with information when considering the • Acts as an important design feature, helping to define maintenance, repair, replacement or installation of a building’s architectural style wood siding, shingles and trim. They are not intended • Adds visual interest to the streetscape to replace consultation with qualified architects, • Adds pattern and casts shadows on wall surfaces contractors and the Historic Preservation Commission (HPC). The HPC will be happy to provide consultation With proper maintenance, exterior wood elements can and assistance with materials, free of charge. last for centuries, however improper maintenance can result in problems and deterioration from water, These Guidelines were developed in conjunction with fungus, mold and insects. Hopewell Township’s Historic Preservation Commission (HPC). The HPC reviews Certificate of Appropriateness (COA) applications for proposed exterior alterations to properties locally designated as Historic Landmarks or within a local Historic District.
    [Show full text]