Reptiles FINAL.Pmd

Total Page:16

File Type:pdf, Size:1020Kb

Reptiles FINAL.Pmd Reptiles found in Maricopa County, AZ Maricopa County is located within the Sonoran Desert, an arid region covering 120,000 square miles in southwestern Arizona, southeastern and most of Baja California, as well as the western half of the state of Sonora, Mexico. Reptiles Frog/Toad Salamandar Bull Frog Tiger (Exotic) Canyon Tree Frog Snake Couches Spadefoot Toad Black-headed Lowland Leopard Frog (Exotic) Black-tailed Rattle Red Spotted Toad California King Rio Grande Leopard Frog (Exotic) Checkered Garter Sonoran Green Toad Coachwhip Sonoran/Colorado River Toad Gopher Western Spadefoot Toad Ground Woodhouse Toad Long-nosed Lizard Mojave Rattle Banded Gecko Night Checkered Whiptail Patch-nosed Chuckwalla Regal Ringneck Clark’s Spiny Sidewinder Collared Shovel-nosed Desert Iguana Sonoran Coral Desert Spiny Sonoran Gopher Earless Sonoran Whip Fringe-toed Speckled Rattle Gila Monster Striped Whip Leopard Tiger Rattle Night Western Blind Regale Horned Western Diamondback Rattle Collared Lizard Photo by William CoyoteLeanord Side-blotched Turtle Wildlife of Maricopa County Parks Tree Desert Tortoise Zebra-Tailed Red-eared Slider Notes: Snapping National Poison Control Hotline 800.222.1222 Maricopa County Parks and Recreation Department 602.506.2930 www.maricopa.gov/parks Parks & Recreation Department 080408 Banded Gecko Coleonyx variegates Banded Snake, Gopher Pituophis melanoleucus lizard with alternating yellow and brown A tan colored body blotched with darker bands, this 4” lizard is sometimes saddles and its defensive tail rattling; mistaken for a Gila Monster because of mistaken for a rattlesnake. 5’ long. its banded coloring and thick tail. Chuckwalla Sauramalus obesus 14” lizard Rattlesnake, Mojave Crotalus scutulatus of the rocks. Males display a red on black Similar to diamondback, but with white dorsal and straw-colored tails; or black tail bands about twice as long as the dull with white flecking. Females are banded black bands. Set of enlarged scales near earth tones. the snout. Venom very lethal. Gila Monster Heloderma suspectum Protected species; proprietary black and Rattlesnake, Speckled Crotalus mitcheli orange pattern, having a girth that can Many colors. Exhibit pattern of faded measure more than 2” around. Blunt body saddles that change to bands about a third may reach more than 20”. Only of the way down the body; appears in venomous lizard in United States. variations of red/gray. Prefers rocky hills. Lizard, Collared Cortaphytus bicinctores Rattlesnake, Tiger Crotalus tigris 12” double collar neck markings. Similar to speckled rattler, but marked Lizard, Desert Spiny Scoloporus magister with indistinct bands on the full length of Collared neck markings; scales are as its body. The colors are usually reddish rough as a wood rasp. Often makes a soda brown or gray. machine its summer home. Rattlesnake, Western Diamondback Lizard, Regale Horned Phynosoma solare Crotalus atrox Arizona’s largest, usually less Frisbee-shaped body; short tail and legs. than 5’ long, and the most defensively Thorn-like crown of head scales. aggressive rattlesnake; frequently seen on Lizard, Zebra-Tailed Callisaurus draconoides the trails. Step around it carefully to Dubbed scorpion lizard; tendency to raise continue hike. Diamondbacks avoid biting and wave vividly barred, black/white tail. unless closely pressed. Gray, with faded pattern of diamonds. The tail is ringed Coachwhip Masticophis flagellum Fast snake with contrasting white and black rings. called Red Racer. Various shades of tan, Frequent the flats but sometimes hillsides. red, pink and occasionally black. Scale pattern similar to a braided leather whip. Toad, Couch’s Spadefoot Scapliopus couchi Snake, Black-neck Garter Thamnophis Mottled with yellow, the vertical, cat-eye cyrtopsis Brown on the body, a yellow strip pupils distinguish it from other toads. down its back and dark brown marking behind the head. Lives near water. Toad, Sonoran Desert Bufo alvarius Wet skinned; 7” long. Largest in U.S. Snake, Common King Lampropeltis getula Alternating black and white bands. Reaches about 4’ long. Eats other snakes, Tortoise, Desert Gopherus agassizii and is immune to the venom. Rocky hillsides and wash banks are habitat for the dome-shaped tortoise. Snake, Coral Micruroides euryxanthus “Red on yellow, kill a fellow,” goes the rhyme. 20”, pencil-thin relative of the Turtle, Sonoran Mud Kinosternon sonoriense cobra, is marked with alternating pattern Small, brown-color; near perennial water. of rings, yellow-black-yellow-red. All illustrations courtesy of Arizona-Sonora Desert Museum All illustrations courtesy of Arizona-Sonora Desert Museum.
Recommended publications
  • Chuckwalla Habitat in Nevada
    Final Report 7 March 2003 Submitted to: Division of Wildlife, Department of Conservation and Natural Resources, State of Nevada STATUS OF DISTRIBUTION, POPULATIONS, AND HABITAT RELATIONSHIPS OF THE COMMON CHUCKWALLA, Sauromalus obesus, IN NEVADA Principal Investigator, Edmund D. Brodie, Jr., Department of Biology, Utah State University, Logan, UT 84322-5305 (435)797-2485 Co-Principal Investigator, Thomas C. Edwards, Jr., Utah Cooperative Fish and Wildlife Research Unit and Department of Fisheries and Wildlife, Utah State University, Logan, UT 84322-5210 (435)797-2509 Research Associate, Paul C. Ustach, Department of Biology, Utah State University, Logan, UT 84322-5305 (435)797-2450 1 INTRODUCTION As a primary consumer of vegetation in the desert, the common chuckwalla, Sauromalus obesus (=ater; Hollingsworth, 1998), is capable of attaining high population density and biomass (Fitch et al., 1982). The 21 November 1991 Federal Register (Vol. 56, No. 225, pages 58804-58835) listed the status of chuckwalla populations in Nevada as a Category 2 candidate for protection. Large size, open habitat and tendency to perch in conspicuous places have rendered chuckwallas particularly vulnerable to commercial and non-commercial collecting (Fitch et al., 1982). Past field and laboratory studies of the common chuckwalla have revealed an animal with a life history shaped by the fluctuating but predictable desert climate (Johnson, 1965; Nagy, 1973; Berry, 1974; Case, 1976; Prieto and Ryan, 1978; Smits, 1985a; Abts, 1987; Tracy, 1999; and Kwiatkowski and Sullivan, 2002a, b). Life history traits such as annual reproductive frequency, adult survivorships, and population density have all varied, particular to the population of chuckwallas studied. Past studies are mostly from populations well within the interior of chuckwalla range in the Sonoran Desert.
    [Show full text]
  • Birds, Reptiles, Amphibians, Vascular Plants, and Habitat in the Gila River Riparian Zone in Southwestern New Mexico
    Birds, Reptiles, Amphibians, Vascular Plants, and Habitat in the Gila River Riparian Zone in Southwestern New Mexico Kansas Biological Survey Report #151 Kelly Kindscher, Randy Jennings, William Norris, and Roland Shook September 8, 2008 Birds, Reptiles, Amphibians, Vascular Plants, and Habitat in the Gila River Riparian Zone in Southwestern New Mexico Cover Photo: The Gila River in New Mexico. Photo by Kelly Kindscher, September 2006. Kelly Kindscher, Associate Scientist, Kansas Biological Survey, University of Kansas, 2101 Constant Avenue, Lawrence, KS 66047, Email: [email protected] Randy Jennings, Professor, Department of Natural Sciences, Western New Mexico University, PO Box 680, 1000 W. College Ave., Silver City, NM 88062, Email: [email protected] William Norris, Associate Professor, Department of Natural Sciences, Western New Mexico University, PO Box 680, 1000 W. College Ave., Silver City, NM 88062, Email: [email protected] Roland Shook, Emeritus Professor, Biology, Department of Natural Sciences, Western New Mexico University, PO Box 680, 1000 W. College Ave., Silver City, NM 88062, Email: [email protected] Citation: Kindscher, K., R. Jennings, W. Norris, and R. Shook. Birds, Reptiles, Amphibians, Vascular Plants, and Habitat in the Gila River Riparian Zone in Southwestern New Mexico. Open-File Report No. 151. Kansas Biological Survey, Lawrence, KS. ii + 42 pp. Abstract During 2006 and 2007 our research crews collected data on plants, vegetation, birds, reptiles, and amphibians at 49 sites along the Gila River in southwest New Mexico from upstream of the Gila Cliff Dwellings on the Middle and West Forks of the Gila to sites below the town of Red Rock, New Mexico.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Contributions of Intensively Managed Forests to the Sustainability of Wildlife Communities in the South
    CONTRIBUTIONS OF INTENSIVELY MANAGED FORESTS TO THE SUSTAINABILITY OF WILDLIFE COMMUNITIES IN THE SOUTH T. Bently Wigley1, William M. Baughman, Michael E. Dorcas, John A. Gerwin, J. Whitfield Gibbons, David C. Guynn, Jr., Richard A. Lancia, Yale A. Leiden, Michael S. Mitchell, Kevin R. Russell ABSTRACT Wildlife communities in the South are increasingly influenced by land use changes associated with human population growth and changes in forest management strategies on both public and private lands. Management of industry-owned landscapes typically results in a diverse mixture of habitat types and spatial arrangements that simultaneously offers opportunities to maintain forest cover, address concerns about fragmentation, and provide habitats for a variety of wildlife species. We report here on several recent studies of breeding bird and herpetofaunal communities in industry-managed landscapes in South Carolina. Study landscapes included the 8,100-ha GilesBay/Woodbury Tract, owned and managed by International Paper Company, and 62,363-ha of the Ashley and Edisto Districts, owned and managed by Westvaco Corporation. Breeding birds were sampled in both landscapes from 1995-1999 using point counts, mist netting, nest searching, and territory mapping. A broad survey of herpetofauna was conducted during 1996-1998 across the Giles Bay/Woodbury Tract using a variety of methods, including: searches of natural cover objects, time-constrained searches, drift fences with pitfall traps, coverboards, automated recording systems, minnow traps, and turtle traps. Herpetofaunal communities were sampled more intensively in both landscapes during 1997-1999 in isolated wetland and selected structural classes. The study landscapes supported approximately 70 bird and 72 herpetofaunal species, some of which are of conservation concern.
    [Show full text]
  • Sauromalus Hispidus
    ARTÍCULOS CIENTÍFICOS Cerdá-Ardura & Langarica-Andonegui 2018 - Sauromalus hispidus in Rasa Island- p 17-28 ON THE PRESENCE OF THE SPINY CHUCKWALLA SAUROMALUS HISPIDUS (STEJNEGER, 1891) IN RASA ISLAND, MEXICO PRESENCIA DEL CHACHORÓN ESPINOSO SAUROMALUS HISPIDUS (STEJNEGER, 1891) EN LA ISLA DE RASA, MÉXICO Adrián Cerdá-Ardura1* and Esther Langarica-Andonegui2 1Lindblad Expeditions/National Geographic. 2Facultad de Ciencias, Uiversidad Nacional Autónoma de México, CDMX, México. *Correspondence author: [email protected] Abstract.— In 2006 and 2013 two different individuals of the Spiny Chuckwalla (Sauromalus hispidus) were found on the small, flat, volcanic and isolated Rasa Island, located in the Midriff Region of the Gulf of California, Mexico. This species had never been recorded from Rasa Island prior to 2006. A new field study in 2014 revealed the presence of a single female chuckwalla inhabiting the Tapete Verde Valley, in the south-central part of the island, occupying a territory no bigger than 10000 m2. A scat analysis shows that the only food consumed by the animal is the Alkali Weed (Cressa truxilliensis) that forms patches of carpets in its habitat. The individual is in precarious condition, as it seems to starve on a seasonal basis, especially during El Niño cycles; also, it is missing fingers and toes, which appear to be intentional markings by amputation. We conclude that the two individuals were introduced to the island intentionally by humans. Keywords.— Chuckwalla, Gulf of California, Rasa Island. Resumen.— En 2006 y 2013 se encontraron dos individuos diferentes del cachorón de roca o chuckwalla espinoso (Sauromalus hispidus) en la pequeña, plana, volcánica y aislada isla Rasa, localizada en la Región de las Grandes Islas, en el Golfo de California, México.
    [Show full text]
  • Iguanid and Varanid CAMP 1992.Pdf
    CONSERVATION ASSESSMENT AND MANAGEMENT PLAN FOR IGUANIDAE AND VARANIDAE WORKING DOCUMENT December 1994 Report from the workshop held 1-3 September 1992 Edited by Rick Hudson, Allison Alberts, Susie Ellis, Onnie Byers Compiled by the Workshop Participants A Collaborative Workshop AZA Lizard Taxon Advisory Group IUCN/SSC Conservation Breeding Specialist Group SPECIES SURVIVAL COMMISSION A Publication of the IUCN/SSC Conservation Breeding Specialist Group 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124 USA A contribution of the IUCN/SSC Conservation Breeding Specialist Group, and the AZA Lizard Taxon Advisory Group. Cover Photo: Provided by Steve Reichling Hudson, R. A. Alberts, S. Ellis, 0. Byers. 1994. Conservation Assessment and Management Plan for lguanidae and Varanidae. IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Banlc Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No. 1100 1210 1736. The work of the Conservation Breeding Specialist Group is made possible by generous contributions from the following members of the CBSG Institutional Conservation Council Conservators ($10,000 and above) Australasian Species Management Program Gladys Porter Zoo Arizona-Sonora Desert Museum Sponsors ($50-$249) Chicago Zoological
    [Show full text]
  • Near the Himalayas, from Kashmir to Sikkim, at Altitudes the Catholic Inquisition, and the Traditional Use of These of up to 2700 Meters
    Year of edition: 2018 Authors of the text: Marc Aixalà & José Carlos Bouso Edition: Alex Verdaguer | Genís Oña | Kiko Castellanos Illustrations: Alba Teixidor EU Project: New Approaches in Harm Reduction Policies and Practices (NAHRPP) Special thanks to collaborators Alejandro Ponce (in Peyote report) and Eduardo Carchedi (in Kambó report). TECHNICAL REPORT ON PSYCHOACTIVE ETHNOBOTANICALS Volumes I - II - III ICEERS International Center for Ethnobotanical Education Research and Service INDEX SALVIA DIVINORUM 7 AMANITA MUSCARIA 13 DATURA STRAMONIUM 19 KRATOM 23 PEYOTE 29 BUFO ALVARIUS 37 PSILOCYBIN MUSHROOMS 43 IPOMOEA VIOLACEA 51 AYAHUASCA 57 IBOGA 67 KAMBÓ 73 SAN PEDRO 79 6 SALVIA DIVINORUM SALVIA DIVINORUM The effects of the Hierba Pastora have been used by Mazatec Indians since ancient times to treat diseases and for divinatory purposes. The psychoactive compound Salvia divinorum contains, Salvinorin A, is the most potent naturally occurring psychoactive substance known. BASIC INFO Ska Pastora has been used in divination and healing Salvia divinorum is a perennial plant native to the Maza- rituals, similar to psilocybin mushrooms. Maria Sabina tec areas of the Sierra Madre Oriental Mountains of Mexi- told Wasson and Hofmann (the discoverers of its Mazatec co. Its habitat is tropical forests, where it grows between usage) that Salvia divinorum was used in times when the- 300 and 800 meters above sea level. It belongs to the re was a shortage of mushrooms. Some sources that have Lamiaceae family, and is mainly reproduced by cuttings done later feldwork point out that the use of S. divinorum since it rarely produces seeds. may be more widespread than originally believed, even in times when mushrooms were abundant.
    [Show full text]
  • Prolonged Poststrike Elevation in Tongue-Flicking Rate with Rapid Onset in Gila Monster, <Emphasis Type="Italic">
    Journal of Chemical Ecology, Vol. 20. No. 11, 1994 PROLONGED POSTSTRIKE ELEVATION IN TONGUE- FLICKING RATE WITH RAPID ONSET IN GILA MONSTER, Heloderma suspectum: RELATION TO DIET AND FORAGING AND IMPLICATIONS FOR EVOLUTION OF CHEMOSENSORY SEARCHING WILLIAM E. COOPER, JR. I'* CHRISTOPHER S. DEPERNO I and JOHNNY ARNETT 2 ~Department of Biology Indiana University-Purdue University Fort Wayne Fort Wayne. bldiana 46805 2Department of Herpetology Cincinnati Zoo and Botanical Garden Cincinnati, Ohio 45220 (Received May 6, 1994; accepted June 27, 1994) Abstract--Experimental tests showed that poststrike elevation in tongue-flick- ing rate (PETF) and strike-induced chemosensory searching (SICS) in the gila monster last longer than reported for any other lizard. Based on analysis of numbers of tongue-flicks emitted in 5-rain intervals, significant PETF was detected in all intervals up to and including minutes 41~-5. Using 10-rain intervals, PETF lasted though minutes 46-55. Two of eight individuals con- tinued tongue-flicking throughout the 60 rain after biting prey, whereas all individuals ceased tongue-flicking in a control condition after minute 35. The apparent presence of PETF lasting at least an hour in some individuals sug- gests that there may be important individual differences in duration of PETF. PETF and/or SICS are present in all families of autarchoglossan lizards stud- ied except Cordylidae, the only family lacking lingually mediated prey chem- ical discrimination. However, its duration is known to be greater than 2-rain only in Helodermatidae and Varanidae, the living representatives of Vara- noidea_ That prolonged PETF and S1CS are typical of snakes provides another character supporting a possible a varanoid ancestry for Serpentes.
    [Show full text]
  • Lizard Facts Lizards Are One of the Biggest, Most Diverse and Widespread Groups of Reptiles Found on Earth
    Lizard Facts Lizards are one of the biggest, most diverse and widespread groups of reptiles found on Earth. They are found on all continents, except Antarctica. ▪ Lizard (suborder Sauria) refer to any of the more than 5,500 species of reptiles belonging in the order Squamata (which also includes snakes). They feature in a wide variety of colors, appearance, and size. ▪ It comprises 40 different families. According to the San Diego Zoo, there are currently over 4,675 lizard species, including iguanas, chameleons, geckos, Gila monsters, monitors, and skinks. Their ancestors appeared on Earth over 200 million years ago. ▪ Lizards are scaly-skinned reptiles that are usually distinguished from snakes by the possession of legs, movable eyelids, and external ear openings. However, some traditional (that is, non-snake) lizards lack one or more of these features. ▪ Due to their smooth and shiny appearance, some lizards can appear slimy or slippery. However, their skin – like all reptiles – is actually very dry due to a lack of pores to excrete water and oils. Class: Reptilia Higher classification: Scaled reptiles Kingdom: Animalia Order: Squamata Phylum: Chordata KIDSKONNECT.COM Lizard Facts MOBILITY All lizards are capable of swimming, and a few are quite comfortable in aquatic environments. Many are also good climbers and fast sprinters. Some can even run on two legs, such as the Collared Lizard and the Spiny-Tailed Iguana. LIZARDS AND HUMANS Most lizard species are harmless to humans. Only the very largest lizard species pose any threat of death. The chief impact of lizards on humans is positive, as they are the main predators of pest species.
    [Show full text]
  • Vernacular Name GILA MONSTER
    1/6 Vernacular Name GILA MONSTER GEOGRAPHIC RANGE Southwestern U.S. and northwestern Mexico. HABITAT Succulent desert and dry sub-tropical scrubland, hillsides, rocky slopes, arroyos and canyon bottoms (mainly those with streams). CONSERVATION STATUS IUCN: Near Threatened (2016). Population Trend: Decreasing. Threats: - illegal exploitation by commercial and private collectors. - habitat destruction due to urbanization and agricultural development. COOL FACTS Their common name “Gila” refers to the Gila River Basin in the southwest U.S. Their skin consists of many round, bony scales, a feature that was common among dinosaurs, but is unusual in today's reptiles. The Gila monster and the Mexican beaded lizard are the only lizards known to be venomous. Both live in North America. Gila monsters are the largest lizards native to the U.S. Gila monsters may bite and not let go, continuing to chew and, thereby, inject more venom into their victims. Venom is released from the venom glands (modified salivary glands) into the lower jaws and travels up grooves on the outside of the teeth and into the victims as the Gila monsters bite. The lizards lack the musculature to forcibly inject the venom; instead the venom is propelled from the gland to the tooth by chewing. Capillary action brings the venom out of the tooth and into the victim. Gila monsters have been observed to flip over while biting the victim, presumably to aid the flow of the venom into the wound. Bites are painful, but rarely fatal to humans in good health. While the bites can overpower predators and prey, they are rarely fatal to humans in good health although humans may suffer pain, edema, bleeding, nausea and vomiting.
    [Show full text]
  • A Test with Sympatric Lizard Species
    Heredity (2016) 116, 92–98 & 2016 Macmillan Publishers Limited All rights reserved 0018-067X/16 www.nature.com/hdy ORIGINAL ARTICLE Does population size affect genetic diversity? A test with sympatric lizard species MTJ Hague1,2 and EJ Routman1 Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations.
    [Show full text]
  • Sex-Specific Behavioral Strategies for Thermoregulation in the Comon Chuckwalla (Sauromalus Ater) ______
    SEX-SPECIFIC BEHAVIORAL STRATEGIES FOR THERMOREGULATION IN THE COMON CHUCKWALLA (SAUROMALUS ATER) ____________________________________ A Thesis Presented to the Faculty of California State University, Fullerton ____________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology ____________________________________ By Emily Rose Sanchez Thesis Committee Approval: Christopher R. Tracy, Department of Biological Science, Chair Sean E. Walker, Department of Biological Science Paul Stapp, Department of Biological Science Spring, 2018 ABSTRACT Intraspecific variability of behavioral thermoregulation in lizards due to habitat, temperature availability, and seasonality is well documented, but variability due to sex is not. Sex-specific thermoregulatory behaviors are important to understand because they can affect relative fitness in ways that result in different responses to environmental changes. The common chuckwalla (Sauromalus ater) is a great model for investigating sex differences in thermoregulation because males behave differently from females while they actively defend distinct territories while females may not. I recorded body temperatures of wild adult chuckwallas continuously from May to July 2016, as well as operative environmental temperatures in crevices and aboveground sites used by chuckwallas for basking. I compared the effect of sex on indices of thermoregulatory accuracy and effectiveness, aboveground activity, and the time chuckwallas selected body temperatures relative
    [Show full text]