Road Markings

Total Page:16

File Type:pdf, Size:1020Kb

Road Markings ROAD MARKINGS CHAPTER 7 August 2019 Traffic Signs Manual Chapter 7 – Road Markings Contents Page 7.1 Introduction ..................................................................................................................................6 General ...........................................................................................................................................6 The Function Of Road Markings ....................................................................................................6 Classes Of Marking ........................................................................................................................7 Speed .............................................................................................................................................8 Legal ...............................................................................................................................................8 Materials .........................................................................................................................................8 7.2 Transverse Markings ...................................................................................................................9 Stop Line (RRM 017)......................................................................................................................9 Tram Stop Line (RRM 031) ......................................................................................................... 11 Yield Line (RRM 018) .................................................................................................................. 11 No Entry Line (RRM 019) ............................................................................................................ 12 7.3 Longitudinal Markings .............................................................................................................. 15 Centre Line Markings .................................................................................................................. 15 Climbing / Overtaking Lanes ....................................................................................................... 23 Right-Turn Lanes ......................................................................................................................... 25 Passing Lanes On Type 3 Dual Carriageways ........................................................................... 25 Lane Lines (RRM 003) ................................................................................................................ 26 Merge/Diverge Lane Line (RRM 028) ......................................................................................... 27 Edge Of Carriageway Lines (RRM 025, RRM 026 & RRM 027)................................................. 27 Raised Profile Edge Markings ..................................................................................................... 29 7.4 Hatched Markings ..................................................................................................................... 33 Motorways And High-Quality Dual Carriageways ....................................................................... 34 Other Roads ................................................................................................................................ 36 7.5 Worded And Diagrammatic Markings ..................................................................................... 41 Stop (M 114) ................................................................................................................................ 41 Triangular Yield Marking (M 115) ................................................................................................ 41 Slow (M 106) ............................................................................................................................... 42 Look Left/Right (M 107l/R) .......................................................................................................... 42 Arrows ......................................................................................................................................... 43 August 2019 7/2 Lane Destination Markings (M 105) ............................................................................................ 47 School Keep Clear Marking (RRM 010) ...................................................................................... 49 School Warden Crossing Patrol Point (M 121) ........................................................................... 50 Speed Markings (M 108) ............................................................................................................. 51 Emergency Telephone And Chainage Markings (M 120) ........................................................... 52 7.6 Parking Restrictions And Parking Bays ................................................................................. 53 Parking Restrictions .................................................................................................................... 53 Parking Bays ............................................................................................................................... 54 Taxi Stand (RRM 029)................................................................................................................. 56 Loading Bay (RRM 009) .............................................................................................................. 57 Electric Vehicle Recharging Bay (RRM 034) .............................................................................. 57 7.7 Bus And Tram Markings ........................................................................................................... 58 Bus Stop (RRM 030) ................................................................................................................... 58 Bus Lanes ................................................................................................................................... 60 Tram Lanes ................................................................................................................................. 65 7.8 Cycle Tracks .............................................................................................................................. 67 With-Flow Cycle Tracks............................................................................................................... 67 Contra-Flow Cycle Tracks ........................................................................................................... 69 Cycle Tracks Not On The Carriageway....................................................................................... 69 7.9 Yellow Box Markings ................................................................................................................ 71 7.10 Reflecting Road Studs .............................................................................................................. 73 7.11 Priority Junctions ...................................................................................................................... 76 Ghost Island Junctions ................................................................................................................ 80 Right-Turn Junctions On Dual Carriageways .............................................................................. 80 7.12 Signal Controlled Junctions .................................................................................................... 84 7.13 Roundabouts ............................................................................................................................. 86 Normal Roundabouts .................................................................................................................. 86 Mini-Roundabouts (RRM 033) .................................................................................................... 91 7.14 Grade-Separated Junctions ..................................................................................................... 93 7.15 Level Crossings ......................................................................................................................... 94 August 2019 7/3 7.16 Pedestrian Crossings ............................................................................................................... 96 Zebra Crossing (RPC 001) .......................................................................................................... 96 Signalised Pedestrian Crossing .................................................................................................. 97 Zig-Zag Markings (RPC 002) ...................................................................................................... 98 7.17 Traffic Calming ........................................................................................................................ 102 7.18 Yellow Bar Markings ............................................................................................................... 103 Appendix 7a: Lettering For Worded Markings ............................................................................... 106 Appendix 7b: Airport, Ferry And Disabled Persons Symbols ...................................................... 112 Appendix 7c: Schedule Of Road Markings ..................................................................................... 113 August 2019 7/4 August 2019 7/5 7.1 Introduction GENERAL 7.1.1 This Chapter
Recommended publications
  • Transport and Map Symbols Range: 1F680–1F6FF
    Transport and Map Symbols Range: 1F680–1F6FF This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 14.0 This file may be changed at any time without notice to reflect errata or other updates to the Unicode Standard. See https://www.unicode.org/errata/ for an up-to-date list of errata. See https://www.unicode.org/charts/ for access to a complete list of the latest character code charts. See https://www.unicode.org/charts/PDF/Unicode-14.0/ for charts showing only the characters added in Unicode 14.0. See https://www.unicode.org/Public/14.0.0/charts/ for a complete archived file of character code charts for Unicode 14.0. Disclaimer These charts are provided as the online reference to the character contents of the Unicode Standard, Version 14.0 but do not provide all the information needed to fully support individual scripts using the Unicode Standard. For a complete understanding of the use of the characters contained in this file, please consult the appropriate sections of The Unicode Standard, Version 14.0, online at https://www.unicode.org/versions/Unicode14.0.0/, as well as Unicode Standard Annexes #9, #11, #14, #15, #24, #29, #31, #34, #38, #41, #42, #44, #45, and #50, the other Unicode Technical Reports and Standards, and the Unicode Character Database, which are available online. See https://www.unicode.org/ucd/ and https://www.unicode.org/reports/ A thorough understanding of the information contained in these additional sources is required for a successful implementation.
    [Show full text]
  • The Gibraltar Highway Code
    P ! CONTENTS Introduction Rules for pedestrians 3 Rules for users of powered wheelchairs and mobility scooters 10 Rules about animals 12 Rules for cyclists 13 Rules for motorcyclists 17 Rules for drivers and motorcyclists 19 General rules, techniques and advice for all drivers and riders 25 Road users requiring extra care 60 Driving in adverse weather conditions 66 Waiting and parking 70 Motorways 74 Breakdowns and incidents 79 Road works, level crossings and tramways 85 Light signals controlling traffic 92 Signals by authorised persons 93 Signals to other road users 94 Traffic signs 96 Road markings 105 Vehicle markings 109 Annexes 1. You and your bicycle 112 2. Vehicle maintenance and safety 113 3. Vehicle security 116 4. First aid on the road 116 5. Safety code for new drivers 119 1 Introduction This Highway Code applies to Gibraltar. However it also focuses on Traffic Signs and Road Situations outside Gibraltar, that as a driver you will come across most often. The most vulnerable road users are pedestrians, particularly children, older or disabled people, cyclists, motorcyclists and horse riders. It is important that all road users are aware of The Code and are considerate towards each other. This applies to pedestrians as much as to drivers and riders. Many of the rules in the Code are legal requirements, and if you disobey these rules you are committing a criminal offence. You may be fined, or be disqualified from driving. In the most serious cases you may be sent to prison. Such rules are identified by the use of the words ‘MUST/ MUST NOT’.
    [Show full text]
  • A Study and Analysis of Existing Road Junction
    Special Issue - 2016 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 SNCIPCE - 2016 Conference Proceedings A Study and Analysis of Existing Road Junction Bavithran. R, Sasikumar. N Ms. G. Yamuna,.. Asst Professor Department of Civil Engg Department of Civil Engg V.R.S College of Engg & Tech, Araur, VPM Dst V.R.S College of Engg & Tech, Araur, VPM Dst Abstract - Road junction is the point at which more than are also three major groups of sedimentary rocks, layers of two roads are connecting at the point. The junction is particles that settled in different geological periods. analyzed by Volume Count Survey. The volume count survey Viluppuram's GPS location is 11° 56' N 79° 29' E. is one of the methods of finding out the Traffic volume. The Villupuram is the one of the most popular city in junction which is situated in Villupuram is taken as study tamilnadu. In this project, an existing road junction is area. In this junction, the volume count survey is taken for 15 days for determine the Passenger Car Unit and the Level Of studied and analyzed by using volume count survey.. Some Service for the junction is computed. To improve the information are to be carried before the project has started. junction, some suggestions are suggested. The greener time of the Traffic flow from Chennai, Trichy, thirukovillur, Pondicherry are 20 sec, 25 Keywords:- Volume count survey, Peak hour, Passenger sec, 15 sec, and 20 sec respectively. CCTV is provided car unit, Level of service from junction to junction near veeravaliamman temple.
    [Show full text]
  • Roundabouts Applying the 'System'
    Roundabouts Applying the 'System' to Roundabouts Let us suppose that you are on a dual carriageway approaching a roundabout (400m away). You are currently in the left lane and you intend to turn right at the roundabout. Information: - Take - You see the roundabout and its triangular warning signs in the distance. There are no vehicles between you and the roundabout but you see vehicles on the roundabout. Mirror check. There are two vehicles behind, both in the left lane. - Use - You know that you have to change to the right lane and that you will need to signal to change lane and then to signal continuously on the approach and through the roundabout (the standard Highway Code procedure for turning right at a roundabout)- Give - After checking your mirrors you signal right to the vehicles behind. Position: The right signal remains on for a few seconds and then gradually you move to the right hand lane (Information-Use/Give). When the manoeuver is complete you cancel the signal. After a few more seconds the right signal is re-applied to confirm to the drivers behind that you intend to turn right at the roundabout. Information: The speed and position of the vehicles behind are monitored as you approach the roundabout. An assessment is made of the movement of vehicles on the roundabout and those approaching it from the right and left. You look over the roundabout to see, if possible, vehicles approaching it from the opposite direction (Information-Take). Speed: As you approach the roundabout you begin to brake and lose speed smoothly and progressively (Information-Give).
    [Show full text]
  • Final Report Prepared for Albany, NY Joseph D. Tario Senior Project
    DEMONSTRATION OF ROUNDABOUT LIGHTING BASED ON THE ECOLUMINANCE APPROACH Final Report Prepared for THE NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY Albany, NY Joseph D. Tario Senior Project Manager and THE NEW YORK STATE DEPARTMENT OF TRANSPORTATION Albany, NY Humayun Kabir Project Manager Prepared by THE LIGHTING RESEARCH CENTER , RENSSELAER POLYTECHNIC INSTITUTE 21 Union Street Troy, NY 12180 John D. Bullough and Mark S. Rea Principal Investigators Jeremy D. Snyder, Nicholas P. Skinner, Rosa I. Capó, Patricia Rizzo, Ute Besenecker Project Team Members Project Nos. 18233 / C-08-03 August 2012 NOTICE This report was prepared by the Lighting Research Center at Rensselaer Polytechnic Institute in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority and the New York State Department of Transportation (hereafter the "Sponsors"). The opinions expressed in this report do not necessarily reflect those of the Sponsors or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, the Sponsors and the State of New York make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report. The Sponsors, the State of New York, and the contractor make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.
    [Show full text]
  • Draft Alternatives Development and Screening Report
    APPENDIX C Draft Evaluation of Managed-lane Concepts Draft Evaluation of Managed-lane Concepts Little Cottonwood Canyon Environmental Impact Statement S.R. 210 - Wasatch Boulevard to Alta Lead agency: Utah Department of Transportation April 3, 2020 This page is intentionally left blank. Contents 1.0 Introduction ....................................................................................................................................................... 1 1.1 Study Area for Managed Lanes .............................................................................................................. 1 1.2 Traffic Operations ................................................................................................................................... 3 1.3 Roadway Context .................................................................................................................................... 3 2.0 Reversible-lane Concepts ................................................................................................................................. 4 2.1.1 Moveable Barrier ....................................................................................................................... 4 2.1.2 Reversible-lane Control Signals and Signs ............................................................................. 11 2.1.3 Other Reversible-lane Technologies ....................................................................................... 15 3.0 Peak-period Shoulder Lane Concept .............................................................................................................
    [Show full text]
  • Analysis of Traffic Capacity on Mountainous Two Lane Highway Adding Climbing Lane
    MATEC Web of Conferences 81, 04009 (2016) DOI: 10.1051/matecconf/20168104009 ICTTE 2016 Analysis of Traffic Capacity on Mountainous Two Lane Highway Adding Climbing Lane Yunwei Meng1,2 , Hailing Li2, Hejun Chai2 and ZonglingYan 2 1The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, 201804,Shanghai, China 2China Merchants Chongqing Communications Technology Research & Design Institute Co., LTD, 400067,Chongqing, China Abstract. During the construction of mountainous double lane highway, climbing lane plays a certain role for enhancing the traffic capacity. In order to explore traffic capacity improvement effect for different conditions of climbing lane, 20 representative models are chosen, which contain various combinations of alignment and traffic parameters. The changes of traffic capacity, average speed, delays, and saturation in models are obtained before and after the use of a climbing lane by means of numerical simulation. The results show that the use of a climbing lane could improve traffic capacity, average speed, while reducing delays and saturation. The improvement effect is different according to different combinations of alignment and traffic parameters. The research could provide a reference for mountainous climbing lane construction intend. 1 Introduction found that it is possible to generate traffic bottlenecks in the lane separation and convergence position. It can Because of the limitation of geology, topography and effectively ease traffic congestion by extending the length engineering investment, two-way two lane highway is of the transition section [4]. Setting up a reasonable common form in mountainous area of China. Two lane climbing lane, it can slow down the occurrence of traffic highways in mountain area is the main artery, assuming congestion [5].
    [Show full text]
  • Future Mobile Connectivity in Ireland
    Future mobile connectivity in Ireland Final report Prepared for ComReg November 2018 www.oxera.com Future mobile connectivity in Ireland Oxera Contents Executive summary 1 1 Introduction 9 2 The Irish context 11 2.1 Ireland’s mobile market and the results of the consumer experience survey 11 2.2 Demographic characteristics of Ireland 12 2.3 The Irish government’s actions to improve fixed and mobile coverage 13 2.4 Spectrum availability in Ireland 15 2.5 The EU’s decision on the use of 470–790MHz band 16 3 Future mobile connectivity services in Ireland 17 3.1 Introduction and key findings 17 3.2 Methodology 17 3.3 Identifying the use cases to include in our modelling 18 4 Methodology and key parameters used in the mobile network cost model 22 4.1 Step 1: Developing a synthetic mobile network 23 4.2 Step 2: Estimating the coverage of the synthetic mobile network in 2017 25 4.3 Step 3: Validating the estimated coverage of the synthetic mobile network 26 4.4 Step 4: Modelling the expansion of the network 27 4.5 Step 5: Defining the scenarios to be simulated 30 4.6 Step 6: Run the simulations and present the results 32 5 Results of mobile network cost modelling 33 5.1 Key features of the cost modelling analysis 33 5.2 Summary results 35 5.3 Detailed results for the main scenarios 40 5.4 Observations on increasing mobile connectivity in black spot areas 53 5.5 Observations on what the market would deliver commercially 54 6 Effectiveness of approaches to promoting mobile connectivity in other EU member states 65 Oxera Consulting LLP is a limited liability partnership registered in England no.
    [Show full text]
  • Traffic and Road Sign Recognition
    Traffic and Road Sign Recognition Hasan Fleyeh This thesis is submitted in fulfilment of the requirements of Napier University for the degree of Doctor of Philosophy July 2008 Abstract This thesis presents a system to recognise and classify road and traffic signs for the purpose of developing an inventory of them which could assist the highway engineers’ tasks of updating and maintaining them. It uses images taken by a camera from a moving vehicle. The system is based on three major stages: colour segmentation, recognition, and classification. Four colour segmentation algorithms are developed and tested. They are a shadow and highlight invariant, a dynamic threshold, a modification of de la Escalera’s algorithm and a Fuzzy colour segmentation algorithm. All algorithms are tested using hundreds of images and the shadow-highlight invariant algorithm is eventually chosen as the best performer. This is because it is immune to shadows and highlights. It is also robust as it was tested in different lighting conditions, weather conditions, and times of the day. Approximately 97% successful segmentation rate was achieved using this algorithm. Recognition of traffic signs is carried out using a fuzzy shape recogniser. Based on four shape measures - the rectangularity, triangularity, ellipticity, and octagonality, fuzzy rules were developed to determine the shape of the sign. Among these shape measures octangonality has been introduced in this research. The final decision of the recogniser is based on the combination of both the colour and shape of the sign. The recogniser was tested in a variety of testing conditions giving an overall performance of approximately 88%.
    [Show full text]
  • TA 79/99 Amendment No 1 3
    Chapter 3 Volume 5 Section 1 Determination of Urban Road Capacity Part 3 TA 79/99 Amendment No 1 3. DETERMINATION OF URBAN ROAD CAPACITY 3.1 Table 1 sets out the types of Urban Roads and the features that distinguish between them and affect their traffic capacity. Tables 2 & 3 give the flow capacity for each road type described in Table 1. 3.2 Table 4 gives the adjustments when the proportion of heavy vehicles in a one way flow exceeds 15%. A heavy vehicle is defined in this context as OGV1, OGV2 or Buses and Coaches as given in the COBA Manual (DMRB 13.1 Part 4, Chapter 8). 3.3 The flows for road type UM in Table 2 apply to urban motorways where junctions are closely spaced giving weaving lengths of less than 1 kilometre. Urban motorways with layout and junction spacing similar to rural motorways can carry higher flows and TA46/97 “Traffic Flow Ranges for Use in the Assessment of New Rural Roads” will be more applicable. 3.4 Flows for single carriageways are based upon a 60/40 directional split in the flow. The one-way flows shown in Table 2 represent the busiest flow 60% figure. 3.5 The capacities shown apply to gradients of up to 5-6%. Special consideration should be made for steeper gradients, which would reduce capacity. 3.6 On-road parking reduces the effective road width and disrupts flow, e.g. where parking restrictions are not applied on road type UAP2 the flows are likely to be similar to UAP3 where unrestricted parking applies, see Table 1, Similarly effective parking restrictions can lead to higher flows.
    [Show full text]
  • Smart Crosswalk™ Automatic Activation Bollards
    SPEC Sheet #3000 Features/Benefits: Aesthetically pleasing Optional audible sounds Smart Crosswalk™ Automatic Activation Easily installed on sidewalk Simple control panel installations Bollards 12 VDC operation (down to 9 VDC) Automatic Activation Series — Bollards Internally illuminated courtesy light LightGuard Systems Part Number: LGS-T3A Directional detecting infrared sensors Description: Automatic Pedestrian Detection Bollards Application Notes: Infrared sensors are housed inside the Bollards and are typically preset by our factory. However, adjustments to the alignment of the sensor modules may be changed in the field. The infrared light beams are projected to the respective receiver module. The Bollard system is directionally sensitive and is activated only when a pedestrian enters into the crosswalk zone not when exiting. A pair of Bollards are placed at each end of the crosswalk, usually four bollards per crosswalk. When pedestrians enter into a crosswalk zone they pass between the Bollards and the Smart Crosswalk™ system is automatically activated. Each Bollard has a 24/7 LED courtesy light making the Bollard visible at night or during inclement weather. In order to capture the most pedestrians crossing the street, it is recommended that the bollards be placed a few feet wider than the crosswalk. General Performance Specifications Parameter Value Maximum separation 60 Feet Power consumption 2.5 Watts Operating temperature -20° to 80°C Operating voltage 9 VDC to 15 VDC Color White (custom colors available) Courtesy light color Amber Size 42” Tall, 8” Diameter © 2016 LightGuard Systems®, Inc. All Rights Reserved. 2292 Airport Blvd., Santa Rosa, CA 95403 | Phone (707) 542-4547 | Fax (707) 525-6333 SPEC Sheet #3000 Bollard Installation Guidelines INSTALLATION STEPS Step 1 Prior to installing Bollards, the proposed site should be inspected several times to observe the everyday habits of local citizens who utilize the crosswalk.
    [Show full text]
  • Road Traffic Signs and Regulations in the Netherlands Note This Is an Abridged Popular Version Published for Instructional Use
    Road Traffic Signs and Regulations in the Netherlands Note This is an abridged popular version published for instructional use. Due to abridging and modification of the text, no legal status may be derived from this document. The author accepts no liability for the consequences of interpreting the rules. The complete 1990 Traffic Rules and Signs Regulations (RVV 1990) can be viewed at www.ween.nl Road Traffic Signs and Regulations in the Netherlands Summary of Contents Road Trac Act 1994 (WVW 1994) 1 Traffic Conduct 6 1.1 Rules of Conduct 6 Trac Regulations and Road Signs (RVV 1990) 2 Traffic Regulations 9 2.1 Road position 9 2.2 Overtaking 11 2.3 Queues 12 2.4 Approaching road junctions 12 2.5 Giving priority 13 2.5a Level crossings 13 2.6 Cuing across military columns and motorised funeral processions 13 2.7 Turning 14 2.8 Speed limits 15 2.9 Waiting 19 2.10 Parking 19 2.11 Parking bicycles and mopeds 22 2.12 Signals and identification marks 22 2.13 Using lights while driving 24 2.14 Using lights while stationary 27 2.15 Special lights 28 2.16 Motorways and main highways 30 2.17 Roads across recreational areas 31 2.18 Roundabouts 31 2.19 Pedestrians 32 2.20 Emergency vehicles 32 2.21 Stray livestock 32 2.22 Boarding and alighting passengers 33 2.23 Towing 33 2.24 Special manoeuvres 33 2.25 Unnecessary noise 34 2.26 Warning triangles 34 2.26a Seats 35 2.27 Seat belts and child safety systems 36 2.28 Safety helmets 40 2.30 Use of mobile telecommunications equipment 41 2.31 Conveyance of persons in or on trailers and in loading space 42 3 Road
    [Show full text]