Tribute to Vladimir Arnold Boris Khesin and Serge Tabachnikov, Coordinating Editors

Total Page:16

File Type:pdf, Size:1020Kb

Tribute to Vladimir Arnold Boris Khesin and Serge Tabachnikov, Coordinating Editors Tribute to Vladimir Arnold Boris Khesin and Serge Tabachnikov, Coordinating Editors Vladimir Arnold, an eminent mathematician of My first mathematical revelation was when I our time, passed away on June 3, 2010, nine days met my first real teacher of mathematics, Ivan before his seventy-third birthday. This article, Vassilievich Morozkin. I remember the problem along with one in the next issue of the Notices, about two old ladies who started simultaneously touches on his outstanding personality and his from two towns to- great contribution to mathematics. ward each other, met A word about spelling: we use “Arnold”, as at noon, and who opposed to “Arnol’d”; the latter is closer to the Rus- reached the oppo- sian pronunciation, but Vladimir Arnold preferred site towns at 4 p.m. the former (it is used in numerous translations of and 9 p.m., respec- his books into English), and we use it throughout. tively. The question was when they started Arnold in His Own Words their trip. In 1990 the second author interviewed V. Arnold We didn’t have al- for a Russian magazine Kvant (Quantum). The gebra yet. I invented readership of this monthly magazine for physics an “arithmetic” solu- and mathematics consisted mostly of high school tion (based on a scal- students, high school teachers, and undergraduate ing—or similarity— students; the magazine had a circulation of about argument) and expe- 200,000. As far as we know, the interview was never rienced a joy of dis- translated into English. We translate excerpts from covery; the desire to Vladimir Igorevich Arnold this interview;1 the footnotes are ours. experience this joy Q: How did you become a mathematician? What again was what made me a mathematician. was the role played by your family, school, math- A. A. Lyapunov organized at his home “Chil- ematical circles, Olympiads? Please tell us about dren Learned Society”. The curriculum included your teachers. mathematics and physics, along with chemistry A: I always hated learning by rote. For that and biology, including genetics that was just re- 2 reason, my elementary school teacher told my cently banned (a son of one of our best geneticists parents that a moron, like myself, would never was my classmate; in a questionnaire, he wrote: manage to master the multiplication table. “my mother is a stay-at-home mom; my father is a stay-at-home dad”). Boris Khesin is professor of mathematics at the University Q: You have been actively working in mathe- of Toronto. His email address is [email protected]. matics for over thirty years. Has the attitude of edu. society towards mathematics and mathematicians Serge Tabachnikov is professor of mathematics at Penn- changed? sylvania State University. His email address is tabachni@ A: The attitude of society (not only in the USSR) math.psu.edu. to fundamental science in general, and to mathe- 1Full text is available in Russian on the website of Kvant maticsin particular, iswell describedby I. A.Krylov magazine (July 1990), http://kvant.mirror1.mccme. ru/. 2In 1948 genetics was officially declared “a bourgeois DOI: http://dx.doi.org/10.1090/noti810 pseudoscience” in the former Soviet Union. 378 Notices of the AMS Volume 59, Number 3 new theorems constitutes substantial progress. However, the success of “cybernetics”, “fractals”, “synergetics”, “catastrophe theory”, and “strange attractors” illustrates the fruitfulness of word creation as a scientific method. Q: Mathematics is a very old and important part of human culture. What is your opinion about the place of mathematics in cultural heritage? A: The word “mathematics” means science about truth. It seems to me that modern science (i.e., theoretical physics along with mathematics) is a new religion, a cult of truth, founded by Newton three hundred years ago. Q: When you prove a theorem, do you “create” or “discover” it? A: I certainly have a feeling that I am discovering something that existed before me. Q: You spend much time popularizing math- ematics. What is your opinion about populariza- tion? Please name merits and demerits of this hard genre. A: One of the veryfirst popularizers, M. Faraday, Vladimir Arnold, circa 1985. arrived at the conclusion that “Lectures which really teach will never be popular; lectures which are popular will never teach.” This Faraday effect is in the fable “The hog under the oak”.3 In the 1930s easy to explain: according to N. Bohr, clearness and and 1940s, mathematics suffered in this country truth are in a quantum complementarity relation. less than other sciences. It is well known that Viète Q: Many readers of Kvant aspire to become was a cryptographer in the service of Henry IV of mathematicians. Are there “indications” and “con- France. Since then, certain areas of mathematics traindications” to becoming a mathematician, or have been supported by all governments, and even can anyone interested in the subject become one? Beria4 cared about preservation of mathematical Is it necessary for a mathematician-to-be to success- culture in this country. fully participate in mathematical Olympiads? In the last thirty years the prestige of mathe- A: When 90-year-old Hadamard was telling matics has declined in all countries. I think that A. N. Kolmogorov about his participation in mathematicians are partially to be blamed as well Concours Général (roughly corresponding to our (foremost, Hilbert and Bourbaki), particularly the Olympiads), he was still very excited: Hadamard ones who proclaimed that the goal of their science won only the second prize, while the student was investigation of all corollaries of arbitrary who had won the first prize also became a systems of axioms. mathematician, but a much weaker one! Q: Does the concept of fashion apply to mathe- Some Olympiad winners later achieve nothing, matics? and many outstanding mathematicians had no A: Development of mathematics resembles a success in Olympiads at all. fast revolution of a wheel: sprinkles of water are Mathematicians differ dramatically by their time flying in all directions. Fashion—it is the stream scale: some are very good tackling 15-minute that leaves the main trajectory in the tangential problems, some are good with the problems that direction. These streams of epigone works attract require an hour, a day, a week, the problems the most attention, and they constitute the main that take a month, a year, decades of thinking. mass, but they inevitably disappear after a while A. N. Kolmogorov considered his “ceiling” to be because they parted with the wheel. To remain two weeks of concentrated thinking. on the wheel, one must apply the effort in the Success in an Olympiad largely depends on direction perpendicular to the main stream. A mathematician finds it hard to agree that one’s sprinter qualities, whereas serious mathe- the introduction of a new term not supported by matical research requires long distance endurance (B. N. Delaunay used to say, “A good theorem takes 3See A. Givental and E. Wilson-Egolf’s (slightly modern- not 5 hours, as in an Olympiad, but 5,000 hours”). ized) translation of this early nineteenth-century Russian There are contraindications to becoming a re- fable at the end of this interview. search mathematician. The main one is lack of 4The monstrous chief of Stalin’s secret police. love of mathematics. March 2012 Notices of the AMS 379 straightforward cases when Arnold supervised the thesis and was listed as the person’s Ph.D. advisor, there were many other situations. For example, in Moscow State University before perestroika, a Ph.D. advisor for a foreigner had to be a member of the Communist Party, so in such cases there was a different nominal Ph.D. advisor while Arnold was supervising the student’s work. In other cases there were two co-advisors or there was a differ- ent advisor of the Ph.D. thesis, while the person defended the Doctor of Science degree (the second scientific degree in Russia) under Arnold’s super- Teaching at Moscow State University, 1983. vision. In these “difficult cases” the inclusion in the list below is based on “self-definition” as an Arnold student rather than on a formality. We tried to make the list as complete and precise as But mathematical talents can be very diverse: possible, but we apologize in advance for possible geometrical and intuitive, algebraic and compu- omissions: there were many more people whose tational, logical and deductive, natural scientific work Arnold influenced greatly and who might and inductive. And all kinds are useful. It seems feel they belong to Arnold’s school. to me that one’s difficulties with the multipli- Names are listed chronologically according to cation table or a formal definition of half-plane the defense years, which are given in parentheses. should not obstruct one’s way to mathematics. Many former Arnold’s students defended the sec- An extremely important condition for serious ond degree, the Doctor of Science or Habilitation, mathematical research is good health. but we marked it only in the cases where the first Q: Tell us about the role of sport in your life. degree was not under Arnold’s supervision. A: When a problem resists a solution, I jump on my cross-country skis. After forty kilometers a Edward G. Belaga (1965) solution (or at least an idea for a solution) always Andrei M. Leontovich (1967) comes. Under scrutiny, an error is often found. Yulij S. Ilyashenko (1969) (1994, DSci) But this is a new difficulty that is overcome in the Anatoly G. Kushnirenko (1970) same way. Askold G. Khovanskii (1973) Nikolai N. Nekhoroshev (1973) The Hog Under the Oak Alexander S. Pyartli (1974) A Hog under a mighty Oak Alexander N.
Recommended publications
  • Curriculum Vitae of Vladlen Timorin Personal Information: • Date of Birth
    Curriculum Vitae of Vladlen Timorin Personal Information: ² Date of birth: June 21, 1978 ² Place of birth: Moscow, Russia ² Family status: married, 1 child ² Citizenship: Russia Current Position: Associate Professor at Higher School of Economics, Moscow (since Fall 2009) Positions previously held: ² Post-Doc at Jacobs University Bremen, Germany (2007{2009) ² Lecturer (Post-Doc) at the Institute for Mathematical Sciences, SUNY at Stony Brook (2004{2007) Research Interests: ² Complex dynamics, dynamics of rational functions. ² Quadratic forms. ² Projective di®erential geometry of curves. ² Geometry and combinatorics of convex polytopes. Education: 2004, PhD: University of Toronto, Department of Mathematics, "Recti¯able families of conics", Advisor: Askold Khovanskii 2003, PhD: Steklov Mathematical Institute, Moscow, "Combinatorial Analogues of the Cohomology Algebras for Convex Polytopes" 2000, Diploma: Moscow State University, Department of Mechanics and Mathematics, "An analog of the Hard Lefschetz theorem for polytopes simple in edges" 2000, Diploma: Independent University of Moscow, "Small resolutions of polytopes and the generalized h-vector" Mathematical Honors and Awards: ² MÄobiusPrize, http://www.moebiuscontest.ru ² Ontario Graduate Scholarship ² Connaught Graduate Scholarship, University of Toronto Published research papers: (1) The external boundary of M2, Fields Institute Communications Vol. 53: \Holomorphic Dynamics and Renormalization, A Volume in Honour of John Milnor's 75th Birthday", 225{267 (2) Recti¯able pencils of conics, Moscow Mathematical Journal 7 (2007), no. 3, 561{570 (3) On binary quadratic forms with semigroup property, (joint with Francesca Aicardi), Pro- ceedings of Steklov Institute 258 (2007), the volume dedicated to the 70th birthday of V. Arnold (4) Maps That Take Lines To Circles, in Dimension 4, Functional Analysis and its Applica- tions 40 (2006), no.
    [Show full text]
  • Symmetric Products of Surfaces; a Unifying Theme for Topology
    Symmetric products of surfaces; a unifying theme for topology and physics Pavle Blagojevi´c Mathematics Institute SANU, Belgrade Vladimir Gruji´c Faculty of Mathematics, Belgrade Rade Zivaljevi´cˇ Mathematics Institute SANU, Belgrade Abstract This is a review paper about symmetric products of spaces SP n(X) := n X /Sn. We focus our attention on the case of 2-manifolds X and make a journey through selected topics of algebraic topology, algebraic geometry, mathematical physics, theoretical mechanics etc. where these objects play an important role, demonstrating along the way the fundamental unity of diverse fields of physics and mathematics. 1 Introduction In recent years we have all witnessed a remarkable and extremely stimulating exchange of deep and sophisticated ideas between Geometry and Physics and in particular between quantum physics and topology. The student or a young scientist in one of these fields is often urged to master elements of the other field as quickly as possible, and to develop basic skills and intuition necessary for understanding the contemporary research in both disciplines. The topology and geometry of manifolds plays a central role in mathematics and likewise in physics. The understanding of duality phenomena for manifolds, mastering the calculus of characteristic classes, as well as understanding the role of fundamental invariants like the signature or Euler characteristic are just examples of what is on the beginning of the growing list of prerequisites for a student in these areas. arXiv:math/0408417v1 [math.AT] 30 Aug 2004 A graduate student of mathematics alone is often in position to take many spe- cialized courses covering different aspects of manifold theory and related areas before an unified picture emerges and she or he reaches the necessary level of maturity.
    [Show full text]
  • “To Be a Good Mathematician, You Need Inner Voice” ”Огонёкъ” Met with Yakov Sinai, One of the World’S Most Renowned Mathematicians
    “To be a good mathematician, you need inner voice” ”ОгонёкЪ” met with Yakov Sinai, one of the world’s most renowned mathematicians. As the new year begins, Russia intensifies the preparations for the International Congress of Mathematicians (ICM 2022), the main mathematical event of the near future. 1966 was the last time we welcomed the crème de la crème of mathematics in Moscow. “Огонёк” met with Yakov Sinai, one of the world’s top mathematicians who spoke at ICM more than once, and found out what he thinks about order and chaos in the modern world.1 Committed to science. Yakov Sinai's close-up. One of the most eminent mathematicians of our time, Yakov Sinai has spent most of his life studying order and chaos, a research endeavor at the junction of probability theory, dynamical systems theory, and mathematical physics. Born into a family of Moscow scientists on September 21, 1935, Yakov Sinai graduated from the department of Mechanics and Mathematics (‘Mekhmat’) of Moscow State University in 1957. Andrey Kolmogorov’s most famous student, Sinai contributed to a wealth of mathematical discoveries that bear his and his teacher’s names, such as Kolmogorov-Sinai entropy, Sinai’s billiards, Sinai’s random walk, and more. From 1998 to 2002, he chaired the Fields Committee which awards one of the world’s most prestigious medals every four years. Yakov Sinai is a winner of nearly all coveted mathematical distinctions: the Abel Prize (an equivalent of the Nobel Prize for mathematicians), the Kolmogorov Medal, the Moscow Mathematical Society Award, the Boltzmann Medal, the Dirac Medal, the Dannie Heineman Prize, the Wolf Prize, the Jürgen Moser Prize, the Henri Poincaré Prize, and more.
    [Show full text]
  • Gaudin Models Associated to Classical Lie Algebras A
    GAUDIN MODELS ASSOCIATED TO CLASSICAL LIE ALGEBRAS A Dissertation Submitted to the Faculty of Purdue University by Kang Lu In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2020 Purdue University Indianapolis, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF DISSERTATION APPROVAL Dr. Evgeny Mukhin, Chair Department of Mathematical Sciences Dr. Alexander Its Department of Mathematical Sciences Dr. Roland Roeder Department of Mathematical Sciences Dr. Vitaly Tarasov Department of Mathematical Sciences Approved by: Dr. Evgeny Mukhin Head of the Graduate Program iii Dedicated to my parents and my wife Ziting Tang. iv ACKNOWLEDGMENTS I would like to express my deepest appreciation to my advisor Prof. Evgeny Mukhin for his guidance, support and persistent help throughout my time in graduate school and for introducing me to the world of representation theory and quantum integrable systems. I would like to extend my deepest gratitude to Prof. Vitaly Tarasov. I had great pleasure working with him and learned a lot from him. I sincerely appreciate his patient guidance and help. I also sincerely appreciate Prof. Its and Prof. Roeder for offering wonderful classes and for their effort and time in serving in my dissertation committee. Besides, I would like to thank Prof. Zhongmin Shen and Prof. Hanxiang Peng for useful suggestions. In addition, many thanks to the staff in the department for their assistance. Finally, I thank my parents and my wife Ziting Tang for their constant support, encouragement, and love throughout the years. v PREFACE This thesis is mainly based on three publications. Chapters 2 and 3 are based on the publications jointly with Evgeny Mukhin and Alexander Varchenko [LMV16] Kang Lu, E.
    [Show full text]
  • CURRICULUM VITAE November 2007 Hugo J
    CURRICULUM VITAE November 2007 Hugo J. Woerdeman Professor and Department Head Office address: Home address: Department of Mathematics 362 Merion Road Drexel University Merion, PA 19066 Philadelphia, PA 19104 Phone: (610) 664-2344 Phone: (215) 895-2668 Fax: (215) 895-1582 E-mail: [email protected] Academic employment: 2005– Department of Mathematics, Drexel University Professor and Department Head (January 2005 – Present) 1989–2004 Department of Mathematics, College of William and Mary, Williamsburg, VA. Margaret L. Hamilton Professor of Mathematics (August 2003 – December 2004) Professor (July 2001 – December 2004) Associate Professor (September 1995 – July 2001) Assistant Professor (August 1989 – August 1995; on leave: ’89/90) 2002-03 Department of Mathematics, K. U. Leuven, Belgium, Visiting Professor Post-doctorate: 1989– 1990 University of California San Diego, Advisor: J. W. Helton. Education: Ph. D. degree in mathematics from Vrije Universiteit, Amsterdam, 1989. Thesis: ”Matrix and Operator Extensions”. Advisor: M. A. Kaashoek. Co-advisor: I. Gohberg. Doctoraal (equivalent of M. Sc.), Vrije Universiteit, Amsterdam, The Netherlands, 1985. Thesis: ”Resultant Operators and the Bezout Equation for Analytic Matrix Functions”. Advisor: L. Lerer Current Research Interests: Modern Analysis: Operator Theory, Matrix Analysis, Optimization, Signal and Image Processing, Control Theory, Quantum Information. Editorship: Associate Editor of SIAM Journal of Matrix Analysis and Applications. Guest Editor for a Special Issue of Linear Algebra and
    [Show full text]
  • Discurso De Investidura Como Doctor “Honoris Causa” Del Excmo. Sr
    Discurso de investidura como Doctor “Honoris Causa” del Excmo. Sr. Simon Kirwan Donaldson 20 de enero de 2017 Your Excellency Rector Andradas, Ladies and Gentlemen: It is great honour for me to receive the degree of Doctor Honoris Causa from Complutense University and I thank the University most sincerely for this and for the splendid ceremony that we are enjoying today. This University is an ancient institution and it is wonderful privilege to feel linked, through this honorary degree, to a long line of scholars reaching back seven and a half centuries. I would like to mention four names, all from comparatively recent times. First, Eduardo Caballe, a mathematician born in 1847 who was awarded a doctorate of Science by Complutense in 1873. Later, he was a professor in the University and, through his work and his students, had a profound influence in the development of mathematics in Spain, and worldwide. Second, a name that is familiar to all of us: Albert Einstein, who was awarded a doctorate Honoris Causa in 1923. Last, two great mathematicians from our era: Vladimir Arnold (Doctor Honoris Causa 1994) and Jean- Pierre Serre (2006). These are giants of the generation before my own from whom, at whose feet---metaphorically—I have learnt. Besides the huge honour of joining such a group, it is interesting to trace one grand theme running the work of all these four people named. The theme I have in mind is the interplay between notions of Geometry, Algebra and Space. Of course Geometry begins with the exploration of the space we live in—the space of everyday experience.
    [Show full text]
  • Your Project Title
    Curriculum vitae Alfonso Sorrentino Curriculum Vitae • Personal Information Full Name: Alfonso Sorrentino. Citizenship: Italian. Researcher unique identifier (ORCID): 0000-0002-5680-2999. Contact Information: Address: Dipartimento di Matematica, Universit`adegli Studi di Roma \Tor Vergata" Via della Ricerca Scientifica 1, 00133 Rome (Italy). Phone: (+39) 06 72594663 Email: [email protected] Website: http://www.mat.uniroma2.it/∼sorrenti • Research Interests Hamiltonian and Lagrangian systems: Aubry-Mather-Ma~n´etheory, KAM theory, weak KAM theory, Integrable systems, geodesic flows, Stability and Instability. Twist maps and symplectic maps: low-dimensional (topological) dynamics, Aubry-Mather theory. Billiards: dynamics, integrability, spectral properties, rigidity phenomena. Dissipative systems: conformally symplectic Aubry-Mather theory. Hamilton-Jacobi equation: Homogenization, Symplectic Homogenization, Hamilton-Jacobi on net- works and ramified spaces. Symplectic and contact geometry/topology: general theory, Hofer and Viterbo geometries, applica- tions to dynamics. • Education 2004 - 2008: Ph.D. in Mathematics, Princeton University (USA). Thesis Title: On the structure of action-minimizing sets for Lagrangian systems. Advisor: Prof. John N. Mather. Degree Committee: John N. Mather (President), Elon Lindenstrauss,Yakov Sinai and Bo0az Klartag. 2003 - 2004: M.A. in Mathematics, Princeton University (USA). Exam Committee: John Mather (President), Alice Chang and J´anosKoll´ar. 1998 - 2003: Laurea degree in Mathematics, Universit`adegli Studi \Roma Tre". Thesis Title: On smooth quasi-periodic solutions of Hamiltonian Systems. Supervisor: Prof. Luigi Chierchia. Evaluation: 110/110 cum laude. • Academic Positions 2014 - present: Associate Professor in Mathematical Analysis (01/A3, MAT/05) (tenured position) at Dipartimento di Matematica, Universit`adegli Studi di Roma \Tor Vergata", Rome (Italy). 2012 - 2014: Researcher in Mathematical Analysis MAT/05 (tenured position) at Dipartimento di Matematica e Fisica, Universit`adegli Studi \Roma Tre", Rome (Italy).
    [Show full text]
  • Memories of Vladimir Arnold Boris Khesin and Serge Tabachnikov, Coordinating Editors
    Memories of Vladimir Arnold Boris Khesin and Serge Tabachnikov, Coordinating Editors Vladimir Arnold, an eminent mathematician of functions of two variables. Dima presented a two- our time, passed away on June 3, 2010, nine days hour talk at a weekly meeting of the Moscow before his seventy-third birthday. This article, Mathematical Society; it was very uncommon along with one in the previous issue of the Notices, for the society to have such a young speaker. touches on his outstanding personality and his Everybody ad- great contribution to mathematics. mired him, and he certainly de- Dmitry Fuchs served that. Still there was some- thing that kept Dima Arnold in My Life me at a distance Unfortunately, I have never been Arnold’s student, from him. although as a mathematician, I owe him a lot. He I belonged to was just two years older than I, and according to a tiny group of the University records, the time distance between students, led by us was still less: when I was admitted to the Sergei Novikov, Moscow State university as a freshman, he was a which studied al- sophomore. We knew each other but did not com- gebraic topology. municate much. Once, I invited him to participate Just a decade in a ski hiking trip (we used to travel during the before, Pontrya- winter breaks in the almost unpopulated northern gin’s seminar in Russia), but he said that Kolmogorov wanted him Moscow was a to stay in Moscow during the break: they were true center of the going to work together.
    [Show full text]
  • Ergodic Theory Plays a Key Role in Multiple Fields Steven Ashley Science Writer
    CORE CONCEPTS Core Concept: Ergodic theory plays a key role in multiple fields Steven Ashley Science Writer Statistical mechanics is a powerful set of professor Tom Ward, reached a key milestone mathematical tools that uses probability the- in the early 1930s when American mathema- ory to bridge the enormous gap between the tician George D. Birkhoff and Austrian-Hun- unknowable behaviors of individual atoms garian (and later, American) mathematician and molecules and those of large aggregate sys- and physicist John von Neumann separately tems of them—a volume of gas, for example. reconsidered and reformulated Boltzmann’ser- Fundamental to statistical mechanics is godic hypothesis, leading to the pointwise and ergodic theory, which offers a mathematical mean ergodic theories, respectively (see ref. 1). means to study the long-term average behavior These results consider a dynamical sys- of complex systems, such as the behavior of tem—whetheranidealgasorothercomplex molecules in a gas or the interactions of vi- systems—in which some transformation func- brating atoms in a crystal. The landmark con- tion maps the phase state of the system into cepts and methods of ergodic theory continue its state one unit of time later. “Given a mea- to play an important role in statistical mechan- sure-preserving system, a probability space ics, physics, mathematics, and other fields. that is acted on by the transformation in Ergodicity was first introduced by the a way that models physical conservation laws, Austrian physicist Ludwig Boltzmann laid Austrian physicist Ludwig Boltzmann in the what properties might it have?” asks Ward, 1870s, following on the originator of statisti- who is managing editor of the journal Ergodic the foundation for modern-day ergodic the- cal mechanics, physicist James Clark Max- Theory and Dynamical Systems.Themeasure ory.
    [Show full text]
  • 1914 Martin Gardner
    ΠME Journal, Vol. 13, No. 10, pp 577–609, 2014. 577 THE PI MU EPSILON 100TH ANNIVERSARY PROBLEMS: PART II STEVEN J. MILLER∗, JAMES M. ANDREWS†, AND AVERY T. CARR‡ As 2014 marks the 100th anniversary of Pi Mu Epsilon, we thought it would be fun to celebrate with 100 problems related to important mathematics milestones of the past century. The problems and notes below are meant to provide a brief tour through some of the most exciting and influential moments in recent mathematics. No list can be complete, and of course there are far too many items to celebrate. This list must painfully miss many people’s favorites. As the goal is to introduce students to some of the history of mathematics, ac- cessibility counted far more than importance in breaking ties, and thus the list below is populated with many problems that are more recreational. Many others are well known and extensively studied in the literature; however, as our goal is to introduce people to what can be done in and with mathematics, we’ve decided to include many of these as exercises since attacking them is a great way to learn. We have tried to include some background text before each problem framing it, and references for further reading. This has led to a very long document, so for space issues we split it into four parts (based on the congruence of the year modulo 4). That said: Enjoy! 1914 Martin Gardner Few twentieth-century mathematical authors have written on such diverse sub- jects as Martin Gardner (1914–2010), whose books, numbering over seventy, cover not only numerous fields of mathematics but also literature, philosophy, pseudoscience, religion, and magic.
    [Show full text]
  • Spring 2014 Fine Letters
    Spring 2014 Issue 3 Department of Mathematics Department of Mathematics Princeton University Fine Hall, Washington Rd. Princeton, NJ 08544 Department Chair’s letter The department is continuing its period of Assistant to the Chair and to the Depart- transition and renewal. Although long- ment Manager, and Will Crow as Faculty The Wolf time faculty members John Conway and Assistant. The uniform opinion of the Ed Nelson became emeriti last July, we faculty and staff is that we made great Prize for look forward to many years of Ed being choices. Peter amongst us and for John continuing to hold Among major faculty honors Alice Chang Sarnak court in his “office” in the nook across from became a member of the Academia Sinica, Professor Peter Sarnak will be awarded this the common room. We are extremely Elliott Lieb became a Foreign Member of year’s Wolf Prize in Mathematics. delighted that Fernando Coda Marques and the Royal Society, John Mather won the The prize is awarded annually by the Wolf Assaf Naor (last Fall’s Minerva Lecturer) Brouwer Prize, Sophie Morel won the in- Foundation in the fields of agriculture, will be joining us as full professors in augural AWM-Microsoft Research prize in chemistry, mathematics, medicine, physics, Alumni , faculty, students, friends, connect with us, write to us at September. Algebra and Number Theory, Peter Sarnak and the arts. The award will be presented Our finishing graduate students did very won the Wolf Prize, and Yasha Sinai the by Israeli President Shimon Peres on June [email protected] well on the job market with four win- Abel Prize.
    [Show full text]
  • Curriculum Vitae of Vladlen Timorin Current Positions: • Faculty Of
    Curriculum Vitae of Vladlen Timorin Current Positions: • Faculty of Mathematics, National Research University Higher School of Economics, Pro- fessor and Dean • Laboratory of Algebraic Geometry and its Applications, Researcher Positions previously held: • Independent University of Moscow, Vice-president (2011{2015) • Associate Professor, Faculty of Mathematics, National Research University Higher School of Economics (2009{2012) • Post-Doctoral Fellow at Jacobs University Bremen, Germany (2007{2009) • Lecturer (Post-Doctoral Fellow) at the Institute for Mathematical Sciences, State Univer- sity of New York at Stony Brook (2004{2007) • Visitor, Max-Planck-Institut f¨urMathematik, Bonn (Spring 2010) Research Interests: • Complex dynamics, dynamics of rational functions. • Quadratic forms. • Projective differential geometry of curves. • Geometry and combinatorics of convex polytopes. Habilitation thesis: \Dynamics and geometry of quadratic rational maps", defended on January 17, 2012, RAS Institute for Information Transmission Problems (Moscow) Membership in Editorial Boards: • Arnold Mathematical Journal (IMS at Stony Brook, Springer), Managing Editor • Journal of Dynamical and Control Systems (Springer), Associate Editor Education: 2004, PhD: University of Toronto, Department of Mathematics, “Rectifiable families of conics", Advisor: Askold Khovanskii 2003, PhD: Steklov Mathematical Institute, Moscow, \Combinatorial Analogues of the Cohomology Algebras for Convex Polytopes" 2000, Diploma: Moscow State University, Department of Mechanics and Mathematics, \An analog of the Hard Lefschetz theorem for polytopes simple in edges" 2000, Diploma: Independent University of Moscow, \Small resolutions of polytopes and the generalized h-vector" Mathematical Honors and Awards: • Dynasty Foundation Contest Winner 2013, http://www.mccme.ru/dfc/ • P. Deligne's Contest Winner 2010, http://www.mccme.ru/pdc/ • M¨obiusPrize, http://www.moebiuscontest.ru • Ontario Graduate Scholarship • Connaught Graduate Scholarship, University of Toronto Scientific grants.
    [Show full text]