Mark Weiser (1952–1999) the Founder of Ubiquitous Computing

Total Page:16

File Type:pdf, Size:1020Kb

Mark Weiser (1952–1999) the Founder of Ubiquitous Computing Mark Weiser (1952–1999) The Founder of Ubiquitous Computing Mark Weiser was the chief technology officer at Xerox’s Palo Alto Research Cen- ter (Parc). He is often referred to as the father of ubiquitous computing. He coined the term in 1988 to describe a future in which invisible computers, embedded in everyday objects, replace PCs. Other research interests included garbage collection, operating sys- tems, and user interface design. He received his MA and PhD in computer and com- munication science at the University of Michigan, Ann Arbor. After completing his PhD, he joined the computer science department at the University of Maryland, College Park, where he taught for 12 years. He wrote or cowrote over 75 technical publications on such subjects as the psychology of programming, program slicing, operating systems, pro- gramming environments, garbage collection, and technological ethics. He was a mem- ber of the ACM, IEEE Computer Society, and American Association for the Advance- ment of Science. Weiser passed away in 1999. Visit www.parc.xerox.com/csl/ members/weiser or contact [email protected] for more information about him. 18 PERVASIVEcomputing REACHING FOR WEISER’ S VISION Images not reprinted. Some were omitted and others reproduced. The Computer for the 21st Century Specialized elements of hardware and software, connected by wires, radio waves and infrared, will be so ubiquitous that no one will notice their presence. he most profound technologies are colleagues and I at the Xerox Palo Alto Research those that disappear. They weave Center think that the idea of a “personal” computer themselves into the fabric of everyday itself is misplaced and that the vision of laptop life until they are indistinguishable machines, dynabooks and “knowledge navigators” from it. is only a transitional step toward achieving the real TConsider writing, perhaps the first information potential of information technology. Such machines technology. The ability to represent spoken language cannot truly make computing an integral, invisible symbolically for long-term storage freed informa- part of people’s lives. We are therefore trying to con- tion from the limits of individual memory. Today ceive a new way of thinking about computers, one this technology is ubiquitous in industrialized coun- that takes into account the human world and allows tries. Not only do books, magazines and newspa- the computers themselves to vanish into the back- pers convey written information, but so do street ground. signs, billboards, shop signs and even graffiti. Candy wrappers are covered in writing. Such a disappearance is a fundamental conse- The constant background pres- quence not of technology but of human psychology. By Mark Weiser ence of these products of “liter- Whenever people learn something sufficiently well, acy technology” does not require they cease to be aware of it. When you look at a active attention, but the infor- street sign, for example, you absorb its information mation to be transmitted is ready for use at a glance. without consciously performing the act of reading. It is difficult to imagine modern life otherwise. Computer scientist, economist and Nobelist Her- Silicon-based information technology, in contrast, bert A. Simon calls this phenomenon “compiling”; is far from having become part of the environment. philosopher Michael Polanyi calls it the “tacit More than 50 million personal computers have been dimension”; psychologist J.J. Gibson calls it “visual sold, and the computer nonetheless remains largely invariants”; philosophers Hans Georg Gadamer and in a world of its own. It is approachable only Martin Heidegger call it the “horizon” and the through complex jargon that has nothing to do with “ready-to-hand”; John Seely Brown of PARC calls the tasks for which people use computers. The state it the “periphery.” All say, in essence, that only when of the art is perhaps analogous to the period when things disappear in this way are we freed to use them scribes had to know as much about making ink or without thinking and so to focus beyond them on baking clay as they did about writing. new goals. The arcane aura that surrounds personal com- The idea of integrating computers seamlessly into puters is not just a “user interface” problem. My the world at large runs counter to a number of pre- Reprinted with permission. Copyright 1991 by Scientific American, Inc. All rights reserved. PERVASIVEcomputing 19 REACHING FOR WEISER’ S VISION WIRED AND WIRELESS NETWORKS link Pad computers and allow their users to share programs and data. The computers pictured here include conventional terminals and file servers, pocket-size Radio machines known as tabs and page-size frequency ones known as pads. Future networks must be capable of supporting hundreds Infrared of devices in a single room and must also Radio Infrared cope with devices—ranging from tabs to frequency Tab laser printers or large-screen displays— that move from one place to another. electric motors made it possible first to give each tool its own source of motive force, then to put many motors into a single machine. A glance through the shop manual of a Workstation File server Laser printer typical automobile, for example, reveals 22 motors and 25 solenoids. They start the engine, clean the windshield, lock and unlock the doors, and so on. By paying sent-day trends. “Ubiquitous computing” otherwise inaccessible—the insides of cells, careful attention, the driver might be able to in this context does not mean just com- the surfaces of distant planets, the infor- discern whenever he or she activated a puters that can be carried to the beach, jun- mation web of data bases—virtual reality motor, but there would be no point to it. gle or airport. Even the most powerful is only a map, not a territory. It excludes Most computers that participate in notebook computer, with access to a desks, offices, other people not wearing embodied virtuality will be invisible in fact worldwide information network, still goggles and bodysuits, weather, trees, as well as in metaphor. Already computers focuses attention on a single box. By anal- walks, chance encounters and, in general, in light switches, thermostats, stereos and ogy with writing, carrying a superlaptop is the infinite richness of the universe. Virtual ovens help to activate the world. These like owning just one very important book. reality focuses an enormous apparatus on machines and more will be interconnected Customizing this book, even writing mil- simulating the world rather than on invis- in a ubiquitous network. As computer sci- lions of other books, does not begin to cap- ibly enhancing the world that already exists. entists, however, my colleagues and I have ture the real power of literacy. Indeed, the opposition between the focused on devices that transmit and dis- Furthermore, although ubiquitous com- notion of virtual reality and ubiquitous, play information more directly. We have puters may use sound and video in addition invisible computing is so strong that some found two issues of crucial importance: to text and graphics, that does not make of us use the term “embodied virtuality” to location and scale. Little is more basic to them “multimedia computers.” Today’s refer to the process of drawing computers human perception than physical juxtapo- multimedia machine makes the computer out of their electronic shells. The “virtual- sition, and so ubiquitous computers must screen into a demanding focus of attention ity” of computer-readable data—all the dif- know where they are. (Today’s computers, rather than allowing it to fade into the ferent ways in which they can be altered, in contrast, have no idea of their location background. processed and analyzed—is brought into and surroundings.) If a computer knows Perhaps most diametrically opposed to the physical world. merely what room it is in, it can adapt its our vision is the notion of virtual reality, behavior in significant ways without requir- which attempts to make a world inside the How do technologies disappear into the ing even a hint of artificial intelligence. computer. Users don special goggles that background? The vanishing of electric Ubiquitous computers will also come in project an artificial scene onto their eyes; motors may serve as an instructive exam- different sizes, each suited to a particular they wear gloves or even bodysuits that ple. At the turn of the century, a typical task. My colleagues and I have built what sense their motions and gestures so that workshop or factory contained a single we call tabs, pads and boards: inch-scale they can move about and manipulate vir- engine that drove dozens or hundreds of machines that approximate active Post-it tual objects. Although it may have its pur- different machines through a system of notes, foot-scale ones that behave some- pose in allowing people to explore realms shafts and pulleys. Cheap, small, efficient thing like a sheet of paper (or a book or a 20 PERVASIVEcomputing http://computer.org/pervasive Chris K Batteries Xer ent ox P Microprocessor ARC Control button Infrared light-emitting diodes The Active Badge. This harbinger of inch-scale computers contains a small microprocessor and an infrared transmitter. The badge broadcasts the identity of its wearer and so can trigger automatic doors, automatic telephone forwarding and computer displays customized to each person reading them. The active badge and other networked tiny computers are called tabs. magazine) and yard-scale displays that are size of an employee I.D. card, first devel- will leave the screen free for information and the equivalent of a blackboard or bulletin oped by the Olivetti Cambridge research also let people arrange their computer-based board. laboratory. These badges can identify projects in the area around their terminals, How many tabs, pads and board-size themselves to receivers placed throughout much as they now arrange paper-based pro- writing and display surfaces are there in a a building, thus making it possible to keep jects in piles on desks and tables.
Recommended publications
  • Building Blocks for Tomorrow's Mobile App Store
    Building Blocks for Tomorrow’s Mobile App Store by Justin G. Manweiler Department of Computer Science Duke University Date: Approved: Romit Roy Choudhury, Supervisor Jeffrey S. Chase Landon P. Cox Victor Bahl Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2012 Abstract (0984) Building Blocks for Tomorrow’s Mobile App Store by Justin G. Manweiler Department of Computer Science Duke University Date: Approved: Romit Roy Choudhury, Supervisor Jeffrey S. Chase Landon P. Cox Victor Bahl An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science in the Graduate School of Duke University 2012 Copyright c 2012 by Justin G. Manweiler All rights reserved Abstract In our homes and in the enterprise, in our leisure and in our professions, mobile computing is no longer merely “exciting;” it is becoming an essential, ubiquitous tool of the modern world. New and innovative mobile applications continue to inform, entertain, and surprise users. But, to make the daily use of mobile technologies more gratifying and worthwhile, we must move forward with new levels of sophistication. The Mobile App Stores of the future must be built on stronger foundations. This dissertation considers a broad view of the challenges and intuitions behind a diverse selection of such new primitives. Some of these primitives will mitigate exist- ing and fundamental challenges of mobile computing, especially relating to wireless communication. Others will take an application-driven approach, being designed to serve a novel purpose, and be adapted to the unique and varied challenges from their disparate domains.
    [Show full text]
  • Toward Building a Safe, Secure, and Easy-To-Use Internet of Things
    IOT CONNECTION Toward Building a Safe, Secure, and Easy-to-Use Sal glances at the display near her office door and sees that her next meeting is in 10 Internet of Things minutes. One participant is out of town and the other two people are running late, but the meeting room is still occupied Infrastructure by several people. The display also suggests it might be a Yuvraj Agarwal and Anind K. Dey, Carnegie Mellon University good time to get coffee because the lines are short at the cafe downstairs. Her good friend Joe Carnegie Mellon University is leading a happens to be at the cafe, too. multi-institutional effort to build an open Sal checks an app she recently built and sees that the coffee is infrastructure to support the Internet of Things. freshly brewed. “That simplifies things,” she thinks to herself as she heads toward the cafe. safe and secure world enabled by the Inter- This is the unique promise of a successful IoT, and is net of Things (IoT) promises to lead to truly what we are aiming for with GIoTTO, the IoT program connected environments, where people and at Carnegie Mellon University (CMU) named after the things collaborate to improve the overall famous Renaissance painter. qualityA of life. The IoT will give us actionable informa- tion at our fingertips, without us having to ask for it or NEED FOR AN OPEN INFRASTRUCTURE even recognizing that it might be needed. Consider this Although numerous commercial and academic programs example that combines many simple uses of the IoT to cu- focus on building IoT systems, it’s clear that for any IoT mulatively form an omnipotent assistant: stack to be widely adopted, it must be open—without a 40 COMPUTER PUBLISHED BY THE IEEE COMPUTER SOCIETY 0018-9162/16/$33.00 © 2016 IEEE EDITOR ROY WANT Google; [email protected] singular organization claiming own- ership.
    [Show full text]
  • Passing the Torch
    From the Editor in Chief Editor in Chief: M. Satyanarayanan ■ Carnegie Mellon University ■ [email protected] Passing the Torch M. Satyanarayanan his issue marks the end of my sec- a highly portable information appliance LOOKING BACK, T ond two-year term as editor in that transforms nearby displays and LOOKING FORWARD chief. I am delighted to introduce my input devices into a transient personal- In August 2001, 10 years after the successor, Roy Want of Intel Research, computing environment. Roy has pub- publication of Mark Weiser’s seminal who will begin his term on 1 January lished extensively over his research career paper introducing the concept of ubiq- 2006. I will continue to serve as active and has over 50 patents to his credit. uitous computing,1 I summarized the editor in chief until that time and will It is hard to imagine a person more field’s progress and reflected on the work closely with Roy to ensure a qualified than Roy to be the next editor challenges ahead in a paper entitled smooth and efficient transition. My in chief of IEEE Pervasive Computing. “Pervasive Computing: Vision and involvement with this publication will In 2001, he was part of the founding edi- Challenges.”2 Looking back, it is grat- continue even after I step down, as I will torial board that created this publication ifying to see how much progress has remain on the editorial board. occurred in just four short years. Many forces have converged to make IN GOOD HANDS It is hard to this progress possible, one of which was Roy received his PhD from Cambridge imagine a substantial industry investment in prod- University in 1988, under the supervision person more uct development relevant to mobile and of Roger Needham.
    [Show full text]
  • Curriculum Vitae: Roy Want
    Curriculum Vitae: Roy Want E-mail: roywant AT google.com ; roywant AT acm.org Google Inc, Mail-Stop: US-MTV-B43 1600 Amphitheatre Parkway Mountain View, CA 94043, USA Office/Cell: (650) 691 3600 Date: January, 2019 Up-to-date CV: http://www.roywant.com/cv/vita.htm Research Interests Mobile & ubiquitous computing, location & context-aware systems, electronic tagging(RFID/NFC/BLE), hardware design, electronic commerce, smart cards, distributed systems, multimedia systems, cellular automata, novel UI, and MEMS. Professional ACM Fellow: 2005, and ACM (Association of Computer Machinery) member since 1996. IEEE Fellow: 2005 and IEEE (Institute for Electrical and Electronic Engineers) member since 1991. Lillian Gilbreth lectureship, National Academy of Engineering (NAE), Washington DC, Oct 12th, 2003 Education Ph.D. Cambridge University UK, Churchill College, Computer Science, Advisor: Roger Needham, 1983-88 o Thesis title: "Reliable Management of Voice in a Distributed System" BA hons. Cambridge University UK, Churchill College, Nat. Science/Computer Science, Tutor: Frank King, 1980-83 o Dissertation title: “A Local Area Network (LAN) Based on the Domestic Mains Supply” High School: William Ellis Grammar School, London UK, 1972-79 Experience Google Inc. (2011-present) o Senior Research Scientist: Google Research and Android Location & Context Team Intel Corporation (2001-2011) o Senior Principal Engineer (SPE) 2008-2011 -Assoc. Director: ILSC (2009-10) & Director (NPL) 2010-11 o Principal Engineer (PE) 2000-2007 Xerox - Palo Alto Research Center (PARC). Computer Science Laboratory (CSL). 1991 - 2001 (reporting to Mark Weiser, Laboratory Manager for CSL; CTO) o Principal Scientist 2000-2001 o Area Manager for Embedded Systems Area 1992-1999 o Member of Research Staff II 1991-1992.
    [Show full text]
  • Solving Human Centric Challenges in Ambient Intelligence Environments to Meet Societal Needs
    Solving Human Centric Challenges in Ambient Intelligence Environments to Meet Societal Needs A Dissertation Presented to the Faculty of the School of Engineering and Applied Science University of Virginia In Partial Fulfillment of the requirements for the Degree Doctor of Philosophy (Computer Science) by Erin Griffiths December 2019 © 2019 Erin Griffiths Approval Sheet This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Science) Erin Griffiths This dissertation has been read and approved by the Examining Committee: Kamin Whitehouse, Adviser Jack Stankovic, Committee Chair Mary Lou Soffa A.J. Brush John Lach Accepted for the School of Engineering and Applied Science: Dean, School of Engineering and Applied Science December 2019 i To everyone who has helped me along the way. ii Abstract In the world today there exists a large number of problems that are of great societal concern, but suffer from a problem called the tragedy of the commons where there isn`t enough individual incentive for people to change their behavior to benefit the whole. One of the biggest examples of this is in energy consumption where research has shown that we can reduce 20-50% of the energy used in buildings if people would consistently modify their behavior. However, consistent behavior modification to meet societal goals that are often low priority on a personal level is often prohibitively difficult in the long term. Even systems design to assist in meeting these needs may be unused or disabled if they require too much effort, infringe on privacy, or are frustratingly inaccurate.
    [Show full text]
  • SOUL: an Edge-Cloud System for Mobile Applications in a Sensor-Rich World
    2016 IEEE/ACM Symposium on Edge Computing SOUL: An Edge-cloud System for Mobile Applications in a Sensor-rich World Minsung Jang∗, HyunJong Lee†, Karsten Schwan‡, Ketan Bhardwaj‡ ∗AT&T Labs - Research, [email protected] †University of Michigan, [email protected] ‡Georgia Institute of Technology, {karsten, ketanbj}@gatech.edu Abstract—With the Internet of Things, sensors are becoming In order for such apps to efficiently interact with and ever more ubiquitous, but interacting with them continues manage the dynamic sets of currently accessible sensors with to present numerous challenges, particularly for applications the associated actuators and software services, SOUL (Sensors running on resource-constrained devices like smartphones. The Of Ubiquitous Life) SOUL abstractions in this paper address two issues faced • by such applications: (1) access to sensors with the levels of externalizes sensor & actuator interactions and process- convenience needed for their ubiquitous, dynamic use, and only ing from the resource-constrained device to edge- and by parties authorized to do so, and (2) scalability in sensor remote-cloud resources, to leverage their computational and access, given today’s multitude of sensors. Toward this end, storage abilities for running the complex sensor processing SOUL, first, introduces a new abstraction for the applications to functionality; transparently and uniformly access both on-device and ambient • sensors with associated actuators. Second, potentially expensive automates reconfiguration of these interactions when sensor-related processing needs not just occur on smartphones, better-matched sensors and actuators become physically but can also leverage edge- and remote-cloud resources. Finally, available; SOUL provides access control methods that permit users to easily • supports existing sensor-based applications allowing define access permissions for sensors, which leverages users’ social ties and captures the context in which access requests them to use SOUL’s capabilities without requiring modi- are made.
    [Show full text]
  • Ambient Intelligence
    Ambient intelligence Ambient intelligence is closely related to the long term vision of an intelligent service system in which technolo- gies are able to automate a platform embedding the re- quired devices for powering context aware, personalized, adaptive and anticipatory services. Where in other me- dia environment the interface is clearly distinct, in an ubiquitous environment 'content' differs. Artur Lugmayr defined such a smart environment by describing it as ambient media. It is constituted of the communication of information in ubiquitous and pervasive environments. The concept of ambient media relates to ambient media form, ambient media content, and ambient media tech- nology. Its principles have been established by Artur Lug- mayr and are manifestation, morphing, intelligence, and experience.[1][2] An (expected) evolution of computing from 1960–2010. A typical context of ambient intelligence environment is In computing, ambient intelligence (AmI) refers to a Home environment (Bieliková & Krajcovic 2001). electronic environments that are sensitive and respon- sive to the presence of people. Ambient intelligence is a vision on the future of consumer electronics, 1 Overview telecommunications and computing that was originally developed in the late 1990s for the time frame 2010– 2020. In an ambient intelligence world, devices work in More and more people make decisions based on the effect concert to support people in carrying out their everyday their actions will have on their own inner, mental world. life activities, tasks and rituals in an easy, natural way us- This experience-driven way of acting is a change from ing information and intelligence that is hidden in the net- the past when people were primarily concerned about the work connecting these devices (see Internet of Things).
    [Show full text]
  • Getmobile MOBILE COMPUTING & COMMUNICATIONS REVIEW
    GetMobile MOBILE COMPUTING & COMMUNICATIONS REVIEW Volume 21, Issue 2 • June 2017 CONTENTS 3 Message from the Editor-in-Chief 16 22 (ALMOST) UNPUBLISHABLE HIGHLIGHTS 5 RESULTS 22 EmotionCheck: A Wearable Device 16 Experiences Deploying an to Regulate Anxiety through False EXPERIMENTAL METHODS Always-On Farm Network Heart Rate Feedback 5 How Do You Know If 85% Accuracy Is Good Enough for Your Application? 26 9 31 26 HemaApp: Noninvasive Blood Screening of Hemoglobin Using Smartphone Cameras MOBILE PLATFORMS 9 Beyond Reality: Head-Mounted 31 Who Are the Smartphone Users? Displays for Mobile Systems Identifying User Groups with Researchers Apps Usage Behaviors 35 Interpretable Machine Learning for Mobile Notification Management: An Overview of PrefMiner 35 2 GetMobile June 2017 | Volume 21, Issue 2 MESSAGE FROM THE EDITOR-IN-CHIEF CONTRIBUTORS EDITOR-IN-CHIEF IN THIS ISSUE, we highlight four papers Eyal de Lara, University of Toronto from ACM UbiComp 2016. MANAGING EDITOR Donna Paris “EmotionCheck: A Wearable Device DESIGNER JoAnn McHardy to Regulate Anxiety through False Heart SENIOR ADVISORS (Past Editors-in-Chief) Rate Feedback,” by Jean Costa, Alexander Paramvir Bahl, Microsoft Research T. Adams, Malte F. Jung, François Suman Banerjee, University of Wisconsin, Madison Guimbretière, and Tanzeem Choudhury, Srikanth Krishnamurthy, University of California, Riverside describes a device that generates subtle Jason Redi, BBN Technologies vibrations on the wrist to resemble a pulse, Mani Srivastava, University of California, Los Angeles which helps users regulate their anxiety Eyal de Lara Nitin Vaidya, University of Illinois, Urbana-Champaign through false feedback of a slow heart rate. SECTION EDITORS In “HemaApp: Noninvasive Blood Screening of Hemoglobin Ardalan Amiri Sami, University of California, Irvine Using Smartphone Cameras,” Edward Jay Wang, William Li, Doug Aruna Balasubramanian, Stony Brook University Nilanjan Banerjee, University of Maryland, Hawkins, Terry Gernsheimer, Colette Norby-Slycord, and Shwetak N.
    [Show full text]
  • A. Define and Explain the Internet of Things
    IoT Solutions 1. Attempt any three of the following: a. Define and explain the Internet of Things. Ans: The Internet of things is defined as a paradigm in which objects equipped with sensors, actuators, and processors communicate with each other to serve a meaningful purpose. Equation of Internet of Things: Physical Object + Controllers, Sensors and Actuators + Internet = Internet of Things Physical Object: Devices, vehicles, buildings and other items which are embedded with electronics, software, sensors, and network connectivity, which enables these objects to collect and exchange data. Controllers: A controller, in a computing context, is a hardware device or a software program that manages or directs the flow of data between two entities In a general sense, a controller can be thought of as something or someone that interfaces between two systems and manages communications between them. Sensors: Sensor is a device, module, or subsystem whose purpose is to detect events or changes in its environment and send the information to other electronics, frequently a computer processor. A sensor is always used with other electronics. Actuators: An actuator is a component of a machine that is responsible for moving and controlling a mechanism or system. Internet: The internet is a globally connected network system that uses TCP/IP to transmit data via various types of media. The internet is a network of global exchanges – including private, public, business, academic and government networks – connected by guided, wireless and fiber-optic technologies. Example of Internet of Things: In your kitchen, a blinking light reminds you it’s time to take your tablets.
    [Show full text]
  • Core Concept: the Internet of Things and the Explosion of Interconnectivity
    CORE CONCEPTS The Internet of Things and the explosion of interconnectivity CORE CONCEPTS Stephen Ornes, Science Writer It was 1982, and a group of computer science graduate students at Carnegie Mellon University in Pittsburgh, Pennsylvania, was thirsty for more than knowledge: some wanted a Coca Cola. But the researchers were frustrated. The Coke machine was on the third floor of the university’s Wean Hall, and oftentimes they’d venture up to the dis- penser only to find it empty, or worse, full of warm soda. So the scientists connected the machine to the university’s computer network. By checking online, thirsty researchers could ensure the machine was stocked with cold bottles before visiting. This turned out to be more than an achieve- ment in efficient caffeine delivery; it’s thought to be one of the first noncomputer objects to go online (1). The notion of pervasive computing entails a vision of the world in which computing isn’t limited to tab- lets, smartphones, and laptops. The realization of this vision, called the “Internet of Things” (IoT), is the ever- expanding collection of connected devices that cap- ture and share data. Any object, outfitted with the right Pervasive computing and its realization, known as the “Internet of Things,” entails sensors, can observe and interact with its environment. an ever-expanding collection of connected devices that capture and share data. A homeowner can adjust the thermostat, close the Image courtesy of Shutterstock/a-image. blinds, or raise a garage door with a voice command to a smartphone app. A connected refrigerator can send a list of its inventory to a shopper.
    [Show full text]
  • Ubiquitous Computing Research at PARC in the Late 1980S
    The origins of ubiquitous computing research at PARC in the late 1980s by M. Weiser R. Gold † J. S. Brown ‡ Ubiquitous computing began in the Electronics At the same time, the anthropologists of the Work and Imaging Laboratory of the Xerox Palo Alto Practices and Technology area within PARC, led by Research Center. This essay tells the inside story of its evolution from “computer walls” to “calm Lucy Suchman, were observing the way people re- computing.” ally used technology, not just the way they claimed to use technology. To some of the technologists at PARC, myself included, their observations led toward thinking less about particular features of a comput- er—such as random access memory and number of pixels or megahertz—and much more about the de- n late 1987, Bob Sprague, Richard Bruce, and tailed situational use of the technology. In partic- other members of the Xerox Palo Alto Research I ular, how were computers embedded within the com- Center (PARC) Electronics and Imaging Laboratory plex social framework of daily activity, and how did (EIL) proposed fabricating large, wall-sized, flat- they interplay with the rest of our densely woven panel computer displays from large-area amorphous physical environment (also known as “the real silicon sheets. It was thought at the time that this world”)? technology might also permit these displays to func- tion as input devices for electronic pens and also for From these converging forces (“from atoms to cul- the scanning of images (by placing documents di- ture,” as we like to say of PARC) emerged the Ubiq- rectly against the displays).
    [Show full text]
  • Challenges in Ubiquitous Computing and Networking Management
    APNOMS 2003 DEP, Fukuoka, Japan Challenges in Ubiquitous Computing and Networking Management Jong T. Park ([email protected]) Kyungpook National University Korea Ubiquitous Computing & Networking Environment Electronic Cyber Space Smart Real Space Internet Internet Home Network Server (G)MPLS Server Fusion IPv6 Hot Spots 3G/4G Convergence UWB Tiny Invisible Objects Notebook Smart Interface Sensors Web/XML Actuators Bluetooth Multimedia Wearable Handheld Device Computing KNU AIN Lab. APNOMS’2003 2 Features of Cyber Space and Smart Real Space Electronic Cyber Space Smart Real Space Any (time, where, format) Any (device, object)+ Client/Server Computing, P2P Proactive & Embedded (G)MPLS, Broadband Access Computing Network Sensors, MEMS, Wearable B3G/4G, NGN, Post PC, IPv4/v6, Computing, IPv6(+), Near Field XML Communication (UWB, ..) Converging Networks Ad-hoc networks, Home networking Communication/Banking, Comm./(Music/TV Broadcasting), Telematics/Telemetry, e-commerce/government, … u-commerce/government /university/library KNU AIN Lab. APNOMS’2003 3 Current Issues in Ubiquitous Computing and Networking Current Technical Issues Low Power Intelligent Tiny Chip and Sensors Ubiquitous Interface Near-field Communication (UWB, ..), IPv6 Protection of Privacy and Security Management Intelligent Personalization Non-Technical Issues Laws and Regulation Sociological Impact KNU AIN Lab. APNOMS’2003 4 Research Projects America MIT’s Auto-ID and Oxigen, Berkeley’s Smart Dust, NIST’s Smart Space MS’s EasyLiving, HP’s CoolTown Europe
    [Show full text]