Visual Mathematics - Mathematical Origami

Total Page:16

File Type:pdf, Size:1020Kb

Visual Mathematics - Mathematical Origami Visual Mathematics - Mathematical Origami We will deconstruct origami in order to study the crease pattern. For this part of the assignment, you will fold the same origami animal twice. One you will leave folded and the other you will unfold, neatly trace the crease pattern, determine and label all angles in the crease pattern, and label parts of the crease pattern corresponding to appendages of the folded animal (this last part may be easier to label while animal is still folded). 푧 푦2 푥2 The hyperbolic paraboloid is a saddle-shaped surface represented by the equation = − . We can 푐 푏2 푎2 approximate a hyperbolic paraboloid in origami. Construct a hyperbolic paraboloid with at least 8 divisions in the paper. Modular origami is origami made from many simple modules that fit together by inserting flaps into pockets to make a larger, more interesting model. For this project you will build a skeletal octahedron, a sonobe stellated octahedron, and a sonobe cube. It is suggested that you divide each square of paper you are given into 4 smaller squares for modular projects. Bonus points will be awarded for sonobe models using a variation of the basic module (8 different variations are provided to you as options; please indicate which variation you used). You will be given 12 sheets of origami paper. Any other paper needed by you for this assignment will be up to you to find/acquire. Get creative – recycle! Deconstruction/crease pattern study Completed Neatness Folded animal /2 /3 Difficulty bonus Creases Angles Crease pattern /2 /3 /0 /10 Hyperbolic paraboloid Difficulty bonus Completed Neatness (more division) /5 /5 /0 /10 skeletal octahedron Completed Neatness /5 /5 /10 12-module sonobe stellated octahedron Difficulty bonus (or 30-module icosahedron) If variation, (variation; indicate which: icosahedron instead of or in addition to Completed Neatness octahedron) or /5 /5 /0 /10 12-module sonobe cube (or 24-module cube) If variation, Difficulty bonus indicate which: (variation; 24- module instead of or in addition to Completed Neatness 12-module) or /5 /5 /0 /10 /50 Origami folding project Due: Please make sure each model you submit is clearly labeled with your name, and contain all models in a bag or box if possible. Origami Writing Assignment Due: Following the same basic guidelines as the previous writing assignment, answer some or all of the following questions: What is the mathematical significance of origami? Are there any important folding algorithms? What are the constraints? Is it possible to fold anything? Who are the important people in the history of origami (especially as it relates to mathematics, and why are they important)? Who are the current VIPs of origami, and what sort of research are they doing that is so important? What sort of applications to science and engineering does origami have? Are there any contemporary artists working with origami? What is an origami tessellation and what is its significance? Textbooks/journal articles available for this topic in S201 for use in Math Lab: 1. Lang, Robert. Origami Design Secrets: Mathematical Methods for an Ancient Art, 2nd ed. Boca Raton: CNC Press, 2012. 2. Peterson, Ivars. Fragments of Infinity: A Kaleidoscope of Math and Art. New York: John Wiley & Sons, 2001. In the ASMS Library: 1. Gjerde, Eric. Origami Tessellations. Wellesley: AK Peters, 2009. 2. Gould, Vanessa. Between the Folds. Arlington: Green Fuse Films, 2009. Other particularly useful sources: 1. Demaine, Erik. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. MIT OCW course with video lectures, notes, and slides. Available at: http://courses.csail.mit.edu/6.849/fall10/ 2. Lang, Robert. “Angle Quintisection.” Robert J. Lang Origami. Available at: http://www.langorigami.com/science/math/quintisection/quintisection.php 3. Lang, Robert. “Huzita-Justin Axioms.” Robert J. Lang Origami. Available at: http://www.langorigami.com/science/math/hja/hja.php 4. Lang, Robert. “Origami Diagramming Conventions.” Robert J. Lang Origami. Available at: http://www.langorigami.com/diagramming/diagramming.php And, of course, the many articles in the Google Drive “Origami” folder: https://drive.google.com/a/dragons.asms.net/folderview?id=0B26XdI9aXnUQUDBKMlRYVzFxbG8&usp=sharing .
Recommended publications
  • Geometry of Transformable Metamaterials Inspired by Modular Origami
    Geometry of Transformable Metamaterials Inspired by Yunfang Yang Department of Engineering Science, Modular Origami University of Oxford Magdalen College, Oxford OX1 4AU, UK Modular origami is a type of origami where multiple pieces of paper are folded into mod- e-mail: [email protected] ules, and these modules are then interlocked with each other forming an assembly. Some 1 of them turn out to be capable of large-scale shape transformation, making them ideal to Zhong You create metamaterials with tuned mechanical properties. In this paper, we carry out a fun- Department of Engineering Science, damental research on two-dimensional (2D) transformable assemblies inspired by modu- Downloaded from http://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/10/2/021001/6404042/jmr_010_02_021001.pdf by guest on 25 September 2021 University of Oxford, lar origami. Using mathematical tiling and patterns and mechanism analysis, we are Parks Road, able to develop various structures consisting of interconnected quadrilateral modules. Oxford OX1 3PJ, UK Due to the existence of 4R linkages within the assemblies, they become transformable, e-mail: [email protected] and can be compactly packaged. Moreover, by the introduction of paired modules, we are able to adjust the expansion ratio of the pattern. Moreover, we also show that trans- formable patterns with higher mobility exist for other polygonal modules. The design flex- ibility among these structures makes them ideal to be used for creation of truly programmable metamaterials. [DOI: 10.1115/1.4038969] Introduction be made responsive to external loading conditions. These struc- tures and materials based on such structures can find their usage Recently, there has been a surge of interest in creating mechani- in automotive, aerospace structures, and body armors.
    [Show full text]
  • Mathematics of Origami
    Mathematics of Origami Angela Kohlhaas Loras College February 17, 2012 Introduction Origami ori + kami, “folding paper” Tools: one uncut square of paper, mountain and valley folds Goal: create art with elegance, balance, detail Outline History Applications Foldability Design History of Origami 105 A.D.: Invention of paper in China Paper-folding begins shortly after in China, Korea, Japan 800s: Japanese develop basic models for ceremonial folding 1200s: Origami globalized throughout Japan 1682: Earliest book to describe origami 1797: How to fold 1,000 cranes published 1954: Yoshizawa’s book formalizes a notational system 1940s-1960s: Origami popularized in the U.S. and throughout the world History of Origami Mathematics 1893: Geometric exercises in paper folding by Row 1936: Origami first analyzed according to axioms by Beloch 1989-present: Huzita-Hatori axioms Flat-folding theorems: Maekawa, Kawasaki, Justin, Hull TreeMaker designed by Lang Origami sekkei – “technical origami” Rigid origami Applications from the large to very small Miura-Ori Japanese solar sail “Eyeglass” space telescope Lawrence Livermore National Laboratory Science of the small Heart stents Titanium hydride printing DNA origami Protein-folding Two broad categories Foldability (discrete, computational complexity) Given a pattern of creases, when does the folded model lie flat? Design (geometry, optimization) How much detail can added to an origami model, and how efficiently can this be done? Flat-Foldability of Crease Patterns 훗 Three criteria for 훗: Continuity, Piecewise isometry, Noncrossing 2-Colorable Under the mapping 훗, some faces are flipped while others are only translated and rotated. Maekawa-Justin Theorem At any interior vertex, the number of mountain and valley folds differ by two.
    [Show full text]
  • How to Make an Origami Octahedron Ball
    How to make an Origami Octahedron Ball Introduction: These instructions will teach you how to make an origami octahedron. The ball is constructed by assembling 12 folded units together. A unit This is called a Sonobe unit, named after the person who invented them. The process of using identical units and assembling them in a pattern to create large, complex, beautiful structures is considered modular origami. This type of origami requires multiple sheets of paper to make a model. By varying the number of units, you can make several other shapes. A cube requires 6 units and an icosahedron requires 30. Time Frame: 30 minutes Materials: 2- 8.5”x11” sheets of paper (Multi-colored ball: use 3 different colored sheets of paper) Scissors Ruler (measures inches) Pencil Preparation: Make sure you have enough space and a flat surface to fold the origami. Procedure: Step 1. Cut 12 – 3”x3” square pieces of paper Note: The size of the squares depends on your preference of how large you want the ball to be. These instructions create a ball that fits in your hand. To save time, origami squares (4”x4”) can be used and step 1 skipped. 1.1. Draw 6 squares that are 3”x3” on a sheet of paper with the pencil and ruler. Note: For a multi-color effect, as depicted in these instructions, use 3 different colors of paper and cut 4 squares from each. 1.2.Stack the second sheet of paper behind the first. 1.3. Cut out 12 squares of paper with the scissors.
    [Show full text]
  • Jitterbug ★★★✩✩ Use 12 Squares Finished Model Ratio 1.0
    Jitterbug ★★★✩✩ Use 12 squares Finished model ratio 1.0 uckminister Fuller gave the name Jitterbug to this transformation. I first came across B the Jitterbug in Amy C. Edmondson’s A Fuller Explanation (1987).As I didn’t have dowels and four-way rubber connectors, I made several cuboctahedra that worked as Jitterbugs but were not very reversible. Some were from paper and others from drinking straws and elastic thread. My first unit,Triangle Unit, was partly successful as a Jitterbug.A better result came from using three units per triangular face (or one unit per vertex) which was published in 2000. This improved version is slightly harder to assemble but has a stronger lock.The sequence is pleasingly rhythmical and all steps have location points.The pleats in step 18 form the spring that make the model return to its cuboctahedral shape. Module ★★★ Make two folds in half. Do Fold the sides to the centre. Fold the bottom half behind. 1 not crease the middle for 2 Unfold the right flap. 3 the vertical fold. Fold the top right corner to This creates a 60 degree Fold the right edge to the 4 lie on the left edge whilst the 5 angle. Unfold. 6 centre. fold starts from the original centre of the square. Reproduced with permission from Tarquin Group publication Action Modular Origami (ISBN 978-1-911093-94-7) 978-1-911093-95-4 (ebook). © 2018 Tung Ken Lam. All rights reserved. 90 ° Fold the bottom half Repeat step 4 and unfold, Fold the left edge to the 7 behind.
    [Show full text]
  • Sonobe Origami Units
    Sonobe Origami Units Crease paper down the middle Fold edges to center line and Fold top right and bottom left Fold triangles down to make and unfold unfold corners | do not let the sharper triangles | do not triangles cross crease lines cross the crease lines Fold along vertical crease lines Fold top left corner down to Fold bottom right corner up to Undo the last two folds right edge left edge Tuck upper left corner under Turn the paper over, crease Corners of one module ¯t into along dashed lines as shown to flap on opposite side and pockets of another A cube requires six modules repeat for lower right corner complete the module Sonobe modules also make many other polyhedra Where's the Math in Origami? Origami may not seem like it involves very much mathematics. Yes, origami involves symmetry. If we build a polyhedron then, sure, we encounter a shape from geometry. Is that as far as it goes? Do any interesting mathematical questions arise from the process of folding paper? Is there any deep mathematics in origami? Is the mathematics behind origami useful for anything other than making pretty decorations? People who spend time folding paper often ask themselves questions that are ultimately mathematical in nature. Is there a simpler procedure for folding a certain ¯gure? Where on the original square paper do the wings of a crane come from? What size paper should I use to make a chair to sit at the origami table I already made? Is it possible to make an origami beetle that has six legs and two antennae from a single square sheet of paper? Is there a precise procedure for folding a paper into ¯ve equal strips? In the last few decades, folders inspired by questions like these have revolutionized origami by bringing mathematical techniques to their art.
    [Show full text]
  • Folding a Paper Strip to Minimize Thickness✩
    Folding a Paper Strip to Minimize Thickness✩ Erik D. Demainea, David Eppsteinb, Adam Hesterbergc, Hiro Itod, Anna Lubiwe, Ryuhei Ueharaf, Yushi Unog aComputer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA bComputer Science Department, University of California, Irvine, USA cDepartment of Mathematics, Massachusetts Institute of Technology, USA dSchool of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan eDavid R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada fSchool of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan gGraduate School of Science, Osaka Prefecture University, Osaka, Japan Abstract In this paper, we study how to fold a specified origami crease pattern in order to minimize the impact of paper thickness. Specifically, origami designs are often expressed by a mountain-valley pattern (plane graph of creases with relative fold orientations), but in general this specification is consistent with exponentially many possible folded states. We analyze the complexity of finding the best consistent folded state according to two metrics: minimizing the total number of layers in the folded state (so that a “flat folding” is indeed close to flat), and minimizing the total amount of paper required to execute the folding (where “thicker” creases consume more paper). We prove both problems strongly NP- complete even for 1D folding. On the other hand, we prove both problems fixed-parameter tractable in 1D with respect to the number of layers. Keywords: linkage, NP-complete, optimization problem, rigid origami. 1. Introduction Most results in computational origami design assume an idealized, zero- thickness piece of paper. This approach has been highly successful, revolution- izing artistic origami over the past few decades.
    [Show full text]
  • The Geometry Junkyard: Origami
    Table of Contents Table of Contents 1 Origami 2 Origami The Japanese art of paper folding is obviously geometrical in nature. Some origami masters have looked at constructing geometric figures such as regular polyhedra from paper. In the other direction, some people have begun using computers to help fold more traditional origami designs. This idea works best for tree-like structures, which can be formed by laying out the tree onto a paper square so that the vertices are well separated from each other, allowing room to fold up the remaining paper away from the tree. Bern and Hayes (SODA 1996) asked, given a pattern of creases on a square piece of paper, whether one can find a way of folding the paper along those creases to form a flat origami shape; they showed this to be NP-complete. Related theoretical questions include how many different ways a given pattern of creases can be folded, whether folding a flat polygon from a square always decreases the perimeter, and whether it is always possible to fold a square piece of paper so that it forms (a small copy of) a given flat polygon. Krystyna Burczyk's Origami Gallery - regular polyhedra. The business card Menger sponge project. Jeannine Mosely wants to build a fractal cube out of 66048 business cards. The MIT Origami Club has already made a smaller version of the same shape. Cardahedra. Business card polyhedral origami. Cranes, planes, and cuckoo clocks. Announcement for a talk on mathematical origami by Robert Lang. Crumpling paper: states of an inextensible sheet. Cut-the-knot logo.
    [Show full text]
  • Generating Folding Sequences from Crease Patterns of Flat-Foldable Origami
    Generating Folding Sequences from Crease Patterns of Flat-Foldable Origami Hugo A. Akitaya∗ Jun Mitaniy Yoshihiro Kanamoriy Yukio Fukuiy University of Tsukuba University of Tsukuba / JST ERATO University of Tsukuba University of Tsukuba (b) (a) Figure 1: (a) Example of a step sequence graph containing several possible ways of simplifying the input crease pattern. (b) Results obtained using the path highlighted in orange from Figure 1(a). to fold the paper into the origami design, since crease patterns show only where each crease must be made and not folding instructions. In fact, folding an origami model by its crease pattern may be a difficult task even for people experienced in origami [Lang 2012]. According to Lang, a linear sequence of small steps, such as usually (a) (b) portrayed in traditional diagrams, might not even exist and all the folds would have to be executed simultaneously. Figure 2: (a) Crease pattern and (b) folded form of the “Penguin”. We introduce a system capable of identifying if a folding sequence Design by Hideo Komatsu. Images redrawn by authors. exists using a predetermined set of folds by modeling the origami steps as graph rewriting steps. It also creates origami diagrams semi-automatically from the input of a crease pattern of a flat 1 Problem and Motivation origami. Our system provides the automatic addition of traditional symbols used in origami diagrams and 3D animations in order to The most common form to convey origami is through origami di- help people who are inexperienced in folding crease patterns as agrams, which are step-by-step sequences as shown in Figure 1b.
    [Show full text]
  • Use of Origami in Mathematics Teaching: an Exemplary Activity
    Asian Journal of Education and Training Vol. 6, No. 2, 284-296, 2020 ISSN(E) 2519-5387 DOI: 10.20448/journal.522.2020.62.284.296 © 2020 by the authors; licensee Asian Online Journal Publishing Group Use of Origami in Mathematics Teaching: An Exemplary Activity Davut Köğce Niğde Ömer Halisdemir University, Faculty of Education, Department of Elementary Mathematics Education Turkey. Abstract Students’ attitudes and motivations toward mathematics decrease as they intensively confront cognitive information along the process of mathematics teaching in general. One of the most important reasons for this is the lack of activities for affective and psychomotor domains in the mathematics teaching process. One way to overcome this problem is to include activities through which students can participate effectively in the teaching process. For example, activities performed using origami can be one of them in teaching the attainments covered by the field of geometry learning in mathematics curriculum. Therefore, this study was carried out to present an exemplary activity about how origami can be used when teaching mathematics in secondary schools and to identify preservice teacher opinions on this activity. The activity presented in this study was performed with 32 preservice elementary mathematics teachers attending the faculty of education at a university and taking the Mathematics Teaching with Origami course, and their opinions were taken afterwards. At the end of the application, the preservice teachers stated that such activities would have very positive contributions to students’ mathematics learning. In addition, the preservice teachers communicated and exchanged ideas with each other during the application. It is therefore recommended to use such activities in mathematics teaching.
    [Show full text]
  • Paper Pentasia: an Aperiodic Surface in Modular Origami
    Paper Pentasia: An Aperiodic Surface in Modular Origami a b Robert J. Lang ∗ and Barry Hayes † aLangorigami.com, Alamo, California, USA, bStanford University, Stanford, CA 2013-05-26 Origami, the Japanese art of paper-folding, has numerous connections to mathematics, but some of the most direct appear in the genre of modular origami. In modular origami, one folds many sheets into identical units (or a few types of unit), and then fits the units together into larger constructions, most often, some polyhedral form. Modular origami is a diverse and dynamic field, with many practitioners (see, e.g., [12, 3]). While most modular origami is created primarily for its artistic or decorative value, it can be used effectively in mathematics education to provide physical models of geometric forms ranging from the Platonic solids to 900-unit pentagon-hexagon-heptagon torii [5]. As mathematicians have expanded their catalog of interesting solids and surfaces, origami designers have followed not far behind, rendering mathematical forms via folding, a notable recent example being a level-3 Menger Sponge folded from 66,048 business cards by Jeannine Mosely and co-workers [10]. In some cases, the origami explorations themselves can lead to new mathematical structures and/or insights. Mosely’s developments of business-card modulars led to the discovery of a new fractal polyhedron with a novel connection to the famous Snowflake curve [11]. One of the most popular geometric mathematical objects has been the sets of aperiodic tilings developed by Roger Penrose [14, 15], which acquired new significance with the dis- covery of quasi-crystals, their three-dimensional analogs in the physical world, in 1982 by Daniel Schechtman, who was awarded the 2011 Nobel Prize in Chemistry for his discovery.
    [Show full text]
  • Modular Origami by Trisha Kodama
    ETHNOMATHEMATICS MODULAR ORIGAMI BY TRISHA KODAMA How does the appearance and form of three-dimensional shapes relate to math? How do shipping companies use volume to transport cargo in the most cost efficient way? ELEMENTARY FIFTH GRADE TIMEFRAME FIVE CLASS PERIODS (45 MIN.) STANDARD BENCHMARKS AND VALUES MATHEMATICAL PRACTICE • ‘Ike Piko‘u-Personal Connection Pathway: Students CCSS.MATH.CONTENT.5.MD.C.3 will develop a sense of pride and self-worth while contributing to the learning of our class and the other • Recognize volume as an attribute of solid figures and 5th grade class. understand concepts of volume measurement. • ‘Ike Na‘auao-Intellectual Pathway: Students nurture CCSS.MATH.CONTENT.5.MD.C.4 their curiosity of origami by learning how to fold • Measure volumes by counting unit cubes, using cubic other objects. cm, cubic in, cubic ft, and improvised units. NA HOPENA A‘O CCSS.MATH.CONTENT.5.MD.C.5 • Strengthened Sense of Responsibility: Students will • Relate volume to the operations of multiplication demonstrate commitment and concern for others and addition and solve real world and mathematical when working with their partner. They will give each problems involving volume. other helpful feedback in order to complete tasks. General Learner Outcome #2 – Community Contributor • Strengthened Sense of Excellence: Students will learn General Learner Outcome #5 – Complex Thinker that precise paper folding will lead to producing quality General Learner Outcome #6-Effective and Ethical User work, a perfect Sonobe cube. of Technology • Strengthened Sense of Aloha: Students will show NA HONUA MAULI OLA PATHWAYS Aloha to students in the other 5th grade class when presenting their slideshow and teaching them how to • ‘Ike Pilina-Relationship Pathway: Students share in the fold a Sonobe unit and put together a Sonobe cube.
    [Show full text]
  • GEOMETRIC FOLDING ALGORITHMS I
    P1: FYX/FYX P2: FYX 0521857570pre CUNY758/Demaine 0 521 81095 7 February 25, 2007 7:5 GEOMETRIC FOLDING ALGORITHMS Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500s but have only recently been studied in the mathemat- ical literature. Over the past decade, there has been a surge of interest in these problems, with applications ranging from robotics to protein folding. With an emphasis on algorithmic or computational aspects, this comprehensive treatment of the geometry of folding and unfolding presents hundreds of results and more than 60 unsolved “open prob- lems” to spur further research. The authors cover one-dimensional (1D) objects (linkages), 2D objects (paper), and 3D objects (polyhedra). Among the results in Part I is that there is a planar linkage that can trace out any algebraic curve, even “sign your name.” Part II features the “fold-and-cut” algorithm, establishing that any straight-line drawing on paper can be folded so that the com- plete drawing can be cut out with one straight scissors cut. In Part III, readers will see that the “Latin cross” unfolding of a cube can be refolded to 23 different convex polyhedra. Aimed primarily at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from high school students to researchers. Erik D. Demaine is the Esther and Harold E. Edgerton Professor of Elec- trical Engineering and Computer Science at the Massachusetts Institute of Technology, where he joined the faculty in 2001. He is the recipient of several awards, including a MacArthur Fellowship, a Sloan Fellowship, the Harold E.
    [Show full text]