PMA Day Workshop

Total Page:16

File Type:pdf, Size:1020Kb

PMA Day Workshop PMA Day Workshop March 25, 2017 Presenters: Jeanette McLeod Phil Wilson Sarah Mark Nicolette Rattenbury 1 Contents The Maths Craft Mission ...................................................................................................................... 4 About Maths Craft ............................................................................................................................ 6 Our Sponsors .................................................................................................................................... 7 The Möbius Strip .................................................................................................................................. 8 The Mathematics of the Möbius .................................................................................................... 10 One Edge, One Side .................................................................................................................... 10 Meet the Family ......................................................................................................................... 11 Making and Manipulating a Möbius Strip ...................................................................................... 13 Making a Möbius ........................................................................................................................ 13 Manipulating a Möbius .............................................................................................................. 13 The Heart of a Möbius ............................................................................................................... 15 Other Investigations ................................................................................................................... 16 Notes .............................................................................................................................................. 17 The Menger Sponge ........................................................................................................................... 18 The Mathematics of the Menger Sponge ...................................................................................... 20 Levels of the Sponge .................................................................................................................. 20 The Menger Sponge ................................................................................................................... 20 The Strange World of Fractals ................................................................................................... 21 Fractals in the Wild .................................................................................................................... 21 Making a Menger Sponge .............................................................................................................. 22 Notes .............................................................................................................................................. 25 Origami ............................................................................................................................................... 26 The Mathematics of Origami ......................................................................................................... 28 Polyhedra ................................................................................................................................... 28 Construction ............................................................................................................................... 29 Units ........................................................................................................................................... 30 Making a Sonobe Unit .................................................................................................................... 31 Making a Sonobe Cube .................................................................................................................. 33 Notes .............................................................................................................................................. 35 Contact Us .......................................................................................................................................... 36 2 This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License. For the terms of the license, please see https://creativecommons.org/licenses/by-nc-nd/4.0/ 3 The Maths Craft Mission 4 5 About Maths Craft Maths Craft is a non-profit initiative founded in 2016 and run by academics who are passionate about engaging the public with mathematics through craft. The inaugural Maths Craft event was the Maths Craft Festival held in the Auckland Museum in 2016, and sponsored by Te Pūnaha Matatini. Following the success of the Festival, where almost 2,000 people were entertained by the mathematics in craft and the craft in mathematics, we were inundated with requests to go on the road with our quirky brand of maths outreach. The result is Maths Craft New Zealand, a nationwide series of events supported by an Unlocking Curious Minds grant. This year, in addition to an even bigger flagship Festival at the Auckland Museum, there will be events in Wellington, Christchurch, and Dunedin, along with a series of workshops. Our aim is to show young and old alike the fun, creativity, and beauty in mathematics through the medium of craft, and to demonstrate just how much mathematics there is in craft. Hyperbolic crochet at the Maths Craft Festival in 2016. To see a list of upcoming Maths Craft events and to sign up for our email newsletter, visit us at mathscraftnz.org. 6 Our Sponsors In February 2017, Maths Craft was awarded a grant from MBIE’s Unlocking Curious Minds fund to take Maths Craft on the road. Thanks to Curious Minds and our generous sponsors, this year we'll be running events around New Zealand. 7 The Mobius Strip 8 9 The Mathematics of the Möbius Explorations into the Möbius strip serve as an excellent introduction to the field of topology. Topology (from the Greek τόπος, place, and λόγος, study) is the mathematical study of the properties of objects that are preserved through deformations, twisting, and stretching. (No tearing, cutting, or gluing allowed!) Topologists are interested in the geometrical properties of objects that are enduring and survive distortion. For instance, the roundness of a circle will not survive being stretched or twisted, but the fact that it has no ends remains unchanged. One Edge, One Side A Möbius strip is a surprising object; it’s a surface with only one edge and one side. To understand what this really means, let’s compare it to a similar yet more familiar shape: the cylinder. Take a strip of paper and glue the short edges together to form a cylinder. Put your cylinder on the table, resting on one edge. We’ll call this the bottom edge. A paper cylinder. If you place your finger on the edge facing upwards, the top edge, you can trace all the way around the edge and return to where you started without ever touching the bottom edge. The cylinder clearly has two separate edges. Now place your finger on the outside of the cylinder, about half way between the two edges, and trace all the way around the cylinder until you get back to where you started. Your finger will have stayed on the outside of the cylinder for the entire journey. To get to the inside of the cylinder, your finger would need to cross over one of the two edges. Our (unsurprising) conclusion is that the inside and the outside of the cylinder are separate, and so the cylinder has two sides. It all seems pretty straightforward, doesn’t it? But with one small alteration to the instructions above we can create a much more complex shape. 10 Make a Möbius strip by taking a strip of paper, bringing the two short edges together just as you did for the cylinder but give one of the ends a half-twist (that is, twist it through 180 degrees) before gluing the short edges together. A paper Möbius strip. Choose any point on the edge of the Möbius strip and place your finger on it. If you trace along the edge of the strip, you’ll see that you trace around the entire edge before ending up back where you started. There’s no top or bottom edge, it’s all one edge! Now if you place your finger on the “outside” of the strip, just as you did with the cylinder, and trace along the surface, you will soon see that your finger ends up on the “inside”. So you will arrive back at your starting point, but on the “inside” of the strip! If you keep going, your finger will eventually come back to where you started for a second time, and once again be on the “outside” of the strip. You have now journeyed over both the “inside” and the “outside” of the strip without ever taking your finger off the paper or crossing over an edge. This can only happen if the “inside” and the “outside” are not separate, forcing us to the curious conclusion that the Möbius strip has only one side. This is the perplexing property of the Möbius. But it is not alone. Mathematicians call shapes with this property non-orientable, and there are more of them. Meet the Family The Möbius strip was discovered by the German mathematician August Ferdinand Möbius in 1858. Having made his discovery, and in typical mathematician style, he then wondered about how a strip with two half-twists would behave, and how a strip with three half twists would behave, and
Recommended publications
  • Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur Si Muove: Biomimetic Embedding of N-Tuple Helices in Spherical Polyhedra - /
    Alternative view of segmented documents via Kairos 23 October 2017 | Draft Framing Cyclic Revolutionary Emergence of Opposing Symbols of Identity Eppur si muove: Biomimetic embedding of N-tuple helices in spherical polyhedra - / - Introduction Symbolic stars vs Strategic pillars; Polyhedra vs Helices; Logic vs Comprehension? Dynamic bonding patterns in n-tuple helices engendering n-fold rotating symbols Embedding the triple helix in a spherical octahedron Embedding the quadruple helix in a spherical cube Embedding the quintuple helix in a spherical dodecahedron and a Pentagramma Mirificum Embedding six-fold, eight-fold and ten-fold helices in appropriately encircled polyhedra Embedding twelve-fold, eleven-fold, nine-fold and seven-fold helices in appropriately encircled polyhedra Neglected recognition of logical patterns -- especially of opposition Dynamic relationship between polyhedra engendered by circles -- variously implying forms of unity Symbol rotation as dynamic essential to engaging with value-inversion References Introduction The contrast to the geocentric model of the solar system was framed by the Italian mathematician, physicist and philosopher Galileo Galilei (1564-1642). His much-cited phrase, " And yet it moves" (E pur si muove or Eppur si muove) was allegedly pronounced in 1633 when he was forced to recant his claims that the Earth moves around the immovable Sun rather than the converse -- known as the Galileo affair. Such a shift in perspective might usefully inspire the recognition that the stasis attributed so widely to logos and other much-valued cultural and heraldic symbols obscures the manner in which they imply a fundamental cognitive dynamic. Cultural symbols fundamental to the identity of a group might then be understood as variously moving and transforming in ways which currently elude comprehension.
    [Show full text]
  • Geometry of Transformable Metamaterials Inspired by Modular Origami
    Geometry of Transformable Metamaterials Inspired by Yunfang Yang Department of Engineering Science, Modular Origami University of Oxford Magdalen College, Oxford OX1 4AU, UK Modular origami is a type of origami where multiple pieces of paper are folded into mod- e-mail: [email protected] ules, and these modules are then interlocked with each other forming an assembly. Some 1 of them turn out to be capable of large-scale shape transformation, making them ideal to Zhong You create metamaterials with tuned mechanical properties. In this paper, we carry out a fun- Department of Engineering Science, damental research on two-dimensional (2D) transformable assemblies inspired by modu- Downloaded from http://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/10/2/021001/6404042/jmr_010_02_021001.pdf by guest on 25 September 2021 University of Oxford, lar origami. Using mathematical tiling and patterns and mechanism analysis, we are Parks Road, able to develop various structures consisting of interconnected quadrilateral modules. Oxford OX1 3PJ, UK Due to the existence of 4R linkages within the assemblies, they become transformable, e-mail: [email protected] and can be compactly packaged. Moreover, by the introduction of paired modules, we are able to adjust the expansion ratio of the pattern. Moreover, we also show that trans- formable patterns with higher mobility exist for other polygonal modules. The design flex- ibility among these structures makes them ideal to be used for creation of truly programmable metamaterials. [DOI: 10.1115/1.4038969] Introduction be made responsive to external loading conditions. These struc- tures and materials based on such structures can find their usage Recently, there has been a surge of interest in creating mechani- in automotive, aerospace structures, and body armors.
    [Show full text]
  • How to Make an Origami Octahedron Ball
    How to make an Origami Octahedron Ball Introduction: These instructions will teach you how to make an origami octahedron. The ball is constructed by assembling 12 folded units together. A unit This is called a Sonobe unit, named after the person who invented them. The process of using identical units and assembling them in a pattern to create large, complex, beautiful structures is considered modular origami. This type of origami requires multiple sheets of paper to make a model. By varying the number of units, you can make several other shapes. A cube requires 6 units and an icosahedron requires 30. Time Frame: 30 minutes Materials: 2- 8.5”x11” sheets of paper (Multi-colored ball: use 3 different colored sheets of paper) Scissors Ruler (measures inches) Pencil Preparation: Make sure you have enough space and a flat surface to fold the origami. Procedure: Step 1. Cut 12 – 3”x3” square pieces of paper Note: The size of the squares depends on your preference of how large you want the ball to be. These instructions create a ball that fits in your hand. To save time, origami squares (4”x4”) can be used and step 1 skipped. 1.1. Draw 6 squares that are 3”x3” on a sheet of paper with the pencil and ruler. Note: For a multi-color effect, as depicted in these instructions, use 3 different colors of paper and cut 4 squares from each. 1.2.Stack the second sheet of paper behind the first. 1.3. Cut out 12 squares of paper with the scissors.
    [Show full text]
  • Shape Skeletons Creating Polyhedra with Straws
    Shape Skeletons Creating Polyhedra with Straws Topics: 3-Dimensional Shapes, Regular Solids, Geometry Materials List Drinking straws or stir straws, cut in Use simple materials to investigate regular or advanced 3-dimensional shapes. half Fun to create, these shapes make wonderful showpieces and learning tools! Paperclips to use with the drinking Assembly straws or chenille 1. Choose which shape to construct. Note: the 4-sided tetrahedron, 8-sided stems to use with octahedron, and 20-sided icosahedron have triangular faces and will form sturdier the stir straws skeletal shapes. The 6-sided cube with square faces and the 12-sided Scissors dodecahedron with pentagonal faces will be less sturdy. See the Taking it Appropriate tool for Further section. cutting the wire in the chenille stems, Platonic Solids if used This activity can be used to teach: Common Core Math Tetrahedron Cube Octahedron Dodecahedron Icosahedron Standards: Angles and volume Polyhedron Faces Shape of Face Edges Vertices and measurement Tetrahedron 4 Triangles 6 4 (Measurement & Cube 6 Squares 12 8 Data, Grade 4, 5, 6, & Octahedron 8 Triangles 12 6 7; Grade 5, 3, 4, & 5) Dodecahedron 12 Pentagons 30 20 2-Dimensional and 3- Dimensional Shapes Icosahedron 20 Triangles 30 12 (Geometry, Grades 2- 12) 2. Use the table and images above to construct the selected shape by creating one or Problem Solving and more face shapes and then add straws or join shapes at each of the vertices: Reasoning a. For drinking straws and paperclips: Bend the (Mathematical paperclips so that the 2 loops form a “V” or “L” Practices Grades 2- shape as needed, widen the narrower loop and insert 12) one loop into the end of one straw half, and the other loop into another straw half.
    [Show full text]
  • Jitterbug ★★★✩✩ Use 12 Squares Finished Model Ratio 1.0
    Jitterbug ★★★✩✩ Use 12 squares Finished model ratio 1.0 uckminister Fuller gave the name Jitterbug to this transformation. I first came across B the Jitterbug in Amy C. Edmondson’s A Fuller Explanation (1987).As I didn’t have dowels and four-way rubber connectors, I made several cuboctahedra that worked as Jitterbugs but were not very reversible. Some were from paper and others from drinking straws and elastic thread. My first unit,Triangle Unit, was partly successful as a Jitterbug.A better result came from using three units per triangular face (or one unit per vertex) which was published in 2000. This improved version is slightly harder to assemble but has a stronger lock.The sequence is pleasingly rhythmical and all steps have location points.The pleats in step 18 form the spring that make the model return to its cuboctahedral shape. Module ★★★ Make two folds in half. Do Fold the sides to the centre. Fold the bottom half behind. 1 not crease the middle for 2 Unfold the right flap. 3 the vertical fold. Fold the top right corner to This creates a 60 degree Fold the right edge to the 4 lie on the left edge whilst the 5 angle. Unfold. 6 centre. fold starts from the original centre of the square. Reproduced with permission from Tarquin Group publication Action Modular Origami (ISBN 978-1-911093-94-7) 978-1-911093-95-4 (ebook). © 2018 Tung Ken Lam. All rights reserved. 90 ° Fold the bottom half Repeat step 4 and unfold, Fold the left edge to the 7 behind.
    [Show full text]
  • Relationship Between the Mandelbrot Algorithm and the Platonic Solids
    Relationship between the Mandelbrot Algorithm and the Platonic Solids André Vallières∗ and Dominic Rochon† Département de mathématiques et d’informatique, Université du Québec C.P. 500, Trois-Rivières, Québec, Canada, G9A 5H7. « Chaque flot est un ondin qui nage dans le courant, chaque courant est un sentier qui serpente vers mon palais, et mon palais est bâti fluide, au fond du lac, dans le triangle du feu, de la terre et de l’air. » — Aloysius Bertrand, Gaspard de la nuit, 1842 Abstract This paper focuses on the dynamics of the eight tridimensional princi- pal slices of the tricomplex Mandelbrot set: the Tetrabrot, the Arrowhead- brot, the Mousebrot, the Turtlebrot, the Hourglassbrot, the Metabrot, the Airbrot (octahedron) and the Firebrot (tetrahedron). In particular, we establish a geometrical classification of these 3D slices using the proper- ties of some specific sets that correspond to projections of the bicomplex Mandelbrot set on various two-dimensional vector subspaces, and we prove that the Firebrot is a regular tetrahedron. Finally, we construct the so- called “Stella octangula” as a tricomplex dynamical system composed of the union of the Firebrot and its dual, and after defining the idempotent 3D slices of M3, we show that one of them corresponds to a third Platonic solid: the cube. AMS subject classification: 32A30, 30G35, 00A69, 51M20 Keywords: Generalized Mandelbrot Sets, Tricomplex Dynamics, Metatron- arXiv:2107.04016v3 [math.DS] 8 Sep 2021 brot, 3D Fractals, Platonic Solids, Airbrot, Earthbrot, Firebrot, Stella Octan- gula Introduction Quadratic polynomials iterated on hypercomplex algebras have been used to generate multidimensional Mandelbrot sets for several years [3,9, 11, 13, 17, ∗E-mail: [email protected] †E-mail: [email protected] 1 23, 28, 34].
    [Show full text]
  • Cons=Ucticn (Process)
    DOCUMENT RESUME ED 038 271 SE 007 847 AUTHOR Wenninger, Magnus J. TITLE Polyhedron Models for the Classroom. INSTITUTION National Council of Teachers of Mathematics, Inc., Washington, D.C. PUB DATE 68 NOTE 47p. AVAILABLE FROM National Council of Teachers of Mathematics,1201 16th St., N.V., Washington, D.C. 20036 ED RS PRICE EDRS Pr:ce NF -$0.25 HC Not Available from EDRS. DESCRIPTORS *Cons=ucticn (Process), *Geometric Concepts, *Geometry, *Instructional MateriAls,Mathematical Enrichment, Mathematical Models, Mathematics Materials IDENTIFIERS National Council of Teachers of Mathematics ABSTRACT This booklet explains the historical backgroundand construction techniques for various sets of uniformpolyhedra. The author indicates that the practical sianificanceof the constructions arises in illustrations for the ideas of symmetry,reflection, rotation, translation, group theory and topology.Details for constructing hollow paper models are provided for thefive Platonic solids, miscellaneous irregular polyhedra and somecompounds arising from the stellation process. (RS) PR WON WITHMICROFICHE AND PUBLISHER'SPRICES. MICROFICHEREPRODUCTION f ONLY. '..0.`rag let-7j... ow/A U.S. MOM Of NUM. INCIII01 a WWII WIC Of MAW us num us us ammo taco as mums NON at Ot Widel/A11011 01116111111 IT.P01115 OF VOW 01 OPENS SIAS SO 101 IIKISAMIT IMRE Offlaat WC Of MANN POMO OS POW. OD PROCESS WITH MICROFICHE AND PUBLISHER'S PRICES. reit WeROFICHE REPRODUCTION Pvim ONLY. (%1 00 O O POLYHEDRON MODELS for the Classroom MAGNUS J. WENNINGER St. Augustine's College Nassau, Bahama. rn ErNATIONAL COUNCIL. OF Ka TEACHERS OF MATHEMATICS 1201 Sixteenth Street, N.W., Washington, D. C. 20036 ivetmIssromrrIPRODUCE TmscortnIGMED Al"..Mt IAL BY MICROFICHE ONLY HAS IEEE rano By Mat __Comic _ TeachMar 10 ERIC MID ORGANIZATIONS OPERATING UNSER AGREEMENTS WHIM U.
    [Show full text]
  • Can Every Face of a Polyhedron Have Many Sides ?
    Can Every Face of a Polyhedron Have Many Sides ? Branko Grünbaum Dedicated to Joe Malkevitch, an old friend and colleague, who was always partial to polyhedra Abstract. The simple question of the title has many different answers, depending on the kinds of faces we are willing to consider, on the types of polyhedra we admit, and on the symmetries we require. Known results and open problems about this topic are presented. The main classes of objects considered here are the following, listed in increasing generality: Faces: convex n-gons, starshaped n-gons, simple n-gons –– for n ≥ 3. Polyhedra (in Euclidean 3-dimensional space): convex polyhedra, starshaped polyhedra, acoptic polyhedra, polyhedra with selfintersections. Symmetry properties of polyhedra P: Isohedron –– all faces of P in one orbit under the group of symmetries of P; monohedron –– all faces of P are mutually congru- ent; ekahedron –– all faces have of P the same number of sides (eka –– Sanskrit for "one"). If the number of sides is k, we shall use (k)-isohedron, (k)-monohedron, and (k)- ekahedron, as appropriate. We shall first describe the results that either can be found in the literature, or ob- tained by slight modifications of these. Then we shall show how two systematic ap- proaches can be used to obtain results that are better –– although in some cases less visu- ally attractive than the old ones. There are many possible combinations of these classes of faces, polyhedra and symmetries, but considerable reductions in their number are possible; we start with one of these, which is well known even if it is hard to give specific references for precisely the assertion of Theorem 1.
    [Show full text]
  • Sonobe Origami Units
    Sonobe Origami Units Crease paper down the middle Fold edges to center line and Fold top right and bottom left Fold triangles down to make and unfold unfold corners | do not let the sharper triangles | do not triangles cross crease lines cross the crease lines Fold along vertical crease lines Fold top left corner down to Fold bottom right corner up to Undo the last two folds right edge left edge Tuck upper left corner under Turn the paper over, crease Corners of one module ¯t into along dashed lines as shown to flap on opposite side and pockets of another A cube requires six modules repeat for lower right corner complete the module Sonobe modules also make many other polyhedra Where's the Math in Origami? Origami may not seem like it involves very much mathematics. Yes, origami involves symmetry. If we build a polyhedron then, sure, we encounter a shape from geometry. Is that as far as it goes? Do any interesting mathematical questions arise from the process of folding paper? Is there any deep mathematics in origami? Is the mathematics behind origami useful for anything other than making pretty decorations? People who spend time folding paper often ask themselves questions that are ultimately mathematical in nature. Is there a simpler procedure for folding a certain ¯gure? Where on the original square paper do the wings of a crane come from? What size paper should I use to make a chair to sit at the origami table I already made? Is it possible to make an origami beetle that has six legs and two antennae from a single square sheet of paper? Is there a precise procedure for folding a paper into ¯ve equal strips? In the last few decades, folders inspired by questions like these have revolutionized origami by bringing mathematical techniques to their art.
    [Show full text]
  • The Geometry Junkyard: Origami
    Table of Contents Table of Contents 1 Origami 2 Origami The Japanese art of paper folding is obviously geometrical in nature. Some origami masters have looked at constructing geometric figures such as regular polyhedra from paper. In the other direction, some people have begun using computers to help fold more traditional origami designs. This idea works best for tree-like structures, which can be formed by laying out the tree onto a paper square so that the vertices are well separated from each other, allowing room to fold up the remaining paper away from the tree. Bern and Hayes (SODA 1996) asked, given a pattern of creases on a square piece of paper, whether one can find a way of folding the paper along those creases to form a flat origami shape; they showed this to be NP-complete. Related theoretical questions include how many different ways a given pattern of creases can be folded, whether folding a flat polygon from a square always decreases the perimeter, and whether it is always possible to fold a square piece of paper so that it forms (a small copy of) a given flat polygon. Krystyna Burczyk's Origami Gallery - regular polyhedra. The business card Menger sponge project. Jeannine Mosely wants to build a fractal cube out of 66048 business cards. The MIT Origami Club has already made a smaller version of the same shape. Cardahedra. Business card polyhedral origami. Cranes, planes, and cuckoo clocks. Announcement for a talk on mathematical origami by Robert Lang. Crumpling paper: states of an inextensible sheet. Cut-the-knot logo.
    [Show full text]
  • DETECTION of FACES in WIRE-FRAME POLYHEDRA Interactive Modelling of Uniform Polyhedra
    DETECTION OF FACES IN WIRE-FRAME POLYHEDRA Interactive Modelling of Uniform Polyhedra Hidetoshi Nonaka Hokkaido University, N14W9, Sapporo, 060 0814, Japan Keywords: Uniform polyhedron, polyhedral graph, simulated elasticity, interactive computing, recreational mathematics. Abstract: This paper presents an interactive modelling system of uniform polyhedra including regular polyhedra, semi-regular polyhedra, and intersected concave polyhedra. In our system, user can virtually “make” and “handle” them interactively. The coordinate of vertices are computed without the knowledge of faces, solids, or metric information, but only with the isomorphic graph structure. After forming a wire-frame polyhedron, the faces are detected semi-automatically through user-computer interaction. This system can be applied to recreational mathematics, computer assisted education of the graph theory, and so on. 1 INTRODUCTION 2 UNIFORM POLYHEDRA This paper presents an interactive modelling system 2.1 Platonic Solids of uniform polyhedra using simulated elasticity. Uniform polyhedra include five regular polyhedra Five Platonic solids are listed in Table 1. The (Platonic solids), thirteen semi-regular polyhedra symbol Pmn indicates that the number of faces (Archimedean solids), and four regular concave gathering around a vertex is n, and each face is m- polyhedra (Kepler-Poinsot solids). Alan Holden is describing in his writing, “The best way to learn sided regular polygon. about these objects is to make them, next best to handle them (Holden, 1971).” Traditionally, these Table 1: The list of Platonic solids. objects are made based on the shapes of faces or Symbol Polyhedron Vertices Edges Faces solids. Development figures and a set of regular polygons cut from card boards can be used to P33 Tetrahedron 4 6 4 assemble them.
    [Show full text]
  • Bridges Conference Proceedings Guidelines Word
    Bridges 2019 Conference Proceedings Helixation Rinus Roelofs Lansinkweg 28, Hengelo, the Netherlands; [email protected] Abstract In the list of names of the regular and semi-regular polyhedra we find many names that refer to a process. Examples are ‘truncated’ cube and ‘stellated’ dodecahedron. And Luca Pacioli named some of his polyhedral objects ‘elevations’. This kind of name-giving makes it easier to understand these polyhedra. We can imagine the model as a result of a transformation. And nowadays we are able to visualize this process by using the technique of animation. Here I will to introduce ‘helixation’ as a process to get a better understanding of the Poinsot polyhedra. In this paper I will limit myself to uniform polyhedra. Introduction Most of the Archimedean solids can be derived by cutting away parts of a Platonic solid. This operation , with which we can generate most of the semi-regular solids, is called truncation. Figure 1: Truncation of the cube. We can truncate the vertices of a polyhedron until the original faces of the polyhedron become regular again. In Figure 1 this process is shown starting with a cube. In the third object in the row, the vertices are truncated in such a way that the square faces of the cube are transformed to regular octagons. The resulting object is the Archimedean solid, the truncated cube. We can continue the process until we reach the fifth object in the row, which again is an Archimedean solid, the cuboctahedron. The whole process or can be represented as an animation. Also elevation and stellation can be described as processes.
    [Show full text]