Single PDF of All Proposals

Total Page:16

File Type:pdf, Size:1020Kb

Single PDF of All Proposals Yale Observing Proposal Standard proposal Semester: 2014B Date: March 11, 2014 Constraining SMBH growth in the high-redshift Uni- verse PI: Francesca Civano Status: P Affil.: Yale University Physics, P.O. Box 208120, New Haven, CT 06520-8120 U.S.A. Email: [email protected] Phone: 203-432-3651 FAX: 203-432-8552 CoI: Meg Urry Status: P Affil.: Yale University CoI: Stephanie LaMassa Status: P Affil.: Yale University CoI: Benny Trakhtenbrot Status: P Affil.: ETH CoI: Stefano Marchesi Status: G Affil.: Yale University Abstract of Scientific Justification (will be made publicly available for accepted proposals): We propose to measure accurate super massive black hole (SMBH) masses and growth rates 46 (L/LEdd) for a sample of 9 faint (LBol ∼10 erg/s), X-ray-selected Active Galactic Nuclei (AGN) at z ∼ 3.1 − 3.7, from the COSMOS field. Using MOSFIRE, we will not only observe the broad Hβ emission lines in AGN spectra but we will also observe a comparison sample of 15 to 25 epoch- matched galaxies in the same fields, to characterize the SMBH and galaxy growth environment. The COSMOS deep multiwavelength survey probes the growth of SMBHs and their co-evolution with galaxies, at luminosities and redshifts where most black hole and stellar growth occurs. The COSMOS dataset is matched in wavelength coverage in only one or two other fields (which sample at least an order of magnitude smaller in volume), and in particular, the recently awarded Chandra COSMOS Legacy Survey enables a census of SMBH growth from z=0 to z=5 that is nearly unbi- ased by obscuration. Together with the masses and growth rates successfully measured for 6 X-ray selected AGN observed during 2013B in the same COSMOS field, we will have the first sample (15 sources), comparable in size to previous studies at brighter luminosities, in a a parameter (LBol, mass and L/LEdd) space at this critical epoch which has been explored just by our group. The proposed MOSFIRE spectroscopy, combined with the full COSMOS data set, allows direct esti- mates of black hole mass and growth rate (Eddington ratio, Fig. 1) and host galaxy stellar content, directly constraining how SMBHs and galaxies co-evolve. Summary of observing runs requested for this project Run Telescope Instrument No. Nights Min. Nights Moon Optimal months Accept. months 1 Keck MOSFIRE 3 3 dark/grey January 2 3 4 5 Scheduling constraints and non-usable dates (up to four lines). —————————————————— Yale Proposal Page 2 This box blank. Scientific Justification Be sure to include overall significance to astronomy. Limit text to one page with figures, captions and references on no more than two additional pages. Black holes grow and radiate across a wide range of luminosities, and stars form and evolve in galaxies with nearly as broad a range in mass. The large uncertainties on AGN population synthesis and evolution models (Gilli et al. 2007, Treister et al. 2012) demonstrate the importance of measuring SMBH growth across a wide mass-luminosity range. Simply studying optically-selected luminous quasars, for example, accounts for less than 50% of total BH growth (e.g., Treister et al. 2012), and takes place in fewer than 10% of galaxies. Most SMBHs are growing at moderate Eddington rates in moderate luminosity AGN, so measuring the BH mass function across a range of AGN luminosities is clearly critical. This is why a “wedding cake” combination of surveys with different depths and areas is essential to understanding the co-evolution of SMBHs and galaxies. The COSMOS survey, to which an unprecedented 2.8 Ms of Chandra GO time has recently been allocated (PI: Civano), is ideal for sampling the youthful growth period of SMBHs at z > 3 and 44 galaxies near L∗ or just above. Typical COSMOS AGN have LX ∼ 5 × 10 erg/s and reside in 13 haloes with mass M ∼ few × 10 M⊙ at z=3 (Allevato et al. 2014 submitted): if AGN feedback is important for galaxy evolution, these are the SMBHs and galaxies that matter – yet very little is known about them. First estimates of z > 3 AGN luminosity functions measured at X-ray (Civano et al. 2011) and optical wavelengths (Glikman et al. 2011, Ikeda et al. 2011) are inconsistent, but current samples are small and largely disjoint in luminosity or halo mass. Furthermore, the optical bias toward high luminosities and against obscuration implies severe uncertainties in the SMBH growth and evolution during the early ages of the Universe (Trakhtenbrot et al. 2011, Fig. 1). Phenomenological models diverge by up to a factor 10 (Aird et al. 2010, Gilli et a. 2007) and physical models of quasar evolution (Wyithe & Loeb 2009, Shen 2009) are even less constrained. We propose to measure BH masses and growth rates (L/LEdd) for a new sample of 9 faint, X-ray- selected AGN at z ∼ 3.1 − 3.7, from the Chandra COSMOS Legacy Survey. Using MOSFIRE, we will observe the broad Hβ emission line in AGN spectra and also probe stellar properties in galaxies at the same redshifts of the AGN, to characterize the SMBH and galaxy growth environment (see Technical Description). This is the extension of a study started in 2013B (January 2014) when we observed 6 other X-ray selected AGN in the inner region of the COSMOS field (Fig. 2). Feedback models imply that virtually all z>3 large scale structures should host rapidly growing SMBHs, which can shut off the formation of new stars in massive galaxies at z∼2.5 (Benson et al. 2003, Croton et al. 2006). COSMOS AGN at z ∼ 3 are closer in luminosity to the optically-selected samples, and are roughly a decade above the typical AGN luminosities in the Chandra Deep Fields (Civano et al. 2011), so they fill a missing link in BH mass-dependent density evolution. Being hard X-ray-selected, these COSMOS AGN are also almost unbiased with respect to obscuration, so that the SMBH census is far more complete than optical samples; this means we can derive the completeness correction needed for optically-selected AGN. At the early times, the progenitors of lower-redshift structures are made up of many connected overdensities on a scale of several arcminutes (Springel et al. 2005, Overzier et al. 2009), so the MOSFIRE FOV is well suited to identifying and characterizing the members of these structures. Using the unique capabilities (sensitivity and multi-object mode) of MOSFIRE, the proposed ob- servations will enable (1) the study of accretion at z > 3 in a critical luminosity range, fainter than the optically selected quasar samples (Fig. 1), (2) the exploration of the role of accreting SMBHs in their environment and the properties of the galaxies surrounding them, and (3) the comparison with SMBH accretion models and simulations of structure formation (Natarajan & Volonteri 2012). Yale Proposal Page 3 This box blank. Bibliography: Aird et al. 2010, MNRAS 401, 2531; Baskin & Laor, 2005, MNRAS, 356, 1029; Benson et al. 2003, ApJ 599, 38; Croton et al. 2006, MNRAS 365, 11; Civano et al. 2011, ApJ 741, 91; Glikman et al. 2011, ApJL 728, 26; Gilli et al. 2007, A&A 463, 79; Ikeda et al.2011, ApJ 728, 25; Kaspi et al. 2005, ApJ, 629, 61; Kurk et al. 2007, ApJ, 669, 32; McConnell et al. 2011, Nature, 480, 215; Netzer et al. 2007, ApJ, 671, 1256; Natarajan, P., & Volonteri, M. 2012, MNRAS, 422, 2051; Overzier et al. 2009, ApJ 704, 548; Shen et al. 2008, ApJ, 680, 189; Shen 2009, ApJ 704, 89; Springel et al. 2005, Nature 435, 629; Trakhtenbrot et al. 2011, ApJ, 730, 7; Trakhtenbrot & Netzer, 2012, MNRAS, 427, 3081; Vestergaard & Peterson, 2006, ApJ, 641, 689; Volonteri 2010, A&ARv,18, 279; Willott et al. 2010, AJ, 140, 546; Wyithe & Loeb 2009, MNRAS, 395, 1607. 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 " 48 1 − erg s 47 / Bol L 46 ! log 45 ) ⊙ 10 /M BH 9 M log ( 8 ) Edd 0 /L Bol −1 L −2 log ( 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 z Figure 1: Bolometric luminosity distribution (top panel), measured by integrating the observed spectral energy distribution, for the nine sources proposed here (red circles), for two sources in the 2013B sample (blue solid squares), compared with the data presented in Trakhtenbrot et al. (2011, black symbols). The measured BH mass and Eddington ratio for the 2013B sources are plotted in the middle and bottom panel. Assuming that the proposed sources have a similar Eddington ratio or BH mass to the Netzer et al. (2007) z ∼3.3 sample (black triangle), we derive their expected masses (middle panel) and ratio (bottom panel). Yale Proposal Page 4 This box blank. 0.6 CID−113: z=3.333 , K =19.95 AB 0.5 log M =8.82, L/L =0.20 /A] BH Edd 2 0.4 erg/s/cm 0.3 −17 0.2 [10 λ F 0.1 0 4500 4600 4700 4800 4900 5000 5100 5200 rest−frame wavelength [A] CID−413: 0.3 z=3.345 , K =20.5 AB log M =8.46, L/L =0.15 /A] BH Edd 2 0.25 0.2 erg/s/cm 0.15 −17 [10 0.1 λ F 0.05 0 4500 4600 4700 4800 4900 5000 5100 5200 rest−frame wavelength [A] Figure 2: MOSFIRE spectra of two out of 6 (plus 1 in CDFS) 2013B sources. The two spectra are plotted in the rest frame. The spectrum (blue line) is shown with the best fit model (black solid) and each component used in the fit (black dashed lines).
Recommended publications
  • NGC 1333 Plunkett Et
    Outflows in protostellar clusters: a multi-wavelength, multi-scale view Adele L. Plunkett1, H. G. Arce1, S. A. Corder2, M. M. Dunham1, D. Mardones3 1-Yale University; 2-ALMA; 3-Universidad de Chile Interferometer and Single Dish Overview Combination FCRAO-only v=-2 to 6 km/s FCRAO-only v=10 to 17 km/s K km s While protostellar outflows are generally understood as necessary components of isolated star formation, further observations are -1 needed to constrain parameters of outflows particularly within protostellar clusters. In protostellar clusters where most stars form, outflows impact the cluster environment by injecting momentum and energy into the cloud, dispersing the surrounding gas and feeding turbulent motions. Here we present several studies of very dense, active regions within low- to intermediate-mass Why: protostellar clusters. Our observations include interferometer (i.e. CARMA) and single dish (e.g. FCRAO, IRAM 30m, APEX) To recover flux over a range of spatial scales in the region observations, probing scales over several orders of magnitude. How: Based on these observations, we calculate the masses and kinematics of outflows in these regions, and provide constraints for Jy beam km s Joint deconvolution method (Stanimirovic 2002), CARMA-only v=-2 to 6 km/s CARMA-only v=10 to 17 km/s models of clustered star formation. These results are presented for NGC 1333 by Plunkett et al. (2013, ApJ accepted), and -1 comparisons among star-forming regions at different evolutionary stages are forthcoming. using the analysis package MIRIAD. -1 1212COCO Example: We mapped NGC 1333 using CARMA with a resolution of ~5’’ (or 0.006 pc, 1000 AU) in order to Our study focuses on Class 0 & I outflow-driving protostars found in clusters, and we seek to detect outflows and associate them with their driving sources.
    [Show full text]
  • Arxiv:2005.05466V1 [Astro-Ph.GA] 11 May 2020 Surface Density
    Draft version May 13, 2020 Typeset using LATEX preprint style in AASTeX62 Star-Gas Surface Density Correlations in Twelve Nearby Molecular Clouds I: Data Collection and Star-Sampled Analysis Riwaj Pokhrel,1, 2 Robert A. Gutermuth,2 Sarah K. Betti,2 Stella S. R. Offner,3 Philip C. Myers,4 S. Thomas Megeath,1 Alyssa D. Sokol,2 Babar Ali,5 Lori Allen,6 Tom S. Allen,7, 8 Michael M. Dunham,9 William J. Fischer,10 Thomas Henning,11 Mark Heyer,2 Joseph L. Hora,4 Judith L. Pipher,12 John J. Tobin,13 and Scott J. Wolk4 1Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA 2Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA 3Department of Astronomy, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA 4Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 5Space Sciences Institute, 4750 Walnut Street, Suite 205, Boulder, CO, USA 6National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ, 85719, USA 7Portland State University, 1825 SW Broadway Portland, OR 97207, USA 8Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001, USA 9Department of Physics, State University of New York at Fredonia, 280 Central Ave, Fredonia, NY 14063, USA 10Space Telescope Science Institute, Baltimore, MD 21218, USA 11Max-Planck-Institute for Astronomy, K¨onigstuhl17, D-69117 Heidelberg, Germany 12Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA 13National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA (Received ...; Revised ...; Accepted May 13, 2020) Submitted to ApJ ABSTRACT We explore the relation between the stellar mass surface density and the mass surface density of molecular hydrogen gas in twelve nearby molecular clouds that are located at <1.5 kpc distance.
    [Show full text]
  • Special Spitzer Telescope Edition No
    INFRARED SCIENCE INTEREST GROUP Special Spitzer Telescope Edition No. 4 | August 2020 Contents From the IR SIG Leadership Council In the time since our last newsletter in January, the world has changed. 1 From the SIG Leadership Travel restrictions and quarantine have necessitated online-conferences, web-based meetings, and working from home. Upturned semesters, constantly shifting deadlines and schedules, and the evolving challenge of Science Highlights keeping our families and communities safe have all taken their toll. We hope this newsletter offers a moment of respite and a reminder that our community 2 Mysteries of Exoplanet continues its work even in the face of great uncertainty and upheaval. Atmospheres In January we said goodbye to the Spitzer Space Telescope, which 4 Relevance of Spitzer in the completed its mission after sixteen years in space. In celebration of Spitzer, Era of Roman, Euclid, and in recognition of the work of so many members of our community, this Rubin & SPHEREx newsletter edition specifically highlights cutting edge science based on and inspired by Spitzer. In the words of Dr. Paul Hertz, Director of Astrophysics 6 Spitzer: The Star-Formation at NASA: Legacy Lives On "Spitzer taught us how important infrared light is to our 8 AKARI Spitzer Survey understanding of our universe, both in our own cosmic 10 Science Impact of SOFIA- neighborhood and as far away as the most distant galaxies. HIRMES Termination The advances we make across many areas in astrophysics in the future will be because of Spitzer's extraordinary legacy." Technical Highlights Though Spitzer is gone, our community remains optimistic and looks forward to the advances that the next generation of IR telescopes will bring.
    [Show full text]
  • Molecular Jets and Outflows from Young Stellar Objects in Cygnus-X, Auriga, and Cassiopeia
    Kent Academic Repository Full text document (pdf) Citation for published version Makin, Sally Victoria (2019) Molecular jets and outflows from young stellar objects in Cygnus-X, Auriga, and Cassiopeia. Doctor of Philosophy (PhD) thesis, University of Kent,. DOI Link to record in KAR https://kar.kent.ac.uk/72857/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html UNIVERSITY OF KENT DOCTORAL THESIS Molecular jets and outflows from young stellar objects in Cygnus-X, Auriga, and Cassiopeia Author: Supervisor: Sally Victoria MAKIN Dr. Dirk FROEBRICH A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Centre for Astrophysics and Planetary Science School of Physical Sciences January 30, 2019 Declaration of Authorship I, Sally Victoria MAKIN, declare that this thesis titled, “Molecular jets and outflows from young stellar objects in Cygnus-X, Auriga, and Cassiopeia” and the work presented in it are my own.
    [Show full text]
  • Fragmenta3on and Infall in the Serpens South Cluster‐ Forming
    Fragmentaon and infall in the Serpens South cluster‐ forming region Rachel Friesen L. Medeiros (Berkeley), T. Bourke (CfA), J. Di Francesco (NRC‐HIA), R. Gutermuth (UMass) P. C. Myers (CfA), S. Schnee (NRAO) Arzoumanian et al. 2011 IC 5146 Filaments and star cluster formaon Ophiuchus ‘Nessie’ – Jackson et al. 2010, Goodman et al. 2013 Stars to Life ‐ Gainesville 2013 2 Filaments and star cluster formaon Quesons: • how do filaments fragment & collapse? • how does gas flow along filaments to feed star formaon? Stars to Life ‐ Gainesville 2013 3 d ~ 260 pc Serpens South Cluster‐forming core: ‐ young: 77% Class I sources ‐1 ‐ acve: SFR ~ 90 Mo Myr W40 Gutermuth et al. 2008 Dense filaments 4 ‐ M ~ 10 Mo Global magnec field is 0.5 pc perpendicular to the main filament Sugitani et al. 2011 Filamentary accreon flow along southern filament Stars to Life ‐ Gainesville 2013 Kirk et al. 20134 Data NH3 (1,1), (2,2), (3,3) 32” (0.04 pc) FWHM ~20,000 spectra Stars to Life ‐ Gainesville 2013 5 3D Structure idenficaon Dendrograms Rosolowsky et al. 2008 C++ code: Chris Beaumont (CfA) ‐ Idenfy hierarchical structures in PPV space ‐ Connect disnct emission peaks with parent structures Stars to Life ‐ Gainesville 2013 6 Stars to Life ‐ Gainesville 2013 7 Structure analysis Size – line width relaon with a single dense gas tracer (km/s) v 0.4 σ ‐ σv α R 0.1 0.01 0.1 Reff (pc) Stars to Life ‐ Gainesville 2013 8 Structure analysis Size – line width relaon with a single dense gas d = 4 w tracer (km/s) v 0.4 σ ‐ σv α R 0.1 Fragmentaon scales ‐ clump separaon Filament ‘width’ (pc) 0.01 0.1 ~ 4x filament diameter Sibling Distance (pc) e.g.
    [Show full text]
  • Annual Report ESO Staff Papers 2018
    ESO Staff Publications (2018) Peer-reviewed publications by ESO scientists The ESO Library maintains the ESO Telescope Bibliography (telbib) and is responsible for providing paper-based statistics. Publications in refereed journals based on ESO data (2018) can be retrieved through telbib: ESO data papers 2018. Access to the database for the years 1996 to present as well as an overview of publication statistics are available via http://telbib.eso.org and from the "Basic ESO Publication Statistics" document. Papers that use data from non-ESO telescopes or observations obtained with hosted telescopes are not included. The list below includes papers that are (co-)authored by ESO authors, with or without use of ESO data. It is ordered alphabetically by first ESO-affiliated author. Gravity Collaboration, Abuter, R., Amorim, A., Bauböck, M., Shajib, A.J., Treu, T. & Agnello, A., 2018, Improving time- Berger, J.P., Bonnet, H., Brandner, W., Clénet, Y., delay cosmography with spatially resolved kinematics, Coudé Du Foresto, V., de Zeeuw, P.T., et al. , 2018, MNRAS, 473, 210 [ADS] Detection of orbital motions near the last stable circular Treu, T., Agnello, A., Baumer, M.A., Birrer, S., Buckley-Geer, orbit of the massive black hole SgrA*, A&A, 618, L10 E.J., Courbin, F., Kim, Y.J., Lin, H., Marshall, P.J., Nord, [ADS] B., et al. , 2018, The STRong lensing Insights into the Gravity Collaboration, Abuter, R., Amorim, A., Anugu, N., Dark Energy Survey (STRIDES) 2016 follow-up Bauböck, M., Benisty, M., Berger, J.P., Blind, N., campaign - I. Overview and classification of candidates Bonnet, H., Brandner, W., et al.
    [Show full text]
  • Wide-Field $^{12} $ CO ($ J= 2-1$) and $^{13} $ CO ($ J= 2-1
    Draft version October 20, 2018 Preprint typeset using LATEX style emulateapj v. 01/23/15 WIDE-FIELD 12CO (J = 2 − 1) AND 13CO (J = 2 − 1) OBSERVATIONS TOWARD THE AQUILA RIFT AND SERPENS MOLECULAR CLOUD COMPLEXES. I. MOLECULAR CLOUDS AND THEIR PHYSICAL PROPERTIES Fumitaka Nakamura1,2,3, Kazuhito Dobashi4, Tomomi Shimoikura4, Tomohiro Tanaka5, Toshikazu Onishi5 Draft version October 20, 2018 ABSTRACT We present results of wide-field 12CO (J = 2 − 1) and 13CO (J = 2 − 1) observations toward the Aquila Rift and Serpens molecular cloud complexes (25◦ < l < 33◦ and 1◦ < b < 6◦) at an angular resolution of 30.4 (≈ 0.25 pc) and at a velocity resolution of 0.079 km s−1 with the velocity coverage of −1 −1 13 −5 km s < VLSR < 35 km s . We found that the CO emission better traces the structures seen 13 in the extinction map and derived the X13CO-factor of this region. Applying SCIMES to the CO data cube, we identified 61 clouds and derived their masses, radii, and line widths. The line-width-radius relation of the identified clouds basically follows those of nearby molecular clouds. Majority of the identified clouds are close to virial equilibrium although the dispersion is large. By inspecting the 12CO channel maps by eye, we found several arcs which are spatially extended to 0.2 − 3 degree in length. In the longitude-velocity diagrams of 12CO, we also found the two spatially-extended components which appear to converge toward Serpens South and W40 region. The existence of two components with different velocities and arcs suggests that large-scale expanding bubbles and/or flows play a role in the formation and evolution of the Serpens South and W40 cloud.
    [Show full text]
  • Multiwavelength Study of the Star Formation in the S237 H Ii Region L
    The Astrophysical Journal, 834:22 (18pp), 2017 January 1 doi:10.3847/1538-4357/834/1/22 © 2016. The American Astronomical Society. All rights reserved. MULTIWAVELENGTH STUDY OF THE STAR FORMATION IN THE S237 H II REGION L. K. Dewangan1, D. K. Ojha2, I. Zinchenko3, P. Janardhan1, and A. Luna4 1 Physical Research Laboratory, Navrangpura, Ahmedabad-380 009, India; [email protected] 2 Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India 3 Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov st., Nizhny Novgorod 603950, Russia 4 Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, Tonantzintla, Puebla, C.P. 72840, México Received 2016 September 23; revised 2016 October 21; accepted 2016 October 26; published 2016 December 27 ABSTRACT We present a detailed multiwavelength study of observations from X-ray, near-infrared, and centimeter wavelengths to probe the star formation processes in the S237 region. Multiwavelength images trace an almost sphere-like shell morphology of the region, which is filled with the 0.5–2 keV X-ray emission. The region contains two distinct environments—a bell-shaped cavity-like structure containing the peak of 1.4 GHz emission at center, and elongated filamentary features without any radio detection at edges of the sphere-like shell—where Herschel clumps are detected. Using the 1.4 GHz continuum and 12CO line data, the S237 region is found to be excited by a radio spectral type of B0.5V star and is associated with an expanding H II region.
    [Show full text]
  • VISIONS (Poster), J. Alves
    VISIONS A Near-Infrared Star Formation Atlas of all nearby star formation complexes J. Alves, S. Meingast, H. Bouy California The VISIONS survey is a sub-arcsec near-infrared atlas of all nearby (d <500 pc) star formation complexes. Initiated with VISTA in the Southern hemisphere (approved Public Survey starting in Apr. 2017), we propose to extend it to the Northern hemisphere with PANIC. This atlas will become the community's reference star formation database, covering the mass spectrum down to a few Jupiter masses and spatial resolutions reaching 100-250 AU. The survey will cover over ~1000deg2 distributed over 13 star forming complexes of Ophiuchus, Lupus, Corona Australis, Chamaeleon, Orion, and the Pipe Nebula (from VISTA) and Taurus, Ser- W40 pens, Serpens-South/W40, California, Perseus, Lambda Ori and LDN1551 (PANIC) and is planned to be finished three years after the observations commence. Strategy The strategy is designed to maximize the scientific outcomes, including deep multi-wavelength photometry and multi-epoch astrometric and photometric measurements. VISIONS is separated Serpens into three sub-surveys. Wide astrometric survey: consists in a large-scale H-band imaging of the target regions distributed over six epochs with a limiting magnitude of H~19 mag. The immediate objective of the wide survey is to derive positions and proper motions of the embedded and dispersed young stellar population inaccessible to Gaia. Deep survey: complementary to the wide survey, the deep survey will image the high-col- Perseus umn density regions of the star-forming complexes. The deep survey features single JHKs ob- servations reaching limiting magnitudes of J~21.5 mag, H~20.5 mag, and Ks~19.5 mag.
    [Show full text]
  • Magnetized Filamentary Gas Flows Feeding the Young Embedded
    Draft version September 30, 2020 Typeset using LATEX modern style in AASTeX63 Magnetized filamentary gas flows feeding the young embedded cluster in Serpens South Thushara G.S. Pillai,1, 2 Dan P. Clemens,3 Stefan Reissl,4 Philip C. Myers,5 Jens Kauffmann,6 Enrique Lopez-Rodriguez,7 F. O. Alves,8 G. A. P. Franco,9 Jonathan Henshaw,10 Karl M. Menten,11 Fumitaka Nakamura,12 Daniel Seifried,13 Koji Sugitani,14 and Helmut Wiesemeyer11 1Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston MA, 02215, USA 2Max-Planck-Institut f¨urRadioastronomie, Auf dem H¨ugel 69, D-53121 Bonn, Germany 3Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA 4Universit¨atHeidelberg, Zentrum f¨urAstronomie, Institut f¨urTheoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 5Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 USA 6Haystack Observatory, Massachusetts Institute of Technology, Westford, MA 01886, USA 7SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035, USA 8Max-Planck-Institut fr extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching, Germany 9Departamento de FsicaICExUFMG, Caixa Postal 702, 30.123-970 Belo Horizonte, Brazil 10Max-Planck-Institute for Astronomy, Koenigstuhl 17, 69117 Heidelberg, Germany 11Max-Planck-Institut fuer Radioastronomie, Auf dem H¨ugel69, D-53121 Bonn, Germany 12National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 13Universit¨atzu K¨oln,I. Physikalisches Institut, Z¨ulpicherStr. 77, 50937 K¨oln,Germany 14Graduate School of Natural Sciences, Nagoya City University,Mizuho-ku, Nagoya, Aichi 467-8501, Japan ABSTRACT Observations indicate that molecular clouds are strongly magnetized, and that mag- netic fields influence the formation of stars.
    [Show full text]
  • Annual Report 2018-19
    Annual Report 2018-19 ^maVr¶ {dkmZ {ejm Ed§ AZwg§YmZ g§ñWmZ {Vén{V 45 Annual Report 2018-19 {df¶ gyMr emgZ àUmbr àm³H$WZ n[aga H$m AÚVZrH$aU 1 ~rEg E‘Eg nmR>çH«$‘ 4 EH$sH¥$V nrEMS>r nmR>çH«$‘ 6 nrEMS>r nmR>çH«$‘ 7 àñVwV nmR>çH«$‘ 9 N>mÌm| H$s e¡{jH$ CnbpãY¶m± 17 ZE g§H$m¶ Am¡a H$‘©Mmar gXñ¶m| Ho$ Ûmam H$m¶©^ma J«hU 18 ghr CÕaU AmB©AmB©EgB©Ama, {Vén{V dm{f©H$ à{VdoXZ 2018-19 g§H$m¶ gXñ¶m| H$s e¡{jH$ J{V{d{Y¶m± 21 {Vén{V, AmÝY« àXoe, ^maV d¡km{ZH$ à{VdoXZ 33 àH$meH$ J«rî‘H$mbrZ 2018 ‘| àñVwV J«rî‘H$mbrZ à{ejwVm 65 S>m°. Ho$.EZ. JUoe {ZXoeH$ ~mhar AZwg§YmZ n[a¶moOZmE± 66 lr am_m B§Or{Z`[a¨J H$m°boO H$aH$å~m‹S>r amoS>, _§Jb_ (~r. Am°.), IarXo JE AZwg§YmZ CnH$aU 71 {Vén{V 517 507 Or. EZ. am‘M§ÐZ nwñVH$mb¶ 74 Xÿa^mf: +91 877 2500 400 AñWm¶r n[aga ‘| nyd©ñZmVH$ à¶moJembmE± 76 \¡$Šg: +91 877 2500 250 do~gmBQ>: www.iisertirupati.ac.in g§ñWmZ ‘| Am¶mo{OV n[aMMm© 78 g§H$bZ df© 2018-19 Ho$ Xm¡amZ Am¶mo{OV g§Jmo{ð>¶m± 80 àmo. Or. Apå~H$m S>m°. AÝZnyUm© Xodr Aëcw A§Vam©ï´>r¶ Am¡a amï´>r¶ gh¶moJ 84 lr M_Z _ohVm H$m¶©H«$‘: 2018-19 86 \$moQ>mo gm¡OÝ` n[aga ‘| ‘hËdnyU© {Xdg g‘mamoh 95 AmB©AmB©EgB©Ama, {Vén{V Ho$ g§H$m`, H$_©Mmar Am¡a N>mÌ g‘mMma 100 © Bg àH$meZ H$m H$moB© ^r ^mJ Cn`w©³V nVo na {XE JE {ZXoeH$, ^maVr` {dkmZ {ejm Ed§ AZwg§YmZ g§ñWmZ {Vén{V g‘mMma nÌm| ‘| AmB©AmB©EgB©Ama, {Vén{V H$s I~a| 105 H$s AZw_{V Ho$ {~Zm nwZ: àH$m{eV Zht {H$`m OmEJm& AmCQ>arM J{V{d{Y¶m°§ 107 _wÐH$ N>mÌ J{V{d{Y¶m± 110 EÝgZ ES>daQ>mBqOJ E§S> _mH}$qQ>J, nwUo B©_ob:[email protected] boIm-EH$ ZµOa ‘| 113 {df¶ gyMr emgZ àUmbr àm³H$WZ n[aga H$m AÚVZrH$aU 1 ~rEg E‘Eg nmR>çH«$‘ 4 EH$sH¥$V nrEMS>r nmR>çH«$‘ 6 nrEMS>r nmR>çH«$‘ 7 àñVwV nmR>çH«$‘ 9 N>mÌm| H$s e¡{jH$ CnbpãY¶m± 17 ZE g§H$m¶ Am¡a H$‘©Mmar gXñ¶m| Ho$ Ûmam H$m¶©^ma J«hU 18 ghr CÕaU AmB©AmB©EgB©Ama, {Vén{V dm{f©H$ à{VdoXZ 2018-19 g§H$m¶ gXñ¶m| H$s e¡{jH$ J{V{d{Y¶m± 21 {Vén{V, AmÝY« àXoe, ^maV d¡km{ZH$ à{VdoXZ 33 àH$meH$ J«rî‘H$mbrZ 2018 ‘| àñVwV J«rî‘H$mbrZ à{ejwVm 65 S>m°.
    [Show full text]
  • Astronomy Magazine 2020 Index
    Astronomy Magazine 2020 Index SUBJECT A AAVSO (American Association of Variable Star Observers), Spectroscopic Database (AVSpec), 2:15 Abell 21 (Medusa Nebula), 2:56, 59 Abell 85 (galaxy), 4:11 Abell 2384 (galaxy cluster), 9:12 Abell 3574 (galaxy cluster), 6:73 active galactic nuclei (AGNs). See black holes Aerojet Rocketdyne, 9:7 airglow, 6:73 al-Amal spaceprobe, 11:9 Aldebaran (Alpha Tauri) (star), binocular observation of, 1:62 Alnasl (Gamma Sagittarii) (optical double star), 8:68 Alpha Canum Venaticorum (Cor Caroli) (star), 4:66 Alpha Centauri A (star), 7:34–35 Alpha Centauri B (star), 7:34–35 Alpha Centauri (star system), 7:34 Alpha Orionis. See Betelgeuse (Alpha Orionis) Alpha Scorpii (Antares) (star), 7:68, 10:11 Alpha Tauri (Aldebaran) (star), binocular observation of, 1:62 amateur astronomy AAVSO Spectroscopic Database (AVSpec), 2:15 beginner’s guides, 3:66, 12:58 brown dwarfs discovered by citizen scientists, 12:13 discovery and observation of exoplanets, 6:54–57 mindful observation, 11:14 Planetary Society awards, 5:13 satellite tracking, 2:62 women in astronomy clubs, 8:66, 9:64 Amateur Telescope Makers of Boston (ATMoB), 8:66 American Association of Variable Star Observers (AAVSO), Spectroscopic Database (AVSpec), 2:15 Andromeda Galaxy (M31) binocular observations of, 12:60 consumption of dwarf galaxies, 2:11 images of, 3:72, 6:31 satellite galaxies, 11:62 Antares (Alpha Scorpii) (star), 7:68, 10:11 Antennae galaxies (NGC 4038 and NGC 4039), 3:28 Apollo missions commemorative postage stamps, 11:54–55 extravehicular activity
    [Show full text]