2009 Plant Disease Diagnostic Laboratory Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Application to Grape Powdery Mildew (Erysiphe Necator) in Vineyards
agronomy Article Disease Risk Forecasting with Bayesian Learning Networks: Application to Grape Powdery Mildew (Erysiphe necator) in Vineyards Weixun Lu 1 , Nathaniel K. Newlands 2,∗ , Odile Carisse 3, David E. Atkinson 1 and Alex J. Cannon 4 1 Department of Geography, University of Victoria, David Turpin Building, 3800 Finnerty Road, Victoria, BC V9P 5C2, Canada; [email protected] (W.L.); [email protected] (D.E.A.) 2 Science and Technology, Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 Highway 97 S, P.O. Box 5000, Summerland, BC V0H 1Z0, Canada 3 Science and Technology, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Centre, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; [email protected] 4 Climate Research Division, Environment and Climate Change Canada, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada; [email protected] * Correspondence: [email protected] Received: 14 March 2020; Accepted: 17 April 2020; Published: 28 April 2020 Abstract: Powdery mildew (Erysiphe necator) is a fungal disease causing significant loss of grape yield in commercial vineyards. The rate of development of this disease varies annually and is driven by complex interactions between the pathogen, its host, and environmental conditions. The long term impacts of weather and climate variability on disease development is not well understood, making the development of efficient and durable strategies for disease management challenging, especially under northern conditions. We present a probabilistic, Bayesian learning network model to explore the complex causal interactions between environment, pathogen, and host for three different susceptible northern grape cultivars in Quebec, Canada. -
Ontogenic Resistance in Grape Leaves to Powdery Mildew and Models Of
Ontogenic resistance in grape leaves to powdery mildew and models of shoot development (original title: Response of grapevine canopies to chemical elicitors that induce disease resistance) FINAL REPORT to GRAPE AND WINE RESEARCH & DEVELOPMENT CORPORATION Project Number: UT 04/01 Principal Investigator: Katherine J. Evans Research Organisation: University of Tasmania Date: 31 December, 2008. Australian Grape and Wine Research and Development Corporation Project Number: UT 04/01 Project Title: Ontogenic resistance in grape leaves to powdery mildew and models of shoot development Original title: Response of grapevine canopies to chemical elicitors that induce disease resistance. Report Date: December 31, 2008. Authors: Katherine J. Evans 1 (Senior Research Fellow), Angela M. Smith 1 (PhD student) and Stephen J. Wilson 2 (Lecturer, School of Agricultural Science) Tasmanian Institute of Agricultural Research University of Tasmania 113 St Johns Avenue, New Town TAS 7008 2Private Bag 54, Hobart TAS 7001 Australia email: [email protected] Phone: 61-3-6233 6878 Fax: 61-3-6233 6145 Acknowledgements This report presents preliminary outcomes of the PhD project of Ms Angela Smith, prior to thesis submission for examination. Ms Smith received an Australian Postgraduate Award from the University of Tasmania, with further support from the GWRDC. K.J. Evans was the first-named PhD supervisor, with co-supervision provided by Dr Stephen Wilson of the School of Agricultural Science, University of Tasmania (UTAS). Special thanks to Dr Phil Brown, UTAS, for advice on radiolabelling and Dr Ross Corkrey, UTAS, for developing the Bayesian models and general statistical advice. Sincere thanks also to Mr Paul Schupp and others for technical assistance. -
Determination of Downy Mildew and Powdery Mildew Resistance of Some Grape Cultivars
Determination of Downy Mildew and Powdery Mildew Resistance of Some Grape Cultivars A. Atak Department of Viticulture, Ataturk Horticulture Central Research Institute, Yalova, Turkey Submitted for publication: June 2016 Accepted for publication: October 2016 Key words: Vitis spp., disease severity, resistance, inoculation, natural infection Different grape cultivars of Vitis species have been cultivated in Turkey since ancient times. A large proportion of these cultivars cannot be cultivated in the humid regions of the country due to downy mildew (Plasmopara viticola) and powdery mildew (Uncinula necator or syn. Erysiphe necator) diseases. Cultivars resistant to these diseases can generally grow without any or fewer fungicide applications. However, there are also differences in the resistance level of cultivars. In particular, Vitis vinifera cultivars, the most widely cultured species, are most affected by these diseases. Thirteen V. vinifera cultivars, eight V. labrusca cultivars and six interspecific cultivars were used in this study, for a total of 27 cultivars. The resistance of cultivars against downy mildew and powdery mildew was determined over two years with natural infection and artificial inoculation applications. Generally, all cultivars showed more resistance to downy mildew, while they also showed lower resistance to powdery mildew. The evaluation based on species found V. vinifera to be the most sensitive. While interspecific cultivars were found to be most resistant to downy mildew, V. labrusca cultivars were the most resistant to powdery mildew. Among cultivars of the same species, however, differences in terms of resistance were observed. These differences can be used in breeding studies in order to obtain new, disease-resistant cultivars, which may be grown commercially to comply with good agricultural practices (GAP) or organic viticulture in the future. -
In Vitro Inhibition of Several Phytopathogenic Fungi from Avocado by Soluble Potassium Silicate T F Bekker1, C Kaiser1 and N Labuschagne2
In vitro inhibition of several phytopathogenic fungi from avocado by soluble potassium silicate T F Bekker1, C Kaiser1 and N Labuschagne2 1Department of Plant Production and Soil Science 2Department of Microbiology and Plant Pathology University of Pretoria, Pretoria 0002, South Africa ABSTRACT Silicon is a bioactive element only recently implicated as having fungicidal properties. The present study examined water soluble liquid potassium silicate for activity against several types of avocado phytopathogenic fungi. In vitro dose-responses towards solu- ble potassium silicate (20.7% silicon dioxide) were determined for Phytophthora cinnamomi, Phomopsis perniciosa, Pestalotiopsis maculans, Lasiodiplodia theobromae, Glomerella cingulata, Natrassia sp., and Collectotrichum gloeosporioides. Inhibition of mycelial growth was dose-dependant with 100% inhibition observed at 80 ml (pH 11.7) and 40 ml (pH 11.5) soluble potassium silicate (20.7% silicon dioxide) per litre of agar, for all fungi tested in two of the replicate experiments with the exception of Natrassia sp., G. cingulata and C. gloeosporioides at 40 ml in one replication. For both replicate experiments, Phytophthora cinnamomi, Phomopsis perniciosa, Pestalotiopsis maculans, Lasiodiplodia theobromae, Glomerella cingulata, Natrassia sp., and Collectotrichum gloeosporioides were only partially inhibited at 5, 10 and 20 ml soluble potassium silicate per litre of agar. Percentage inhibition was, however, positively correlated with soluble potassium silicate concentrations. Soluble potassium silicate raised the pH of the agar from 5.6 to between 10.3 and 11.7 at concentrations of 5 and 80 ml soluble potassium silicate per litre of agar respectively. The effect of pH on fungal growth does not follow a clear trend for all fungi tested. -
Evidence of Resistance to the Downy Mildew Agent Plasmopara Viticola in the Georgian Vitis Vinifera Germplasm
Vitis 55, 121–128 (2016) DOI: 10.5073/vitis.2016.55.121-128 Evidence of resistance to the downy mildew agent Plasmopara viticola in the Georgian Vitis vinifera germplasm S. L. TOFFOLATTI1), G. MADDALENA1), D. SALOMONI1), D. MAGHRADZE2), P. A. BIANCO1) and O. FAILLA1) 1) Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy 2) Scientific – Research Center of Agriculture, Tbilisi, Georgia Summary ability during late spring and summer usually prevent the spread of the disease (VERCESI et al. 2010). The control of Grapevine downy mildew, caused by Plasmopara downy mildew on grapevine varieties requires regular appli- viticola, is one of the most important diseases at the inter- cation of fungicides. However, the intensive use of chemicals national level. The mainly cultivated Vitis vinifera varie- becomes more and more restrictive due to human health ties are generally fully susceptible to P. viticola, but little risk and negative environmental impact (BLASI et al. 2011). information is available on the less common germplasm. Damages due to P. viticola could be reduced by using The V. vinifera germplasm of Georgia (Caucasus) is char- resistant grapevine varieties. The breeding programs are acterized by a high genetic diversity and it is different usually carried out by crossing V. vinifera with resistant from the main European cultivars. Aim of the study is species and in particular with American Vitaceae that co- finding possible sources of resistance in the Georgian evolved with the pathogen. The first generation hybrids, autochthonous varieties available in a field collection in obtained from the end of the XIXth to the beginning of the northern Italy. -
Epidemiology of Grape Powdery Mildew, Uncinula Necator, in the Willamette Valley
An Abstract of the Thesis of Tyrone W. Hall for the degree of Master of Science in Botany and Plant Pathology presented on February 07,2000. Title: Epidemiology of Grape Powdery Mildew, Uncinula necator, in the Willamette Valley. Redacted for Privacy Abstract approved: W Iter F. Mahaffee An important disease of Vitis vinifera production in Oregon and all other commercial growing regions is powdery mildew of grape, caused by the obligate fungal pathogen Unci nula necator (Schwein.) Burril. Grape production can be characterized as a long-term investment in the establishment and maintenance of the vineyard. Establishment times have been reduced with the use of plastic vine shelters, but powdery mildew disease pressure within vine shelters had been an unaddressed issue. Control of the pathogen requires frequent spray applications and costly cultural management of the grape canopy. Industry interest in forecasting programs have shown promise in regulating spray applications to times when they are most effective, or needed. The timing of when to begin spray programs is believed to be a point of weakness in the forecasting programs currently available for grape powdery mildew. The influence of vine shelter use on the development of powdery mildew was investigated in the field during the 1998 and 1999 growing season. Industry standard installations of various brands of vine shelters were tested against modified installations for both incidence and severity of Uncinula necator infection. The industry standard installation of76 ern high tubes hilled with 8 ern of soil at the bottom to prevent airflow, were effective in reducing the incidence of powdery mildew in both field seasons. -
Disease Updates on Muscadines (Bill Cline, NCSU) (PDF)
Muscadine Disease Update 28 August 2019 Bill Cline and Benny Bloodworth Entomology and Plant Pathology Horticultural Crops Research Station Castle Hayne NC Pathogens spread by microscopic propagules (spores, bacteria, virus particles) that are too small to see Image below: Hundreds of bitter rot spores Image below: Masses of black spores compared in size with a single human hair produced on the surface of an infected grape Human hair Diseased Spores Healthy Bitter rot caused by the fungus Greeneria uvicola Biotic or Abiotic? Using Signs and Symptoms as a Guide What to look for at this time of year (late August, early September, beginning harvest, fungicide sprays mostly finished for the year) SIGNS are the visible parts of the pathogenic organism – in this example, the pathogen is a fungus producing signs (mold and spores) on a stored orange SYMPTOM -- Spray burn -- front vs back of the same cluster of blueberries SYMPTOM – abiotic injury -- hail damage on strawberry and blueberry Hail damage to green fruit 2,4-D herbicide injury 2,4-D on blueberry (and nearby oak) Ripe Rot • Fungus (Colletotrichum sp.) • Spreads by splashing rain, insects • Clustered in “hot spots” along the cordon • Brown-colored rot with pink to orange spore masses Powdery Mildew • Fungus (Uncinula necator) • Appears as faint white “powder” on young fruit • Causes brown russeting on surface • Affected fruit cannot ripen normally; may crack Spray Timing – much simpler for muscadine (compared to Vinifera) • Mid-May (Before disease is visible) • Shoots 6-10 inches in length -
Downy Mildew 2018
Downy Mildew The recent weather pattern was a big relief for many dryland farmers in Texas, but for grape growers in the eastern half of the state and especially the Gulf Coast, tropical moisture in the summer can spell big problems with downy mildew. Downy is one of few fungal diseases that can cause serious damage all season long, and each year we hear at least one report of total crop loss from downy. The warm and wet conditions this week have been ideal for downy mildew infections so if you have already seen downy in your vineyard this year then there is an extremely high probability of a reoccurring infection. If you have not seen downy mildew yet this year, there is a still a very good chance that an infection can or already has occurred. Even a very small, unnoticeable infection can explode into an outbreak under the right conditions. Make sure that your vineyard is properly protected! Young berries are highly susceptible to direct infections by downy mildew, but become increasing resistant with age. However, downy can infect all of the green parts of a grapevine season long. Infections this time of the year can lead to significant defoliation which in turn can severely reduce fruit quality and vine health. Favorite vineyard defoliated from downy mildew infection. The foliar symptoms of downy can vary quite a bit based on cultivar and tissue age so know what to look for when you are scouting your vineyard. You can visit the Texas A&M AgriLife Extension Viticulture & Enology webpage to view a photo gallery with more than fifty photos of downy mildew infections. -
Extension Plant Pathology Update
Extension Plant Pathology Update April 2013 Volume 1, Number 3 Edited by Jean Williams-Woodward Plant Disease Clinic Report for March 2013 By Ansuya Jogi and Jean Williams-Woodward The following tables consist of the commercial and homeowner samples submitted to the plant disease clinics in Athens and Tifton for March 2013 (Table 1) and one year ago in April 2012 (Table 2). Sample numbers are starting to pick up, but many of the problems we’ve seen in March were due to abiotic disorders such as cultural and/or environmental stresses (i.e. cold injury, past drought stress, poor root growth, etc.). Likely, the recent colder temperatures have slowed plant growth and plant disease development. We did have a few interesting samples, including cedar rusts and bulb mites on tulip (see pages 6 and 7). Looking ahead based upon April samples from last year and current weather conditions, we could expect more fungal leaf spot diseases, fire blight, rust, powdery mildew and downy mildew diseases. Table 1: Plant disease clinic sample diagnoses made in March 2013 Sample Diagnosis Host Plant Commercial Sample Homeowner Sample Arborvitae Decline; Dieback, Abiotic disorder Azalea Cultural/Environmental Problem, Abiotic disorder Bentgrass Anthracnose (Colletotrichum cereale) Blueberry Colletotrichum sp./spp. Cultural/Environmental Problem, Unknown, General Abiotic disorder Boxwood Root Problems, Abiotic disorder Camelia Camellia Petal; Flower Blight (Ciborinia camelliae) Root Problems, Abiotic disorder Environmental Stress; Problem, Abiotic disorder Tea -
Fungal Disease Control
Prevention and Management of Grape Fungal Diseases Close to Harvest Fungal disease of Grapevines Commonalities • Overwintering Inoculum – Mummies – Canes/Spurs – Trunks/Bark – Floor • Substrate – Green tissue – Juice Progression from One to Another Powdery Mildew Wounds Leaks Bunch Rots Powdery Rot Mildew Organism Spores Spores Cultural Controls • Sanitation – Remove infected material from the vineyard – Burn it – Uneconomical in California production vineyards – Air quality issues – We need some innovations/techniques/technologies to make this possible Cultural Controls • Sanitation – Removal/burning • Hot spots? – Invest resources in worst area(s) • Small blocks? – At least some areas have reduced spore loads • Small vineyards? – That’s why they can do it in France • Different blocks/areas every year? • Most susceptible varieties? • Areas upwind? Environmental Factors • Air Flow • Light • Moisture • Humidity Manipulating Environmental Factors • Canopy Management • Irrigation Management • Fertility Management Consider treating downwind as well as infected area Powdery Mildew • Even “inconspicuous” PM infections are associated with increased severity of Botrytis at harvest • And therefore, wine spoilage organisms Dangers of Losing Control Year 1 Spring Discharge of Spring Spore Load Overwintering Spore Compared to Final Spore Treatment Final Spore Load* Load** Load Previous Year A- Stop sprays at Labor day 1,300 260 - B- Stop sprays in August 5,300 1,060 80% of A C- Stop sprays in July 28,700 5,740 108% of B, 441% of A *Chasmothecia **Assuming -
Downy Mildew Controlu Hofmann.Pdf
“Optimisation of downy mildew (Plasmopara viticola) control in organic viticulture with low copper doses, new copper formulations and plant strengtheners, results of 20 years of on farm research” Hofmann, U.1, ECO-CONSULT, Geisenheim, Germany Key words: viticulture, downy mildew, copper formulations, Myco-Sin VIN, Potassium- Phosphonat (phosphorous acid). Abstract Since 20 years in different wine growing regions in Germany, due to weather and infection conditions several fungicide (copper formulations) and plant strengtheners (Myco-Sin VIN®, Ulmasud®, Frutogard®), different plant extracts and compost extracts applications against downy mildew are required in order to obtain satisfactory disease control. Results of the 20 years of on farm trials confirmed good efficacy of the copper based substances like copper hydroxide, partly in combination with two or three applications of Potassium Phosphonat, (Frutogard ®,) new copper-hydroxide formulation or copper oxychloride used in a low doses of copper, copper-octanuat (Cueva®) and alternative products like Myco-Sin-VIN® (sulphuric clay-limestone with high aluminium content). Introduction An organic vineyard is a complex living system where the grower actively tries to encourage the self regulation of the ecosystem and the health of this organism. In organic viticulture one of the primary goals is to grow healthy and disease tolerant or resistant plants. With the help of plant strengtheners, which are accepted by organic standards, and with the correct soil- and plant management the regulation of fungal diseases through the induction and enhancement of the plant’s own defence mechanisms, can be approached. Only as a last step chemical fungicides (copper and sulphur) are used to manage fungal problems. -
Mechanism of Powdery Mildew Infection in Grapevines
Mechanism of powdery mildew infection in grapevines FINAL REPORT to GRAPE AND WINE RESEARCH & DEVELOPMENT CORPORATION Project Number: CRV 02/07N Principal Investigator: Dr Ian B. Dry Research Organisation: Cooperative Research Centre for Viticulture Date: 29th June 2006 Project Title: Mechanism of powdery mildew infection in grapevines CRCV Project Number: 3.1.5 Period Report Covers: July 2002 – June 2006 Author Details: Dr Ian Dry CSIRO Plant Industry Postal address: PO Box 350, Glen Osmond, SA 5064, Australia Phone: 08 83038632 Fax: 08 83038601 Mobile: Email: [email protected] Date report completed: June 2006 Publisher: Cooperative Research Centre for Viticulture ISBN OR ISSN: Copyright: © Copyright in the content of this guide is owned by the Cooperative Research Centre for Viticulture. Disclaimer: The information contained in this report is a guide only. It is not intended to be comprehensive, nor does it constitute advice. The Cooperative Research Centre for Viticulture accepts no responsibility for the consequences of the use of this information. You should seek expert advice in order to determine whether application of any of the information provided in this guide would be useful in your circumstances. The Cooperative Research Centre for Viticulture is a joint venture between the following core participants, working with a wide range of supporting participants. Table of Contents Abstract ……………………………………….… 2 Executive summary ……………………………………....…. 3 Copy of Matt Hayes PhD thesis Appendix 1: Communication Appendix 2: Intellectual Property Appendix 3: References Appendix 4: Staff Appendix 5: Publications Appendix 6: Budget reconciliation Abstract This study has provided new insights into the molecular and biochemical processes associated with the powdery mildew:grapevine interaction.