Pókok Növényvédelmi Szerepe Kártevő Rovarokkal Szemben

Total Page:16

File Type:pdf, Size:1020Kb

Pókok Növényvédelmi Szerepe Kártevő Rovarokkal Szemben 1 DOKTORI (PhD) ÉRTEKEZÉS PANNON EGYETEM GEORGIKON KAR ÁLLAT- ÉS AGRÁRKÖRNYEZET-TUDOMÁNYI DOKTORI ISKOLA FESTETICS DOKTORI ISKOLA ISKOLAVEZETŐ: Dr. Anda Angéla egyetemi tanár TÉMAVEZETŐ: Dr. Samu Ferenc tudományos tanácsadó BELSŐ TÉMAVEZETŐ: Dr. Marczali Zsolt Ferenc egyetemi docens PÓKOK NÖVÉNYVÉDELMI SZEREPE KÁRTEVŐ ROVAROKKAL SZEMBEN Készítette: Beleznai Orsolya Ágnes KESZTHELY 2019 2 PÓKOK NÖVÉNYVÉDELMI SZEREPE KÁRTEVŐ ROVAROKKAL SZEMBEN Értekezés doktori (PhD) fokozat elnyerése érdekében Írta: Beleznai Orsolya Ágnes Készült a Pannon Egyetem Festetics Doktori iskolája, Környezettudományok programja, Élőlények az agrárkörnyezetben alprogramja keretében. Témavezető: Dr. Samu Ferenc Elfogadásra javaslom (igen / nem) (aláírás) Belső témavezető: Dr. Marczali Zsolt Ferenc Elfogadásra javaslom (igen / nem) (aláírás) A jelölt a doktori szigorlaton ........%-ot ért el, Az értekezést bírálóként elfogadásra javaslom: Bíráló neve: …........................ …................. igen /nem ………………………. (aláírás) Bíráló neve: …........................ …................. igen /nem ………………………. (aláírás) A jelölt az értekezés nyilvános vitáján …..........%-ot ért el. Keszthely, …………………………. a Bíráló Bizottság elnöke A doktori (PhD) oklevél minősítése: …................................. ……………………… Az EDHT elnöke 3 TARTALOM Kivonatok ...................................................................................................................................... 7 Magyar nyelvű kivonat .................................................................................................................. 7 Abstract ......................................................................................................................................... 9 El extracto ................................................................................................................................... 11 1 Bevezetés ............................................................................................................................ 14 1.1 Pókok ökológiai szerepe .................................................................................................. 15 1.1.1 Táplálékválasztás, táplálkozás ..................................................................................... 16 1.2 Pókok felhasználása a biológiai védekezésben ............................................................... 17 1.3 Pókok nem letális hatása a prédaállatokra ..................................................................... 18 1.4 Predátor-vektor-kórokozó kaszkád hatások ..................................................................... 20 1.4.1 A vizsgált pók-kabóca-vírus modell rendszer ................................................................. 21 1.4.1.1 A Tibellus oblongus faj általános jellemzői.................................................................. 21 1.4.1.2 A Psammotettix alienus általános jellemzői................................................................ 23 1.4.1.3 A búzatörpülés-vírus– Wheat Dwarf Virus (WDV) ...................................................... 24 1.4.2 A vizsgált pók-bogár-hőmérséklet modell rendszer ...................................................... 26 1.4.2.1 A Tigrosa helluo általános jellemzői ............................................................................ 27 1.4.2.2 A Pisaurina mira általános jellemzői ........................................................................... 29 1.4.2.3 A Diabrotica undecimpunctata howardi általános jellemzői ...................................... 30 1.4.2.4 A klímaváltozás hatása a préda-predátor kapcsolatokra ............................................ 31 1.5 Pókgyomortartalom-vizsgálat ......................................................................................... 32 1.5.1 A polimeráz láncreakció .......................................................................................... 34 1.5.2 Primer tervezés ....................................................................................................... 35 1.5.3 DNS szekvenálás ...................................................................................................... 36 1.5.4 A gélelektroforézis .................................................................................................. 38 2 Célkitűzések..................................................................................................................... 40 2.1 A pók-vektor-kórokozó kaszkád hatások vizsgálatai ....................................................... 40 2.1.1 Viselkedés megfigyelések mezokozmoszban .......................................................... 41 2.1.2 Viselkedés megfigyelések mikrokozmoszban ......................................................... 41 2.2 A pók-bogár-hőmérséklet kaszkád hatások vizsgálatai................................................... 42 2.3 Pókgyomortartalom vizsgálatok ..................................................................................... 42 3 Anyag és módszer ........................................................................................................... 43 3.1 A pók-vektor-kórokozó kaszkád hatások vizsgálatai ....................................................... 43 3.1.1 Viselkedés megfigyelések mezokozmoszban .......................................................... 43 4 3.1.1.1 A kísérleti állatok gyűjtése és tartása ...................................................................... 43 3.1.1.2 Viselkedési megfigyelések ....................................................................................... 43 3.1.1.3 A mozgásaktivitás megfigyelései ............................................................................. 44 3.1.1.4 A táplálkozás megfigyelései .................................................................................... 46 3.1.1.5 Statisztikai analízis ................................................................................................... 46 3.1.2 Viselkedés megfigyelések mikrokozmoszban ......................................................... 49 3.1.2.1 A kísérleti állatok gyűjtése és tartása ...................................................................... 49 3.1.2.2 A kísérleti elrendezés .............................................................................................. 50 3.2 A pók-bogár-hőmérséklet kaszkád hatások vizsgálatai................................................... 55 3.2.1 A kísérleti állatok gyűjtése és tartása ...................................................................... 55 3.2.2 A fajok kritikus hőmérsékleti maximuma ................................................................ 55 3.2.3 A hőmérséklet hatása a töknövény – uborkabogár – pók tritrofikus rendszerre ... 56 3.2.4 Statisztikai elemzés ................................................................................................. 57 3.3 Pókgyomortartalom vizsgálatok ..................................................................................... 59 3.3.1 A kísérleti állatok gyűjtése és tartása ...................................................................... 59 3.3.2 A kísérleti beállítás .................................................................................................. 59 4 Eredmények és értékelésük ............................................................................................ 64 4.1 A pók-vektor-kórokozó kaszkád hatások vizsgálatai ....................................................... 64 4.1.1 Viselkedés megfigyelések mezokozmoszban .......................................................... 64 4.1.2 Viselkedés megfigyelések mikrokozmoszban ......................................................... 69 4.1.2.1 Penetrációk száma .................................................................................................. 69 4.1.2.2 Penetráció sikeressége ............................................................................................ 71 4.2 A pók-bogár-hőmérséklet kaszkád hatások vizsgálatai................................................... 74 4.2.1 Kritikus hőmérsékleti maximum (CTM50) .............................................................. 74 4.2.2 Tritrofikus rendszer ................................................................................................. 75 4.3 Pókgyomortartalom vizsgálatok ..................................................................................... 77 4.3.1 Psammotettix alienus DNS kimutathatósági vizsgálatok és hígítási sor ................. 77 4.3.2 Non-target teszt eredményei .................................................................................. 79 4.3.3 A Tibellus oblongus gyomortartalom vizsgálatának eredményei ........................... 81 5 Megvitatás, következtetések és javaslatok ..................................................................... 84 5.1 A pók-vektor-kórokozó kaszkád hatások vizsgálatai ....................................................... 84 5.1.1 Viselkedés megfigyelése mezokozmoszban ............................................................ 84 5.1.2 Viselkedés megfigyelése mikrokozmoszban ........................................................... 87 5.2 A pók-bogár-hőmérséklet kaszkád hatások vizsgálatai................................................... 89 5 5.3 Pókgyomortartalom vizsgálatok ..................................................................................... 94 6 Összefoglalás ..................................................................................................................
Recommended publications
  • Temperature-Dependent Phenology and Predation in Arthropod Systems
    ecological modelling 196 (2006) 471–482 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/ecolmodel Temperature-dependent phenology and predation in arthropod systems J. David Logan a,∗, William Wolesensky b, Anthony Joern c a Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0130, Unites States b Program in Mathematics, College of St. Mary, Omaha, NE 68134, Unites States c Division of Biology, Kansas State University, Manhattan, KS 66506, Unites States article info abstract Article history: A central issue in ecology is to determine how environmental variations associated with Received 22 April 2005 global climate change, especially changing temperatures, affect trophic interactions in var- Received in revised form 14 ious ecosystems. This paper develops a temperature-dependent, stage-based, discrete, co- December 2005 hort model of the population dynamics of an insect pest under pressure from a predator. Accepted 9 February 2006 Guided by experimental data, the model is applied specifically to predation of grasshoppers Published on line 17 April 2006 by rangeland lycosid spiders. The development rate of insect arthropods is strongly affected by temperature, and these temperature-dependent phenological effects couple with shifts in Keywords: the daily activity periods for both prey and predator, thereby increasing or decreasing oppor- Predator–prey models tunities for interaction. The model addresses these effects quantitatively by introducing a Temperature temperature-dependent, joint-activity factor that enters the predator’s functional response. Phenology The model also includes a prey mortality rate that is temperature-dependent through the Grasshoppers prey development rate. The model is parameterized using field and experimental data for Lycosid spiders spiders and grasshoppers.
    [Show full text]
  • State-Of-The-Art on Use of Insects As Animal Feed
    State-of-the-art on use of insects as animal feed Harinder P.S. Makkar1, Gilles Tran2, Valérie Heuzé2 and Philippe Ankers1 1 Animal Production and Health Division, FAO, Rome 2 Association Française de Zootechnie, Paris, France Full reference of the paper: Animal Feed Science and Technology, Volume 197, November 2014, pages 1-33 Link: http://www.animalfeedscience.com/article/S0377-8401(14)00232-6/abstract http://dx.doi.org/10.1016/j.anifeedsci.2014.07.008 Abstract A 60-70% increase in consumption of animal products is expected by 2050. This increase in the consumption will demand enormous resources, the feed being the most challenging because of the limited availability of natural resources, ongoing climatic changes and food-feed-fuel competition. The costs of conventional feed resources such as soymeal and fishmeal are very high and moreover their availability in the future will be limited. Insect rearing could be a part of the solutions. Although some studies have been conducted on evaluation of insects, insect larvae or insect meals as an ingredient in the diets of some animal species, this field is in infancy. Here we collate, synthesize and discuss the available information on five major insect species studied with respect to evaluation of their products as animal feed. The nutritional quality of black soldier fly larvae, the house fly maggots, mealworm, locusts- grasshoppers-crickets, and silkworm meal and their use as a replacement of soymeal and fishmeal in the diets of poultry, pigs, fish species and ruminants are discussed. The crude protein contents of these alternate resources are high: 42 to 63% and so are the lipid contents (up to 36% oil), which could possibly be extracted and used for various applications including biodiesel production.
    [Show full text]
  • The Taxonomy of Utah Orthoptera
    Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College.
    [Show full text]
  • D:\Grasshopper CD\Pfadts\Pdfs\Vpfiles
    Wyoming_________________________________________________________________________________________ Agricultural Experiment Station Bulletin 912 • Species Fact Sheet Slantfaced Pasture Grasshopper Orphulella speciosa (Scudder) Distribution and Habitat Examination of crop contents of grasshoppers collected in the tallgrass prairie of eastern Kansas revealed that the The slantfaced pasture grasshopper ranges widely in North American grasslands from east of the Rocky Mountains common plants ingested were blue grama, sideoats grama, to the Atlantic Coast and from southern Canada to northern Kentucky bluegrass, little bluestem, and big bluestem. Mexico. The species is most abundant in upland areas of short Because this grasshopper prefers to inhabit areas of short grasses in the tallgrass and southern mixedgrass prairies. In the grasses, mowed fields, and heavily grazed pastures, a large shortgrass prairie of Colorado and New Mexico, it inhabits proportion of crops, 16 to 27 percent, contained blue grama mesic swales. Generally preferring mesic habitats, its center of and Kentucky bluegrass. Fragments of other grasses distribution appears to be in the tallgrass prairie where its detected in crops included buffalograss, hairy grama, populations often become numerically dominant. In eastern prairie junegrass, western wheatgrass, tall dropseed, sand states this grasshopper occurs principally in relatively dry dropseed, Leibig panic, Scribner panic, switchgrass panic, upland and hilly pastures with sandy loam soil and often prairie sandreed, reed canarygrass, prairie threeawn, becomes abundant and the dominant species. stinkgrass, and yellow bristlegrass. Fragments of three species of sedges were also found: Penn sedge, needleleaf sedge, and fieldclustered sedge. Unidentified fungi were present in 6 percent of the crops of grasshoppers from Kansas and 8 percent from North Dakota. A few crops contained forbs and arthropod parts.
    [Show full text]
  • Orthoptera: Acrididae) in Response to Resource Availability and Population Density: the Role of Exploitative Competition 426
    Color profile: Generic CMYK printer profile Composite Default screen Reproduction and survival in Melanoplus sanguinipes (Orthoptera: Acrididae) in response to resource availability and population density: the role of exploitative competition 426 David H Branson1 Ecology Center, Utah State University, Logan, Utah 84322, United States of America The Canadian Entomologist 135: 415 – 426 (2003) Abstract—The relative importance of exploitative competition for resources on grasshopper reproductive allocation has not been fully examined. Given the large fluctuations in grasshopper densities that periodically occur in western North Amer- ica, an increased understanding of how grasshopper survival and reproduction vary in response to intraspecific densities and per capita resource availability is impor- tant. I examined if exploitative resource competition could explain variation in re- productive allocation in Melanoplus sanguinipes (Fabricius) in response to resource availability and grasshopper population density. I also examined whether individual differences in competitive ability resulted in increased variance in egg production with low per capita resource availability. As expected with exploitative resource competition, per capita resource availability explained a significant amount of the variation in all reproductive characteristics examined. There was no effect of per ca- pita resource availability on survival. Residuals of the regressions of egg production and vitellogenesis versus per capita resource availability did not differ for resource or density treatments, indicating that exploitative competition for resources played a more important role than interference competition in determining reproductive allo- cation in M. sanguinipes. Individual differences were evident, as variation around the mean of egg production increased with resource limitation. Exploitative compe- tition for resources was important in determining both individual and population- level reproductive responses of grasshoppers to resource availability.
    [Show full text]
  • First Evidence of Aggressive Chemical Mimicry in the Malagasy Orb
    First evidence of aggressive chemical mimicry in the Malagasy orb weaving spider Exechocentrus lancearius Simon, 1889 (Arachnida: Araneae: Araneidae) and description of a second species in the genus Scharff, Nikolaj; Hormiga, Gustavo Published in: arthropod systematics & phylogeny Publication date: 2012 Document version Publisher's PDF, also known as Version of record Document license: Unspecified Citation for published version (APA): Scharff, N., & Hormiga, G. (2012). First evidence of aggressive chemical mimicry in the Malagasy orb weaving spider Exechocentrus lancearius Simon, 1889 (Arachnida: Araneae: Araneidae) and description of a second species in the genus. arthropod systematics & phylogeny, 70(2), 107-118. http://www.senckenberg.de/files/content/forschung/publikationen/arthropodsystematics/asp_70_2/04_asp_70_2 _scharff_hormiga_107-118.pdf Download date: 26. sep.. 2021 Arthropod Systematics & Phylogeny 107 70 (2) 107 – 118 © Senckenberg Gesellschaft für Naturforschung, eISSN 1864-8312, 28.09.2012 First evidence of aggressive chemical mimicry in the Malagasy orb weaving spider Exechocentrus lancearius Simon, 1889 (Arachnida: Araneae: Araneidae) and description of a second species in the genus NIKOLAJ SCHARFF 1 & GUSTAVO HORMIGA 2 1 Natural History Museum of Denmark, Zoological Museum and Center for Macroecology, Evolution and Climate, Universitetsparken 15, DK-2100 Copenhagen, Denmark [[email protected]] 2 Department of Biological Sciences, The George Washington University Washington, D.C. 20052, USA [[email protected]] Received 17.i.2012, accepted 13.vii.2012. Published online at www.arthropod-systematics.de on 28.ix.2012. > Abstract The araneid genus Exechocentrus Simon, 1889 and its type species Exechocentrus lancearius were originally described based on a single female specimen from Madagascar, which was missing the abdomen.
    [Show full text]
  • Arizona Wildlife Notebook
    ARIZONA WILDLIFE CONSERVATION ARIZONA WILDLIFE NOTEBOOK GARRY ROGERS Praise for Arizona Wildlife Notebook “Arizona Wildlife Notebook” by Garry Rogers is a comprehensive checklist of wildlife species existing in the State of Arizona. This notebook provides a brief description for each of eleven (11) groups of wildlife, conservation status of all extant species within that group in Arizona, alphabetical listing of species by common name, scientific names, and room for notes. “The Notebook is a statewide checklist, intended for use by wildlife watchers all over the state. As various individuals keep track of their personal observations of wildlife in their specific locality, the result will be a more selective checklist specific to that locale. Such information would be vitally useful to the State Wildlife Conservation Department, as well as to other local agencies and private wildlife watching groups. “This is a very well-documented snapshot of the status of wildlife species – from bugs to bats – in the State of Arizona. Much of it should be relevant to neighboring states, as well, with a bit of fine-tuning to accommodate additions and deletions to the list. “As a retired Wildlife Biologist, I have to say Rogers’ book is perhaps the simplest to understand, yet most comprehensive in terms of factual information, that I have ever had occasion to peruse. This book should become the default checklist for Arizona’s various state, federal and local conservation agencies, and the basis for developing accurate local inventories by private enthusiasts as well as public agencies. "Arizona Wildlife Notebook" provides a superb starting point for neighboring states who may wish to emulate Garry Rogers’ excellent handiwork.
    [Show full text]
  • Insect Pheromones: an Overview of Function, Form, and Discovery ⇑ Joanne Y
    Progress in Lipid Research 59 (2015) 88–105 Contents lists available at ScienceDirect Progress in Lipid Research journal homepage: www.elsevier.com/locate/plipres Review Insect pheromones: An overview of function, form, and discovery ⇑ Joanne Y. Yew a,b,c, , Henry Chung d a Pacific Biosciences Research Center, 1993 East-West Road, University of Hawai’i at Ma¯noa, Honolulu, HI 96822, USA b Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore c Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117546, Singapore d Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA article info abstract Article history: For many species of insects, lipid pheromones profoundly influence survival, reproduction, and social Received 23 September 2013 organization. Unravelling the chemical language of insects has been the subject of intense research in Received in revised form 1 May 2015 the field of chemical ecology for the past five decades. Characterizing the forms, functions, and biosyn- Accepted 12 June 2015 thesis of lipid pheromones has led not only to the development of strategies for controlling agricultural Available online 14 June 2015 pests but has also provided insights into fundamental questions in evolutionary biology. Despite the enormous variety of chemical structures that are used as pheromones, some common themes in function Keywords: and biosynthetic pathways have emerged across studies of diverse taxa. This review will offer a general Insects overview of insect lipid pheromone function and biochemical synthesis, describe analytical methods for Drosophila Pheromones pheromone discovery, and provide perspectives on the contribution of chemical ecology to pest control Mass spectrometry and understanding evolutionary processes.
    [Show full text]
  • Orthoptera: Acrididae: Gomphocerinae) and Notes on Wing Polymorphism and Geographic Distribution
    Zootaxa 4838 (4): 515–524 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4838.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:D79B4CEF-7E88-4941-8682-1FCE0C85EE3B A new discovery of a long-winged form of Mexican endemic grasshopper Melanotettix dibelonius Bruner, 1904 (Orthoptera: Acrididae: Gomphocerinae) and notes on wing polymorphism and geographic distribution RICARDO MARIÑO-PÉREZ1, SALOMÓN SANABRIA-URBÁN2*, BERT FOQUET3, MARTINA E. POCCO4 & HOJUN SONG3 1Department of Ecology and Evolutionary Biology, University of Michigan, 3600 Varsity Drive, 48108 Ann Arbor, MI, USA. �[email protected]; https://orcid.org/0000-0002-0566-1372 2Laboratory of Ecology, UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Tlalnepantla, México 54090, México. �[email protected]; https://orcid.org/0000-0002-4079-498X 3Department of Entomology, Texas A&M University, 2475 TAMU, 77843-2475 College Station, TX, USA. �[email protected]; https://orcid.org/0000-0003-1643-6522 �[email protected]; https://orcid.org/0000-0001-6115-0473 4Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CONICET-UNLP, Boulevard 120 s/n entre av. 60 y calle 64, (1900), La Plata, Argentina and División Entomología, Museo de La Plata, Universidad Nacional de La Plata, (1900) La Plata, Argentina. �[email protected]; https://orcid.org/0000-0002-3966-4053 *Corresponding author. Abstract The species Melanotettix dibelonius Bruner, 1904 was previously recorded from Michoacán and Guerrero states in Mexico. This species is characterized by its tegmina, which are always shorter than head and pronotum together and sometimes shorter than the pronotum.
    [Show full text]
  • Potential Distribution and New Records of Mastophora Gasteracanthoides (Nicolet) (Arachnida: Araneae) in Chile
    www.biotaxa.org/rce Revista Chilena de Entomología (2018) 44 (4): 487-491. Scientific Note Potential distribution and new records of Mastophora gasteracanthoides (Nicolet) (Arachnida: Araneae) in Chile Nuevos registros y distribución potencial de Mastophora gasteracanthoides (Nicolet) (Arachnida: Araneae) en Chile Andrés Taucare-Ríos1 and Patrich Cerpa 2,3 ¹Centro de Investigación en Medio Ambiente (CENIMA), Universidad Arturo Prat, Casilla 121, Iquique, Chile. Correspondence autor. E-mail: [email protected] 2Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Ñuñoa, Santiago, Chile. 3Red de Observadores de Aves y Vida Silvestre de Chile (ROC). Santiago, Chile. ZooBank: urn:lsid:zoobank.org:pub:439DDD45-FDCF-4FC5-B46E-5BAB83C92006 Abstract. The known distribution for the species Mastophora gasteracanthoides to the north of Chile is widened. A brief redescription to recognize the species and information about natural history are given. Finally, with the new records we evaluated the potential distribution of this species in the country. Key words: Atacama Desert, new records, spiders. Resumen. Se amplía la distribución conocida para la especie Mastophora gasteracanthoides hacia el norte de Chile. Se entrega una breve redescripción para reconocer a la especie e información acerca de su historia natural. Finalmente, con los nuevos registros evaluamos la distribución potencial de esta especie en el país. Palabras clave: Desierto de Atacama, nuevos registros, arañas. The genus Mastophora (Holmberg, 1876) is represented by 49 described species in the Americas (World Spider Catalog 2018). This genus comprises a small group of spiders that are notable for their curiously formed and sculptured bodies (Gerstch 1955; Levi 2003).
    [Show full text]
  • The Significance of Body Size in the Orthoptera: a Review
    DOUGLAS W. WHITMANJournal of Orthoptera Research 2008,17(2): 117-134117 The significance of body size in the Orthoptera: a review DOUGLAS W. WHITMAN 4120 Department of Biological Sciences, Illinois State University, Normal, IL 61790, USA. Email: [email protected] Abstract Why size and mass are important This review discusses body size and mass as they relate to the Orthoptera Size and mass are important because they correlate strongly (crickets, katydids, grasshoppers) and the Phasmatodea (walkingsticks). It with fitness, because they directly or indirectly influence nearly all addresses the expression, causes and consequences of size in these insects. biological phenomena, and because a great many biological and Topics include: methodological problems in body-size research, gravity physical factors influence size and mass. As such, size and mass vs surface forces, allometry and scaling, Dyar’s law, ontogenetic scaling, are determinants of fitness and targets of natural selection. For size-invariant traits and nonallometric scaling, the influence of size on researchers, size and mass are two easily obtained values that can physiology, function, behavior, life history, mating, fecundity, population encapsulate and predict a multitude of more difficult-to-obtain dynamics, ecology, and community, size-clines, Bergmann’s rule, sexual variables, such as metabolic rate, physiological condition, stress- size dimorphism, Rensch’s rule, protandry, the environmental, genetic, and resistance, immunocompetency, locomotor and dispersal abilities, physiological control of size, the evolution of size and the influence of size fecundity, life history, mating system and mating success, abundance, on evolution. Hypotheses are presented to explain why insects remain small in comparison to other taxa.
    [Show full text]
  • Phylogeny of the Orb‐Weaving Spider
    Cladistics Cladistics (2019) 1–21 10.1111/cla.12382 Phylogeny of the orb-weaving spider family Araneidae (Araneae: Araneoidea) Nikolaj Scharffa,b*, Jonathan A. Coddingtonb, Todd A. Blackledgec, Ingi Agnarssonb,d, Volker W. Framenaue,f,g, Tamas Szuts} a,h, Cheryl Y. Hayashii and Dimitar Dimitrova,j,k aCenter for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; bSmithsonian Institution, National Museum of Natural History, 10th and Constitution, NW Washington, DC 20560-0105, USA; cIntegrated Bioscience Program, Department of Biology, University of Akron, Akron, OH, USA; dDepartment of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086, USA; eDepartment of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia; fSchool of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia; gHarry Butler Institute, Murdoch University, 90 South St., Murdoch, WA 6150, Australia; hDepartment of Ecology, University of Veterinary Medicine Budapest, H1077 Budapest, Hungary; iDivision of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA; jNatural History Museum, University of Oslo, PO Box 1172, Blindern, NO-0318 Oslo, Norway; kDepartment of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway Accepted 11 March 2019 Abstract We present a new phylogeny of the spider family Araneidae based on five genes (28S, 18S, COI, H3 and 16S) for 158 taxa, identi- fied and mainly sequenced by us. This includes 25 outgroups and 133 araneid ingroups representing the subfamilies Zygiellinae Simon, 1929, Nephilinae Simon, 1894, and the typical araneids, here informally named the “ARA Clade”.
    [Show full text]