Topological and Metric Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Topological and Metric Spaces Appendix A Topological and Metric Spaces This appendix will be devoted to the introduction of the basic proper- ties of metric, topological, and normed spaces. A metric space is a set where a notion of distance (called a metric) between elements of the set is defined. Every metric space is a topological space in a natural manner, and therefore all definitions and theorems about topological spaces also apply to all metric spaces. A normed space is a vector space with a special type of metric and thus is also a metric space. All of these spaces are generalizations of the standard Euclidean space, with an increasing degree of structure as we progress from topo- logical spaces to metric spaces and then to normed spaces. A.1 Sets In this book, we use classical notation for the union and intersection of sets. A\B denotes the difference of A and B,andAB is the symmetric difference. We use the notation A ⊂ B for strict inclusion, while A ⊆ B if A = B is allowed. Furthermore, An ↑ A means that An is a non decreasing sequence of sets and A = ∪An, while An ↓ A is a non increasing sequence of sets and A = ∩An.IfA and B are two sets, their Cartesian product A × B consists of all pairs (a, b), a ∈ A, and b ∈ B. If we have an infinite collection of sets, Aλ for λ ∈ Λ,then the Cartesian product of this collection is defined as: Aλ = f : Λ → Aλ : f(λ) ∈ Λ . λ λ The Axiom of Choice states that this product is nonempty as long as each Aλ is nonempty and Λ = ∅. H. Kunze et al., Fractal-Based Methods in Analysis, 357 DOI 10.1007/978-1-4614-1891-7, © Springer Science+Business Media, LLC 2012 358 A Topological and Metric Spaces A.2 Topological spaces The basic idea of a topological space is to try to find a very general setting in which the notions of convergence and continuity can be defined in some meaningful way. The key idea is to think of “open” sets as somehow measuring closeness. In this section, we give many of the definitions of the basic concepts in topology. As such, this section is primarily a list of definitions. A.2.1 Basic definitions Definition A.1. (Topology and topological space) A set X is a topo- logical space if a topology T on X has been chosen. A topology on X, T , is a family of subsets of X, called the open sets, that satisfies the following properties: • ∅ , X ∈T. ( • ∈T ∈T Ai for i =1, 2,...,n implies that i Ai . • ∈T ∈ ∈T Aλ for λ Λ implies λ Aλ . In words, a topology on X is a family of subsets that is closed under arbitrary unions and finite intersections. We call the complement of an open set a closed set. Sometimes it is more convenient to specify a collection smaller than the collection of all possible open sets. This is the idea behind the following definitions. Definition A.2. (Base and Subbase) A subfamily T0 ⊆T is called a base of T if each open set A ∈T can be written as a union of sets of T0.WealsosaythatT0 generates the topology T .Asubbase of a topology is a family of sets B such that their finite intersections form a base for the topology T ; that is, such that the collection n Ai : Ai ∈B i=1 is a base for T . If A ⊆ X,theinduced or subspace topology on A is given by inter- sections A ∩ O, for all O ∈T.Itiseasytoverifythatthiscollection satisfies the properties required for it to be a topology on A. A.2 Topological spaces 359 If X and Y are two topological spaces with topologies T1 and T2, respectively, then their Cartesian product X × Y is a topological space with the topology T generated by the base {A × B,A ∈T1,A ∈T2}. This topology is referred to as the product topology on X × Y.The product topology can also be defined for infinite products via the weak topology (see below). Definition A.3. (Closure, interior, boundary) Let E ⊆ X. ( • The set {C ⊆ X : E ⊆ C, C is closed} is called the closure of E and is denoted by cl E or E. • An open set A such that E ⊆ A is said to be a neighbourhood of E. • Apointx ∈ E is said to be an interior point of E if there exists a neighbourhood A ⊆ E of x. • The set of all interior points of E is called the interior ofE and denoted by int E. The interior of E is also equal to int E = {A ⊆ X : A ⊆ E,A is open }. • The boundary of E, ∂E, is the set cl E\ int E. If we have two topologies T1 and T2 on the same set X,wesaythat T1 is weaker than T2 (or T2 is stronger or finer than T1)ifT1 ⊆T2. It is easy to see that the intersection of any family of topologies is a topology. Furthermore, for any collection of topologies, there is a unique finest topology that is stronger than all of them. The finest topology of all is the discrete topology, in which every set is open. The coarsest topology is the trivial or indiscreet topology, in which the only open sets are the empty set and the whole space. A.2.2 Convergence, countability, and separation axioms Definition A.4. (Convergence) A sequence of points xn ∈ X, n ≥ 1, converges to x ∈ X as n → +∞ if every neighbourhood of x contains all xn with n ≥ n0 for some n0. A partially ordered set (Λ, () is called a directed system if for every α, β ∈ Λ thereisaγ ∈ Λ with α ( γ and β ( γ.Anet in X is a function x : Λ → X from a directed system to X. The net xλ converges to x ∈ X if for every neighbourhood N of x thereissomeγ ∈ Λ,soif λ ∈ Λ with γ ( λ,thenxλ ∈ N. 360 A Topological and Metric Spaces All sequences are nets, but not all nets are sequences. It is possible to show that a set C is closed if and only if it contains the limit for every convergent net of its points. In general, sequential convergence is not sufficient to define a given topology. However, if the space is first countable, then sequential convergence is sufficient to determine the topology (since each point has countably many sets to determine convergence and thus a net can be reduced to a sequence). Apointx ∈ E is said to be isolated if {x} is an open set. One consequence of this is that there is no sequence xn → x with xn = x for all n. Definition A.5. (First and second countable, separable) • A neighbourhood base at a point x ∈ X is a collection of sets N such that that for each neighbourhood U of x thereissomeN ∈N with x ∈ N ⊆ U. • A topological space X is first countable if each point has a countable neighbourhood base. • A topological space X is second countable if there is a countable base for the topology. • A topological space X is separable if there is a countable set {xn} such that that for any point x ∈ X and any neighbourhood U of x thereissomexn with xn ∈ U. In particular, this means that cl{xn : n ∈ N} = X. As an example, Rn with the usual notion of convergence (topology) is second countable. Every second countable space is first countable. Most of the “usual” spaces one encounters are first countable, or even second countable. Thus, for most situations sequential convergence is sufficient. Every second countable space is also separable. Conversely, any separable and first countable space is also second countable. Definition A.6. (Separation conditions) • A space is said to be T0 if for all distinct x, y ∈ X there is some open set U such that either x ∈ U and y/∈ U or x/∈ U and y ∈ U. • A space is said to be T1 if {x} is a closed set for all x ∈ X. • A space is said to be Hausdorff or T2 if for all distinct x, y ∈ X there are disjoint open sets U, V with x ∈ U and y ∈ V . These conditions are listed in order of increasing strength. That is, (Hausdorff ) T2 ⇒ T1 ⇒ T0. A.2 Topological spaces 361 A.2.3 Compactness The concept of compactness is central in many areas of topology. Roughly, it is a type of finiteness condition. Definition A.7. (Compactness) • A set K ⊆ X,iscompact if each open covering of K admits a finite ⊆ subcovering (i.e., whenever K λ Aλ for open sets Aλ,thereis { }⊆ ⊆ some finite subset λ1,λ2,λ3,...,λn Λ such that K j Aλj ). • If X itself is a compact set, then X is called a compact space. • A set E ⊆ X is said to be relatively compact if cl B is a compact set. • X is called locally compact if each point x ∈ X has a neighbourhood with compact closure. • If X can be represented as a countable union of compact sets, then it is said to be σ-compact. The set of all nonempty compact subsets of X is denoted by K(X). There is a standard construction that adds one point, located at “infinity”, to a locally compact space to obtain a compact space. The resulting space is called the one-point or Aleksandrov compactification. The corresponding open sets are open sets of X, and the added point ∞ has neighbourhoods that are complements to compact sets.
Recommended publications
  • Metric Geometry in a Tame Setting
    University of California Los Angeles Metric Geometry in a Tame Setting A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Erik Walsberg 2015 c Copyright by Erik Walsberg 2015 Abstract of the Dissertation Metric Geometry in a Tame Setting by Erik Walsberg Doctor of Philosophy in Mathematics University of California, Los Angeles, 2015 Professor Matthias J. Aschenbrenner, Chair We prove basic results about the topology and metric geometry of metric spaces which are definable in o-minimal expansions of ordered fields. ii The dissertation of Erik Walsberg is approved. Yiannis N. Moschovakis Chandrashekhar Khare David Kaplan Matthias J. Aschenbrenner, Committee Chair University of California, Los Angeles 2015 iii To Sam. iv Table of Contents 1 Introduction :::::::::::::::::::::::::::::::::::::: 1 2 Conventions :::::::::::::::::::::::::::::::::::::: 5 3 Metric Geometry ::::::::::::::::::::::::::::::::::: 7 3.1 Metric Spaces . 7 3.2 Maps Between Metric Spaces . 8 3.3 Covers and Packing Inequalities . 9 3.3.1 The 5r-covering Lemma . 9 3.3.2 Doubling Metrics . 10 3.4 Hausdorff Measures and Dimension . 11 3.4.1 Hausdorff Measures . 11 3.4.2 Hausdorff Dimension . 13 3.5 Topological Dimension . 15 3.6 Left-Invariant Metrics on Groups . 15 3.7 Reductions, Ultralimits and Limits of Metric Spaces . 16 3.7.1 Reductions of Λ-valued Metric Spaces . 16 3.7.2 Ultralimits . 17 3.7.3 GH-Convergence and GH-Ultralimits . 18 3.7.4 Asymptotic Cones . 19 3.7.5 Tangent Cones . 22 3.7.6 Conical Metric Spaces . 22 3.8 Normed Spaces . 23 4 T-Convexity :::::::::::::::::::::::::::::::::::::: 24 4.1 T-convex Structures .
    [Show full text]
  • K-THEORY of FUNCTION RINGS Theorem 7.3. If X Is A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 69 (1990) 33-50 33 North-Holland K-THEORY OF FUNCTION RINGS Thomas FISCHER Johannes Gutenberg-Universitit Mainz, Saarstrage 21, D-6500 Mainz, FRG Communicated by C.A. Weibel Received 15 December 1987 Revised 9 November 1989 The ring R of continuous functions on a compact topological space X with values in IR or 0Z is considered. It is shown that the algebraic K-theory of such rings with coefficients in iZ/kH, k any positive integer, agrees with the topological K-theory of the underlying space X with the same coefficient rings. The proof is based on the result that the map from R6 (R with discrete topology) to R (R with compact-open topology) induces a natural isomorphism between the homologies with coefficients in Z/kh of the classifying spaces of the respective infinite general linear groups. Some remarks on the situation with X not compact are added. 0. Introduction For a topological space X, let C(X, C) be the ring of continuous complex valued functions on X, C(X, IR) the ring of continuous real valued functions on X. KU*(X) is the topological complex K-theory of X, KO*(X) the topological real K-theory of X. The main goal of this paper is the following result: Theorem 7.3. If X is a compact space, k any positive integer, then there are natural isomorphisms: K,(C(X, C), Z/kZ) = KU-‘(X, Z’/kZ), K;(C(X, lR), Z/kZ) = KO -‘(X, UkZ) for all i 2 0.
    [Show full text]
  • FUNCTIONAL ANALYSIS 1. Metric and Topological Spaces A
    FUNCTIONAL ANALYSIS CHRISTIAN REMLING 1. Metric and topological spaces A metric space is a set on which we can measure distances. More precisely, we proceed as follows: let X 6= ; be a set, and let d : X×X ! [0; 1) be a map. Definition 1.1. (X; d) is called a metric space if d has the following properties, for arbitrary x; y; z 2 X: (1) d(x; y) = 0 () x = y (2) d(x; y) = d(y; x) (3) d(x; y) ≤ d(x; z) + d(z; y) Property 3 is called the triangle inequality. It says that a detour via z will not give a shortcut when going from x to y. The notion of a metric space is very flexible and general, and there are many different examples. We now compile a preliminary list of metric spaces. Example 1.1. If X 6= ; is an arbitrary set, then ( 0 x = y d(x; y) = 1 x 6= y defines a metric on X. Exercise 1.1. Check this. This example does not look particularly interesting, but it does sat- isfy the requirements from Definition 1.1. Example 1.2. X = C with the metric d(x; y) = jx−yj is a metric space. X can also be an arbitrary non-empty subset of C, for example X = R. In fact, this works in complete generality: If (X; d) is a metric space and Y ⊆ X, then Y with the same metric is a metric space also. Example 1.3. Let X = Cn or X = Rn. For each p ≥ 1, n !1=p X p dp(x; y) = jxj − yjj j=1 1 2 CHRISTIAN REMLING defines a metric on X.
    [Show full text]
  • 1.1.5 Hausdorff Spaces
    1. Preliminaries Proof. Let xn n N be a sequence of points in X convergent to a point x X { } 2 2 and let U (f(x)) in Y . It is clear from Definition 1.1.32 and Definition 1.1.5 1 2F that f − (U) (x). Since xn n N converges to x,thereexistsN N s.t. 1 2F { } 2 2 xn f − (U) for all n N.Thenf(xn) U for all n N. Hence, f(xn) n N 2 ≥ 2 ≥ { } 2 converges to f(x). 1.1.5 Hausdor↵spaces Definition 1.1.40. A topological space X is said to be Hausdor↵ (or sepa- rated) if any two distinct points of X have neighbourhoods without common points; or equivalently if: (T2) two distinct points always lie in disjoint open sets. In literature, the Hausdor↵space are often called T2-spaces and the axiom (T2) is said to be the separation axiom. Proposition 1.1.41. In a Hausdor↵space the intersection of all closed neigh- bourhoods of a point contains the point alone. Hence, the singletons are closed. Proof. Let us fix a point x X,whereX is a Hausdor↵space. Denote 2 by C the intersection of all closed neighbourhoods of x. Suppose that there exists y C with y = x. By definition of Hausdor↵space, there exist a 2 6 neighbourhood U(x) of x and a neighbourhood V (y) of y s.t. U(x) V (y)= . \ ; Therefore, y/U(x) because otherwise any neighbourhood of y (in particular 2 V (y)) should have non-empty intersection with U(x).
    [Show full text]
  • Analysis in Metric Spaces Mario Bonk, Luca Capogna, Piotr Hajłasz, Nageswari Shanmugalingam, and Jeremy Tyson
    Analysis in Metric Spaces Mario Bonk, Luca Capogna, Piotr Hajłasz, Nageswari Shanmugalingam, and Jeremy Tyson study of quasiconformal maps on such boundaries moti- The authors of this piece are organizers of the AMS vated Heinonen and Koskela [HK98] to axiomatize several 2020 Mathematics Research Communities summer aspects of Euclidean quasiconformal geometry in the set- conference Analysis in Metric Spaces, one of five ting of metric measure spaces and thereby extend Mostow’s topical research conferences offered this year that are work beyond the sub-Riemannian setting. The ground- focused on collaborative research and professional breaking work [HK98] initiated the modern theory of anal- development for early-career mathematicians. ysis on metric spaces. Additional information can be found at https://www Analysis on metric spaces is nowadays an active and in- .ams.org/programs/research-communities dependent field, bringing together researchers from differ- /2020MRC-MetSpace. Applications are open until ent parts of the mathematical spectrum. It has far-reaching February 15, 2020. applications to areas as diverse as geometric group the- ory, nonlinear PDEs, and even theoretical computer sci- The subject of analysis, more specifically, first-order calcu- ence. As a further sign of recognition, analysis on met- lus, in metric measure spaces provides a unifying frame- ric spaces has been included in the 2010 MSC classifica- work for ideas and questions from many different fields tion as a category (30L: Analysis on metric spaces). In this of mathematics. One of the earliest motivations and ap- short survey, we can discuss only a small fraction of areas plications of this theory arose in Mostow’s work [Mos73], into which analysis on metric spaces has expanded.
    [Show full text]
  • The Non-Hausdorff Number of a Topological Space
    THE NON-HAUSDORFF NUMBER OF A TOPOLOGICAL SPACE IVAN S. GOTCHEV Abstract. We call a non-empty subset A of a topological space X finitely non-Hausdorff if for every non-empty finite subset F of A and every family fUx : x 2 F g of open neighborhoods Ux of x 2 F , \fUx : x 2 F g 6= ; and we define the non-Hausdorff number nh(X) of X as follows: nh(X) := 1 + supfjAj : A is a finitely non-Hausdorff subset of Xg. Using this new cardinal function we show that the following three inequalities are true for every topological space X d(X) (i) jXj ≤ 22 · nh(X); 2d(X) (ii) w(X) ≤ 2(2 ·nh(X)); (iii) jXj ≤ d(X)χ(X) · nh(X) and (iv) jXj ≤ nh(X)χ(X)L(X) is true for every T1-topological space X, where d(X) is the density, w(X) is the weight, χ(X) is the character and L(X) is the Lindel¨ofdegree of the space X. The first three inequalities extend to the class of all topological spaces d(X) Pospiˇsil'sinequalities that for every Hausdorff space X, jXj ≤ 22 , 2d(X) w(X) ≤ 22 and jXj ≤ d(X)χ(X). The fourth inequality generalizes 0 to the class of all T1-spaces Arhangel ski˘ı’s inequality that for every Hausdorff space X, jXj ≤ 2χ(X)L(X). It is still an open question if 0 Arhangel ski˘ı’sinequality is true for all T1-spaces. It follows from (iv) that the answer of this question is in the afirmative for all T1-spaces with nh(X) not greater than the cardianilty of the continuum.
    [Show full text]
  • Course 221: Michaelmas Term 2006 Section 3: Complete Metric Spaces, Normed Vector Spaces and Banach Spaces
    Course 221: Michaelmas Term 2006 Section 3: Complete Metric Spaces, Normed Vector Spaces and Banach Spaces David R. Wilkins Copyright c David R. Wilkins 1997–2006 Contents 3 Complete Metric Spaces, Normed Vector Spaces and Banach Spaces 2 3.1 The Least Upper Bound Principle . 2 3.2 Monotonic Sequences of Real Numbers . 2 3.3 Upper and Lower Limits of Bounded Sequences of Real Numbers 3 3.4 Convergence of Sequences in Euclidean Space . 5 3.5 Cauchy’s Criterion for Convergence . 5 3.6 The Bolzano-Weierstrass Theorem . 7 3.7 Complete Metric Spaces . 9 3.8 Normed Vector Spaces . 11 3.9 Bounded Linear Transformations . 15 3.10 Spaces of Bounded Continuous Functions on a Metric Space . 19 3.11 The Contraction Mapping Theorem and Picard’s Theorem . 20 3.12 The Completion of a Metric Space . 23 1 3 Complete Metric Spaces, Normed Vector Spaces and Banach Spaces 3.1 The Least Upper Bound Principle A set S of real numbers is said to be bounded above if there exists some real number B such x ≤ B for all x ∈ S. Similarly a set S of real numbers is said to be bounded below if there exists some real number A such that x ≥ A for all x ∈ S. A set S of real numbers is said to be bounded if it is bounded above and below. Thus a set S of real numbers is bounded if and only if there exist real numbers A and B such that A ≤ x ≤ B for all x ∈ S.
    [Show full text]
  • I-Sequential Topological Spaces∗
    Applied Mathematics E-Notes, 14(2014), 236-241 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ -Sequential Topological Spaces I Sudip Kumar Pal y Received 10 June 2014 Abstract In this paper a new notion of topological spaces namely, I-sequential topo- logical spaces is introduced and investigated. This new space is a strictly weaker notion than the first countable space. Also I-sequential topological space is a quotient of a metric space. 1 Introduction The idea of convergence of real sequence have been extended to statistical convergence by [2, 14, 15] as follows: If N denotes the set of natural numbers and K N then Kn denotes the set k K : k n and Kn stands for the cardinality of the set Kn. The natural densityf of the2 subset≤ Kg is definedj j by Kn d(K) = lim j j, n n !1 provided the limit exists. A sequence xn n N of points in a metric space (X, ) is said to be statistically f g 2 convergent to l if for arbitrary " > 0, the set K(") = k N : (xk, l) " has natural density zero. A lot of investigation has been donef on2 this convergence≥ andg its topological consequences after initial works by [5, 13]. It is easy to check that the family Id = A N : d(A) = 0 forms a non-trivial f g admissible ideal of N (recall that I 2N is called an ideal if (i) A, B I implies A B I and (ii) A I,B A implies B I.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • Compact Non-Hausdorff Manifolds
    A.G.M. Hommelberg Compact non-Hausdorff Manifolds Bachelor Thesis Supervisor: dr. D. Holmes Date Bachelor Exam: June 5th, 2014 Mathematisch Instituut, Universiteit Leiden 1 Contents 1 Introduction 3 2 The First Question: \Can every compact manifold be obtained by glueing together a finite number of compact Hausdorff manifolds?" 4 2.1 Construction of (Z; TZ ).................................5 2.2 The space (Z; TZ ) is a Compact Manifold . .6 2.3 A Negative Answer to our Question . .8 3 The Second Question: \If (R; TR) is a compact manifold, is there always a surjective ´etale map from a compact Hausdorff manifold to R?" 10 3.1 Construction of (R; TR)................................. 10 3.2 Etale´ maps and Covering Spaces . 12 3.3 A Negative Answer to our Question . 14 4 The Fundamental Groups of (R; TR) and (Z; TZ ) 16 4.1 Seifert - Van Kampen's Theorem for Fundamental Groupoids . 16 4.2 The Fundamental Group of (R; TR)........................... 19 4.3 The Fundamental Group of (Z; TZ )........................... 23 2 Chapter 1 Introduction One of the simplest examples of a compact manifold (definitions 2.0.1 and 2.0.2) that is not Hausdorff (definition 2.0.3), is the space X obtained by glueing two circles together in all but one point. Since the circle is a compact Hausdorff manifold, it is easy to prove that X is indeed a compact manifold. It is also easy to show X is not Hausdorff. Many other examples of compact manifolds that are not Hausdorff can also be created by glueing together compact Hausdorff manifolds.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • Be a Metric Space
    2 The University of Sydney show that Z is closed in R. The complement of Z in R is the union of all the Pure Mathematics 3901 open intervals (n, n + 1), where n runs through all of Z, and this is open since every union of open sets is open. So Z is closed. Metric Spaces 2000 Alternatively, let (an) be a Cauchy sequence in Z. Choose an integer N such that d(xn, xm) < 1 for all n ≥ N. Put x = xN . Then for all n ≥ N we have Tutorial 5 |xn − x| = d(xn, xN ) < 1. But xn, x ∈ Z, and since two distinct integers always differ by at least 1 it follows that xn = x. This holds for all n > N. 1. Let X = (X, d) be a metric space. Let (xn) and (yn) be two sequences in X So xn → x as n → ∞ (since for all ε > 0 we have 0 = d(xn, x) < ε for all such that (yn) is a Cauchy sequence and d(xn, yn) → 0 as n → ∞. Prove that n > N). (i)(xn) is a Cauchy sequence in X, and 4. (i) Show that if D is a metric on the set X and f: Y → X is an injective (ii)(xn) converges to a limit x if and only if (yn) also converges to x. function then the formula d(a, b) = D(f(a), f(b)) defines a metric d on Y , and use this to show that d(m, n) = |m−1 − n−1| defines a metric Solution.
    [Show full text]