SNP Interactions in the Genetic Architecture of Blood Pressure Jacob John Basson Washington University in St

Total Page:16

File Type:pdf, Size:1020Kb

SNP Interactions in the Genetic Architecture of Blood Pressure Jacob John Basson Washington University in St Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) Summer 9-3-2013 SNP Interactions in the Genetic Architecture of Blood Pressure Jacob John Basson Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Basson, Jacob John, "SNP Interactions in the Genetic Architecture of Blood Pressure" (2013). All Theses and Dissertations (ETDs). 1119. https://openscholarship.wustl.edu/etd/1119 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biological and Biomedical Sciences Human and Statistical Genetics Dissertation Examination Committee: DC Rao, Chair Jim Cheverud Lisa de las Fuentes Mike Province Nancy Saccone Alan Templeton SNP Interactions in the Genetic Architecture of Blood Pressure by Jacob John Basson A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2013 St. Louis, Missouri © 2013 Jacob Basson Table of Contents List of Figures………………………………………………………………………….……………iv List of Tables…………………………………………………………………………….…………..v Acknowledgments……………………………………………………………………….………….vi Abstract……………………………………………………………………………………………..vii Chapter 1: Between Candidate Genes and Whole Genomes: Time for New Approaches in Blood Pressure Genetics? Introduction……………………………………………………………………..……………1 Candidate Gene Studies…………………………………………………………...…………2 Genome Wide Studies……………………………………………………………..………10 Discussion…………………………………………………………………………………..21 Chapter 2: Genome-Wide Association with BP in FHS Introduction…………………………………………………………………..……………..25 Framingham Heart Study……………………………………………………………….......25 Methods………………………………………………………………………….………….29 Results…………………………………………………………………………….…...……30 Discussion………………………………………………………………………………..…31 Chapter 3: SNP-SNP Interactions with BP in FHS Introduction……………………………………………………………………..…………..32 Methods……………………………………………………………………….…………….36 Results………………………………………………………………………….…………...40 Discussion…………………………………………………………………………………..40 ii Chapter 4: SNP-Environment Interactions with BP in FHS Introduction………………………………………………………………………..………..45 Methods………………………………………………………………………….………….46 Results…………………………………………………………………………….………...48 Discussion ………………………………………………………………………………48 Chapter 5: Multi-Marker Analysis of SNP Interactions with BP in FHS Introduction…………………………………………………………………….….………..51 Methods……………………………………………………………………….……………52 Results……………………………………………………………………….……………...53 Discussion…………………………………………………………………………………..53 Chapter 6: Conclusions Discussion…………………………………………………………………………………..56 Figures……………………………………………………………………….……………...61 Tables……………………………………………………………………….………………99 References………………………………………………………………….……………...131 iii List of Figures Figure 1: Distribution of SBP, DBP, BMI, and Age in FHS visit 7……………….……….………61 Figure 2: SBP and DBP GWAS Manhattan plots………………………………………………….63 Figure 3: Pathway-only Manhattan plot for SNP main effects………………………...…………...64 Figure 4: Mean SBP by genotype for selected SNP-SNP interactions……………….…….………66 Figure 5: Mean DBP by genotype for selected SNP-SNP interactions………………………..…...73 Figure 6: Pathway-only Manhattan plot for SNP-BMI interactions………………………………..74 Figure 7: Pathway –only Manhattan plot for SNP-Sex interactions………….…..………………...76 Figure 8: SNP-BMI (2 df) interactions vs. SNP main effects…………………….………………...77 Figure 9: SNP-Sex (2 df) interactions vs. SNP main effects……………………………………….81 Figure 10: Pathway-only Manhattan plot for SNP-Hypertension interactions and stratified effects……………………………………………………………………………………………….85 Figure 11: QQ plot for SNP-Hypertension interactions…………………………….……………...88 Figure 12: QQ plot for SNP-Hypertension stratified effects………………………………..……...92 Figure 13: Mean SBP for top SNP-Hypertension interaction…………………………………...….96 iv List of Tables Table 1: Mendelian hypertension genes……………….…………………………...………………97 Table 2: Selected BP candidate genes…………………………………………………...…………99 Table 3: FHS visit 7 sample summary…………………………………………………………….101 Table 4: FHS visit 7 normality check……………………………………………...……………...102 Table 5: Pathway genes…………………………………………………………..……………….102 Table 6: Top SNP-SNP interactions by p-value…………………………………………………..104 Table 7: Top SNP-SNP interactions by q-value…………………………………………………..107 Table 8: Top SNP-BMI and SNP-Sex interactions by p-value……………..……………………..112 Table 9: Multi-marker model summary………………………………….………………………..112 Table 10: Multi-marker results……………………………………………………………………113 v Acknowledgements This research was supported by Grants T32HL083822, R21HL095054, R01HL111239, and R01HL107552 from the National Heart, Lung, and Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, and Blood Institute or the National Institutes of Health. Mentors: DC Rao, Lisa de las Fuentes Committee: Jim Cheverud, Mike Province, Nancy Saccone, Alan Templeton Rao Lab: Yun Ju Sung, Jeannette Simino, Karen Schwander, Rezart Kume, Treva Rice HSG Directors: John Rice, Allison Goate, and Anne Bowcock Mom, Dad, Duncan, Alex vi ABSTRACT OF THE DISSERTATION SNP Interactions in the Genetic Architecture of Blood Pressure By Jacob John Basson Doctor of Philosophy in Human and Statistical Genetics Washington University in St. Louis, 2013 Professor DC Rao, Co-Chair and Assistant Professor Lisa de las Fuentes, Co-Chair Evidence suggests that there is a substantial genetic component to the regulation of blood pressure (BP) but most BP variance remains unattributed to specific genetic variants. Candidate gene studies show linkage to rare Mendelian disorders but inconsistent association with BP. Massive consortia of genome-wide association studies have identified several dozen loci explaining less than 3% of BP variance. Many explanations have been offered for these observations, of which the current study addresses two: the focus on SNP main effects to the exclusion of interactions, and the low statistical power resulting from the strong multiple-testing burden necessarily imposed when analyzing millions of variants. This study examined the role of interactions among a limited set of variants (818 SNPs in 70 genes) drawn from two broad signaling pathways: renal ion balance and inflammation. Exhaustive SNP-SNP interaction testing was performed, as was analysis of SNP-sex, SNP-BMI, and SNP-hypertension interactions. In hypertensive subjects only, rs12821401 in ADIPOR2 was significantly associated with SBP (p=6.1e-5). A set of three SNP-SNP interactions among 6 inflammation genes (including ADIPOR2) showed significant evidence of containing one or more true association signals (FDR=4.2%), though no single interaction reached experiment- wise significance. These results provide evidence of a role for SNP-SNP and other SNP vii interactions and implicate an inflammation gene, ADIPOR2, not previously associated with hypertension viii Ch1: Between candidate genes and whole genomes: time for new approaches in blood pressure genetics? I. Introduction The US Department of Health and Human Services estimates that almost one third of US adults over 20 years of age suffer from hypertension [1], a major risk factor for cerebrovascular disease, ischemic heart disease, and cardiac and renal failure [2]. The nature and genetic origins of hypertension have long been the subject of scientific inquiry, dating back to the 1940s and the famous debate between Dr. Robert Platt and Dr. George Pickering. Platt argued that hypertension was characterized by a bimodal distribution of blood pressure values, with a single (unknown) genetic defect, transmitted with Mendelian inheritance and leading to a discrete disease state. Pickering, on the other hand, believed that the spectrum of blood pressure values observed in the population was better described as a unimodal distribution with polygenic inheritance, and that subjects with hypertension were simply those falling at the extreme high end of the continuum [3]. Today it’s known that there’s some truth to both sides. For a variety of rare familial hypertensive diseases, traditional linkage and association has been very successful in identifying genes carrying disease-causing mutations with Mendelian inheritance. For the remaining cases of hypertension – the vast majority – the complex architecture of the genetic and environmental interactions that regulate blood pressure and become pathologic in disease has yet to be elucidated. However, decades of research, aided by an increasingly powerful and affordable technological arsenal, have yielded substantial insights into the mechanisms of blood pressure regulation, even as they have failed to identify the complete set of genetic polymorphisms, environmental risk factors, and their interactions that underlie these cases of essential hypertension. 1 Several opportunities for methodological progress have emerged from these insights, of which the first two listed are pursued in the work that follows: 1) test the role of gene-gene and other interactions; 2) reduce the multiple testing burden by focusing on variants concentrated in pathways; 3) test the role of rare variants;
Recommended publications
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • CYP2J2 Expression in Adult Ventricular Myocytes Protects Against Reactive Oxygen Species Toxicity S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/01/17/dmd.117.078840.DC1 1521-009X/46/4/380–386$35.00 https://doi.org/10.1124/dmd.117.078840 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:380–386, April 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics CYP2J2 Expression in Adult Ventricular Myocytes Protects Against Reactive Oxygen Species Toxicity s Eric A. Evangelista, Rozenn N. Lemaitre, Nona Sotoodehnia, Sina A. Gharib, and Rheem A. Totah Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington Received October 4, 2017; accepted January 11, 2018 ABSTRACT Cytochrome P450 2J2 isoform (CYP2J2) is a drug-metabolizing silencing on cells when levels of reactive oxygen species (ROS) enzyme that is highly expressed in adult ventricular myocytes. It is are elevated. Findings indicate that CYP2J2 expression increases in Downloaded from responsible for the bioactivation of arachidonic acid (AA) into response to external ROS or when internal ROS levels are elevated. epoxyeicosatrienoic acids (EETs). EETs are biologically active In addition, cell survival decreases with ROS exposure when CYP2J2 signaling compounds that protect against disease progression, is chemically inhibited or when CYP2J2 expression is reduced using particularly in cardiovascular diseases. As a drug-metabolizing small interfering RNA. These effects are mitigated with external enzyme, CYP2J2 is susceptible to drug interactions that could lead addition of EETs to the cells.
    [Show full text]
  • Comprehensive Assessment of the Association of WNK4
    OPEN Comprehensive Assessment of the SUBJECT AREAS: Association of WNK4 Polymorphisms GENETICS RESEARCH RENOVASCULAR HYPERTENSION with Hypertension: Evidence from a EPIDEMIOLOGY Meta-Analysis Received Xiao-gang Guo1, Jie Ding1, Hui Xu1,2, Tian-ming Xuan1, Wei-quan Jin1, Xiang Yin1, Yun-peng Shang1, 22 April 2014 Fu-rong Zhang1, Jian-hua Zhu1 & Liang-rong Zheng1 Accepted 15 September 2014 1Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China, Published 2Xiuzhou District, Gaozhao Street Community Health Service Center, Jiaxing 314031, China. 30 September 2014 The relationship between with-no-lysine [K] kinase 4 (WNK4) gene polymorphisms and hypertension has been widely investigated, However, the studies yielded contradictory results. To evaluate these inconclusive Correspondence and findings comprehensively, we therefore performed a meta-analysis. Ten articles encompassing 16 requests for materials independent case-control studies with 6089 hypertensive cases and 4881 normotensive controls were should be addressed to selected for this meta-analysis. Four WNK4 gene polymorphisms were identified (G1155942T, G1156666A, X.-G.G. (gxg22222@ T1155547C, and C6749T). The results showed statistically significant associations of G1155942T polymorphism (allelic genetic model: odds ration or OR51.62, 95% confidence interval or CI: 1.11–2.38, zju.edu.cn) P50.01; dominant model: OR51.85, 95% CI: 1.07–3.19, P50.03) and C6749T polymorphism (allele contrast: OR52.04, 95% CI: 1.60–2.59, P,0.01; dominant model: OR52.04, 95%CI: 1.59–2.62, P,0.01; and homozygous model: OR55.01, 95% CI: 1.29–19.54, P50.02) with hypertension risk. However, neither C1155547T nor G1156666A was associated significantly with hypertension susceptibility.
    [Show full text]
  • Regular Article Cytochrome P450 Is Responsible for Nitric Oxide Generation from NO-Aspirin and Other Organic Nitrates
    Drug Metab. Pharmacokinet. 22 (1): 15–19 (2007). Regular Article Cytochrome P450 is Responsible for Nitric Oxide Generation from NO-Aspirin and Other Organic Nitrates Yukiko MINAMIYAMA1,2,*,ShigekazuTAKEMURA2, Susumu IMAOKA3, Yoshihiko FUNAE4,andShigeruOKADA1 1Department of Anti-aging Food Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan, Departments of 2Hepato-Biliary-Pancreatic Surgery and 4Chemical Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan, 3School of Science and Technology Kwansei Gakuin University, Sanda, Japan Full text of this paper is available at http://www.jstage.jst.go.jp/browse/dmpk Summary: Nitric oxide (NO) biotransformation from NO-aspirin (NCX-4016) is not clearly understood. We have previously reported that cytochrome P450 (P450) plays important role in NO generation from other organic nitrates such as nitroglycerin (NTG) and isosorbide dinitrate (ISDN). The present study was designed to elucidate the role of human cytochrome P450 isoforms in NO formation from NCX-4016, using lymphoblast microsomes transfected with cDNA of human P450 or yeast-expressed, puriˆed P450 isoforms. CYP1A2 and CYP2J2, among other isoforms, were strongly related to NO production from NCX-4016. In fact, these isoforms were detected in human coronary endothelial cells. These results suggest that NADPH-cytochrome P450 reductase and the P450 system participate in NO formation from NCX-4016, as well as other organic nitrates. Key words: human cytochrome
    [Show full text]
  • Comprehensive Assessment of Indian Variations in the Druggable Kinome Landscape Highlights Distinct Insights at the Sequence, Structure and Pharmacogenomic Stratum
    SUPPLEMENTARY MATERIAL Comprehensive assessment of Indian variations in the druggable kinome landscape highlights distinct insights at the sequence, structure and pharmacogenomic stratum Gayatri Panda1‡, Neha Mishra1‡, Disha Sharma2,3, Rahul C. Bhoyar3, Abhinav Jain2,3, Mohamed Imran2,3, Vigneshwar Senthilvel2,3, Mohit Kumar Divakar2,3, Anushree Mishra3, Priyanka Banerjee4, Sridhar Sivasubbu2,3, Vinod Scaria2,3, Arjun Ray1* 1 Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla, India. 2 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. 3 CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi-110020, India. 4 Institute for Physiology, Charite-University of Medicine, Berlin, 10115 Berlin, Germany. ‡These authors contributed equally to this work. * [email protected] TABLE OF CONTENTS Name Title Supplemental_Figure_S1 Fauchere and Pliska hydrophobicity scale for variations in structure data Supplemental_Figure_S2 Phenotypic drug-drug correlogram Supplemental_Table_S1 545 kinase coding genes used in the study Supplemental_Table_S2 Classes and count of kinase coding genes Supplemental_Table_S3 Allele frequency Indian v/s other populations from 1000 genome data(1000g2015). Supplemental_Table_S4 IndiGen Structure Data- consisting of 12 genes and their 22 variants Supplemental_Table_S5 Genes, PDB ids, mutations in IndiGen data and associated drugs (FDA approved) Supplemental_Table_S6 Data used for docking and binding pocket similarity analysis Supplemental_Table_S7
    [Show full text]
  • G Protein-Coupled Receptor Kinase 4 Gene Variants in Human Essential Hypertension
    G protein-coupled receptor kinase 4 gene variants in human essential hypertension Robin A. Felder*, Hironobu Sanada*†, Jing Xu‡, Pei-Ying Yu‡, Zheng Wang‡, Hidetsuna Watanabe*, Laureano D. Asico*, Wei Wang‡, Shaopeng Zheng‡, Ikuyo Yamaguchi‡, Scott M. Williams§, James Gainer¶, Nancy J. Brown¶, Debra Hazen-Martinʈ, Lee-Jun C. Wong**, Jean E. Robillard††, Robert M. Carey‡‡, Gilbert M. Eisner‡, and Pedro A. Jose‡ *Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908; ‡Department of Pediatrics and Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20007; §Department of Microbiology, Meharry Medical College, Nashville, TN 37208; ¶Department of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232; ʈDepartment of Pathology, Medical University of South Carolina, Charleston, SC 29403; **Institute for Molecular and Human Genetics, Georgetown University Medical Center, Washington, DC 20007; ††Department of Pediatrics, University of Michigan College of Medicine, Ann Arbor, MI 48109; and ‡‡Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, VA 22908 Communicated by Maria Iandolo New, Weill Medical College of Cornell University, New York, NY, December 21, 2001 (received for review August 10, 2001) Essential hypertension has a heritability as high as 30–50%, but its abnormal renal sodium transporters (3, 8, 13, 17). Also, the genetic cause(s) has not been determined despite intensive inves- coding region of the D1 receptor is unchanged in hypertensive tigation. The renal dopaminergic system exerts a pivotal role in subjects (16), as well as in rodents with genetic hypertension maintaining fluid and electrolyte balance and participates in the (unpublished studies). pathogenesis of genetic hypertension.
    [Show full text]
  • Detection of Human CYP2C8, CYP2C9 and CYP2J2 in Cardiovascular
    DMD Fast Forward. Published on January 12, 2007 as DOI: 10.1124/dmd.106.012823 DMD FastThis Forward.article has not Published been copyedited on and January formatted. 12, The 2007final version as doi:10.1124/dmd.106.012823 may differ from this version. DMD #12823 Detection of Human CYP2C8, CYP2C9 and CYP2J2 in Cardiovascular Tissues Tracy C. DeLozier, Grace E. Kissling, Sherry J. Coulter, Diana Dai, Julie F. Foley, J. Alyce Bradbury, Elizabeth Murphy, Charles Steenbergen, Darryl C. Zeldin Downloaded from and Joyce A. Goldstein dmd.aspetjournals.org Human Metabolism Section, Laboratory of Pharmacology and Chemistry, (T.C.D., S.J.C., at ASPET Journals on September 27, 2021 D.D. and J.A.G.); Laboratory of Respiratory Biology, (J.A.B., and D.C.Z.); Laboratory of Experimental Pathology, (J.F.F.); Biostatistics Branch (G.E.K.) and Laboratory of Signal Transduction (E.M.); NIEHS, Research Triangle Park, North Carolina 27709 and Department of Pathology, Duke University Medical Center, Durham, N.C (C.S.). Copyright 2007 by the American Society for Pharmacology and Experimental Therapeutics. DMD Fast Forward. Published on January 12, 2007 as DOI: 10.1124/dmd.106.012823 This article has not been copyedited and formatted. The final version may differ from this version. DMD #12823 Running Title: Detection of CYP2Cs in Cardiovascular Tissues To whom correspondence should be addressed: Dr. Joyce A. Goldstein National Institute of Environmental Health Sciences 111 T.W. Alexander Drive Research Triangle Park, NC 27709 Tel: 919-541-4495 Downloaded from Fax: 919-541-3647 Email: [email protected] dmd.aspetjournals.org Text pages: 28 Number of tables: 3 Number of Figures: 7 at ASPET Journals on September 27, 2021 Number of References: 40 Abstract: 246 Introduction: 687 Discussion: 1047 Abbreviations: CYP: Cytochrome P450.
    [Show full text]
  • Early Pregnancy Maternal Progesterone Administration Alters Pituitary and Testis Function and Steroid Profile in Male Fetuses
    www.nature.com/scientificreports OPEN Early pregnancy maternal progesterone administration alters pituitary and testis function and steroid profle in male fetuses Katarzyna J. Siemienowicz1,2*, Yili Wang1, Magda Marečková1, Junko Nio‑Kobayashi1,3, Paul A. Fowler4, Mick T. Rae2 & W. Colin Duncan1 Maternal exposure to increased steroid hormones, including estrogens, androgens or glucocorticoids during pregnancy results in chronic conditions in ofspring that manifest in adulthood. Little is known about efects of progesterone administration in early pregnancy on fetal development. We hypothesised that maternal early pregnancy progesterone supplementation would increase fetal progesterone, afect progesterone target tissues in the developing fetal reproductive system and be metabolised to other bioactive steroids in the fetus. We investigated the efects of progesterone treatment during early pregnancy on maternal and fetal plasma progesterone concentrations, transcript abundance in the fetal pituitary and testes and circulating steroids, at day 75 gestation, using a clinically realistic ovine model. Endogenous progesterone concentrations were lower in male than female fetuses. Maternal progesterone administration increased male, but not female, fetal progesterone concentrations, also increasing circulating 11‑dehydrocorticosterone in male fetuses. Maternal progesterone administration altered fetal pituitary and testicular function in ovine male fetuses. This suggests that there may be fetal sex specifc efects of the use of progesterone in early pregnancy, and highlights that progesterone supplementation should be used only when there is clear evidence of efcacy and for as limited time as necessary. Fetal exposure to sex steroids has critical roles in sexual diferentiation and the programming of health and dis- ease in later life1. Exposure to endocrine disrupting compounds is linked to disease development in ofspring2.
    [Show full text]
  • Polymorphisms of CYP2C8 Alter First-Electron Transfer Kinetics and Increase Catalytic Uncoupling
    International Journal of Molecular Sciences Article Polymorphisms of CYP2C8 Alter First-Electron Transfer Kinetics and Increase Catalytic Uncoupling William R. Arnold 1 , Susan Zelasko 1, Daryl D. Meling 1, Kimberly Sam 1 and Aditi Das 1,2,3,4,* 1 Department of Biochemistry, University of Illinois Urbana-Champaign, 3813 Veterinary Medicine Basic Sciences Building, 2001 South Lincoln Avenue, Urbana, IL 61802, USA; [email protected] (W.R.A.); [email protected] (S.Z.); [email protected] (D.D.M.); [email protected] (K.S.) 2 Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 3813 Veterinary Medicine Basic Sciences Building, 2001 South Lincoln Avenue, Urbana, IL 61802, USA 3 Department of Bioengineering, University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, 3813 Veterinary Medicine Basic Sciences Building, 2001 South Lincoln Avenue, Urbana, IL 61802, USA 4 Division of Nutritional Sciences, University of Illinois Urbana-Champaign, 3813 Veterinary Medicine Basic Sciences Building, 2001 South Lincoln Avenue, Urbana, IL 61802, USA * Correspondence: [email protected]; Tel.: +1217-244-0630 Received: 30 August 2019; Accepted: 13 September 2019; Published: 18 September 2019 Abstract: Cytochrome P450 2C8 (CYP2C8) epoxygenase is responsible for the metabolism of over 60 clinically relevant drugs, notably the anticancer drug Taxol (paclitaxel, PAC). Specifically, there are naturally occurring polymorphisms, CYP2C8*2 and CYP2C8*3, that display altered PAC hydroxylation rates despite these mutations not being located in the active site. Herein, we demonstrate that these polymorphisms result in a greater uncoupling of PAC metabolism by increasing the amount of hydrogen peroxide formed per PAC turnover.
    [Show full text]
  • GRK4 Protein Recombinant Human Protein Expressed in Sf9 Cells
    Catalog # Aliquot Size G02-31G-20 20 µg G02-31G-50 50 µg GRK4 Protein Recombinant human protein expressed in Sf9 cells Catalog # G02-31G Lot # P1749-5 Product Description Purity Recombinant human GRK4 (140-end) was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The gene accession number for GRK4 is BC117320. The purity of GRK4 was determined to be >70% by densitometry, GRK4 Gene Aliases approx. MW 75kDa. GPRK2L, GPRK4, GRK4a, IT11 Formulation Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM DTT, 0.1mM PMSF, 25% glycerol. Storage and Stability o Store product at –70 C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Scientific Background GRK4 or G protein-coupled receptor kinase 4 is a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase subfamily of the Ser/Thr protein kinase family which phosphorylates the activated forms of G protein-coupled receptors thus initiating its deactivation and it also play an important role in receptor desensitization. GRK4 protein has kinase activity GRK4 Protein and that it interacts with and is inhibitable by calmodulin Recombinant human protein expressed in Sf9 cells (1).GRK4 has been linked to both genetic and acquired Catalog # hypertension. GRK4 is highly expressed in testis (2). G02-31G Lot # P1749-5 References Purity >70% Concentration 0.05 µg/µl Stability 1yr at –70oC from date of shipment 1.
    [Show full text]
  • Pharmacogenetics of Cytochrome P450 and Its Application and Value in Drug Therapy – the Past, Present and Future
    Pharmacogenetics of cytochrome P450 and its application and value in drug therapy – the past, present and future Magnus Ingelman-Sundberg Karolinska Institutet, Stockholm, Sweden The human genome x 3,120,000,000 nucleotides x 23,000 genes x >100 000 transcripts (!) x up to 100,000 aa differences between two proteomes x 10,000,000 SNPs in databases today The majority of the human genome is transcribed and has an unknown function RIKEN consortium Science 7 Sep 2005 Interindividual variability in drug action Ingelman-Sundberg, M., J Int Med 250: 186-200, 2001, CYP dependent metabolism of drugs (80 % of all phase I metabolism of drugs) Tolbutamide Beta blokers Warfarin Antidepressants Phenytoin CYP2C9* Diazepam Antipsychotics NSAID Citalopram Dextromethorphan CYP2D6* CYP2C19* Anti ulcer drugs Codeine CYP2E1 Clozapine Debrisoquine CYP1A2 Ropivacaine CYP2B6* Efavirenz Cyclophosphamide CYP3A4/5/7 Cyclosporin Taxol Tamoxifen Tacrolimus 40 % of the phase I Amprenavir Amiodarone metabolism is Cerivastatin carried out by Erythromycin polymorphic P450s Methadone Quinine (enzymes in Italics) Phenotypes and mutations PM, poor metabolizers; IM, intermediate met; EM, efficient met; UM, ultrarapid met Frequency Population Homozygous based dosing for • Stop codons • Heterozygous Two funct deleterious • Deletions alleles SNPs • Deleterious • Gene missense • Unstable duplication SNPs protein • Induction • Splice defects EM PM IM UM Enzyme activity/clearance The Home Page of the Human Cytochrome P450 (CYP) Allele Nomenclature Committee http://www.imm.ki.se/CYPalleles/ Webmaster: Sarah C Sim Editors: Magnus Ingelman-Sundberg, Ann K. Daly, Daniel W. Nebert Advisory Board: Jürgen Brockmöller, Michel Eichelbaum, Seymour Garte, Joyce A. Goldstein, Frank J. Gonzalez, Fred F. Kadlubar, Tetsuya Kamataki, Urs A.
    [Show full text]