First Record of Aedes Albopictus in Slovakia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist. -
Aedes Albopictus
Heredity (2002) 88, 270–274 2002 Nature Publishing Group All rights reserved 0018-067X/02 $25.00 www.nature.com/hdy Host age effect and expression of cytoplasmic incompatibility in field populations of Wolbachia- superinfected Aedes albopictus P Kittayapong1, P Mongkalangoon1, V Baimai1 and SL O’Neill2 1Department of Biology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand; 2Section of Vector Biology, Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520, USA The Asian tiger mosquito, Aedes albopictus (Skuse), is a ments with laboratory colonies showed that aged super- known vector of dengue in South America and Southeast infected males could express strong CI when mated with Asia. It is naturally superinfected with two strains of Wolba- young uninfected or wAlbA infected females. These results chia endosymbiont that are able to induce cytoplasmic provide additional evidence that the CI properties of Wolba- incompatibility (CI). In this paper, we report the strength of chia infecting Aedes albopictus are well suited for applied CI expression in crosses involving field-caught males. CI strategies that seek to utilise Wolbachia for host popu- expression was found to be very strong in all crosses lation modification. between field males and laboratory-reared uninfected or Heredity (2002) 88, 270–274. DOI: 10.1038/sj/hdy/6800039 wAlbA infected young females. In addition, crossing experi- Keywords: Aedes albopictus; cytoplasmic incompatibility; host age; Wolbachia Introduction individuals, CI occurs if the female is uninfected with respect to the strain that the male carries. The net effect The Asian tiger mosquito, Aedes albopictus (Skuse), is is a decrease in the fitness of single-infected females, and native to Asia and the South Pacific and has been recently thus the superinfection spreads (Sinkins et al, 1995b). -
A Classification System for Mosquito Life Cycles: Life Cycle Types for Mosquitoes of the Northeastern United States
June, 2004 Journal of Vector Ecology 1 Distinguished Achievement Award Presentation at the 2003 Society for Vector Ecology Meeting A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States Wayne J. Crans Mosquito Research and Control, Department of Entomology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, U.S.A. Received 8 January 2004; Accepted 16 January 2004 ABSTRACT: A system for the classification of mosquito life cycle types is presented for mosquito species found in the northeastern United States. Primary subdivisions include Univoltine Aedine, Multivoltine Aedine, Multivoltine Culex/Anopheles, and Unique Life Cycle Types. A montotypic subdivision groups life cycle types restricted to single species. The classification system recognizes 11 shared life cycle types and three that are limited to single species. Criteria for assignments include: 1) where the eggs are laid, 2) typical larval habitat, 3) number of generations per year, and 4) stage of the life cycle that overwinters. The 14 types in the northeast have been named for common model species. A list of species for each life cycle type is provided to serve as a teaching aid for students of mosquito biology. Journal of Vector Ecology 29 (1): 1-10. 2004. Keyword Index: Mosquito biology, larval mosquito habitats, classification of mosquito life cycles. INTRODUCTION strategies that do not fit into any of the four basic temperate types that Bates described in his book. Two There are currently more than 3,000 mosquito of the mosquitoes he suggested as model species occur species in the world grouped in 39 genera and 135 only in Europe and one of his temperate life cycle types subgenera (Clements 1992, Reinert 2000, 2001). -
Natural Infection of Aedes Aegypti, Ae. Albopictus and Culex Spp. with Zika Virus in Medellin, Colombia Infección Natural De Aedes Aegypti, Ae
Investigación original Natural infection of Aedes aegypti, Ae. albopictus and Culex spp. with Zika virus in Medellin, Colombia Infección natural de Aedes aegypti, Ae. albopictus y Culex spp. con virus Zika en Medellín, Colombia Juliana Pérez-Pérez1 CvLAC, Raúl Alberto Rojo-Ospina2, Enrique Henao3, Paola García-Huertas4 CvLAC, Omar Triana-Chavez5 CvLAC, Guillermo Rúa-Uribe6 CvLAC Abstract Fecha correspondencia: Introduction: The Zika virus has generated serious epidemics in the different Recibido: marzo 28 de 2018. countries where it has been reported and Colombia has not been the exception. Revisado: junio 28 de 2019. Although in these epidemics Aedes aegypti traditionally has been the primary Aceptado: julio 5 de 2019. vector, other species could also be involved in the transmission. Methods: Mosquitoes were captured with entomological aspirators on a monthly ba- Forma de citar: sis between March and September of 2017, in four houses around each of Pérez-Pérez J, Rojo-Ospina the 250 entomological surveillance traps installed by the Secretaria de Sa- RA, Henao E, García-Huertas lud de Medellin (Colombia). Additionally, 70 Educational Institutions and 30 P, Triana-Chavez O, Rúa-Uribe Health Centers were visited each month. Results: 2 504 mosquitoes were G. Natural infection of Aedes captured and grouped into 1045 pools to be analyzed by RT-PCR for the aegypti, Ae. albopictus and Culex detection of Zika virus. Twenty-six pools of Aedes aegypti, two pools of Ae. spp. with Zika virus in Medellin, albopictus and one for Culex quinquefasciatus were positive for Zika virus. Colombia. Rev CES Med 2019. Conclusion: The presence of this virus in the three species and the abundance 33(3): 175-181. -
Aedes Aegypti Distribution by State 3
Vector Hazard Report: Pictorial Guide to CONUS Zika Virus Vectors Information gathered from products of The Walter Reed Biosystematics Unit (WRBU) VectorMap Systematic Catalogue of the Culicidae 1 Table of Contents 1. Notes on the biology of Zika virus vectors 2. Aedes aegypti Distribution by State 3. Aedes albopictus Distribution by State 4. Overview of Mosquito Body Parts 5. General Information: Aedes aegypti 6. General Information : Aedes albopictus 7. Taxonomic Keys 8. References 2 Aedes aegypti Distribution by State Collections Reported 3 Aedes albopictus Distribution by State Collections Reported 4 Notes on the Biology of Zika Virus Vectors Aedes aegypti and Aedes albopictus, the major vectors of dengue, chikungunya & Zika viruses, are originally of African and Asian origin, respectively. The spread of these two species around the world in the past 50 years is well documented and facilitated by a unique life trait: their eggs can survive desiccation. This trait allows eggs laid by these species to travel undetected in receptacles like used tires, or lucky bamboo plants, which are distributed throughout the world. When these receptacles are wetted (e.g. by rain), the larva emerge and grow to adults in their new environment. In temperate or tropical environments conditions are highly suitable for populations to quickly become established, as these mosquitoes have done in Brazil and nearly every other country in North, Central and South America. Compounding this problem is that these mosquito species are capable of ovarian viral transmission – meaning that if the mother is infected with a virus, she can pass it on to her offspring through her eggs. -
Surveillance and Control of Aedes Aegypti and Aedes Albopictus in the United States
Surveillance and Control of Aedes aegypti and Aedes albopictus in the United States Table of Contents Intended Audience ..................................................................................................................................... 1 Specimen Collection and Types of Traps ................................................................................................... 6 Mosquito-based Surveillance Indicators ..................................................................................................... 8 Handling of Field-collected Adult Mosquitoes ............................................................................................. 9 Limitations to Mosquito-based Surveillance .............................................................................................. 10 Vector Control .......................................................................................................................................... 10 References ............................................................................................................................................... 12 Intended Audience Vector control professionals Objectives The primary objective of this document is to provide guidance for Aedes aegypti and Ae. albopictus surveillance and control in response to the risk of introduction of dengue, chikungunya, Zika, and yellow fever viruses in the United States and its territories. This document is intended for state and local public health officials and vector control specialists. Female -
Asian Tiger Mosquito, Aedes Albopictus (Skuse) (Insecta: Diptera: Culicidae)1 Leslie Rios and James E
EENY319 Asian Tiger Mosquito, Aedes albopictus (Skuse) (Insecta: Diptera: Culicidae)1 Leslie Rios and James E. Maruniak2 Introduction and late afternoon; it is an opportunistic and aggressive biter with a wide host range including man, domestic and The Asian tiger mosquito, Aedes albopictus (Skuse), was first wild animals (Hawley 1988). documented in the United States in Texas in 1985 (Sprenger and Wuithiranyagool 1986). A year later, the Asian tiger mosquito was found in Florida at a tire dump site near Jacksonville (O’Meara 1997). Since that time, this species has spread rapidly throughout the eastern states, including all of Florida’s 67 counties (O’Meara 1997). The arrival of Aedes albopictus has been correlated with the decline in the abundance and distribution of the yellow fever mosquito, Aedes aegypti. There are a number of possible explanations for the competitive exclusion of Ae. aegypti by Ae. albopic- tus. The decline is likely due to a combination of (a) sterility of offspring from interspecific matings; (b) reduced fitness of Ae. aegypti from parasites brought in with Ae. albopictus and; (c) superiority of Ae. albopictus in larval resource Figure 1. Adult Asian tiger mosquito, Aedes albopitus (Skuse). Credits: J. L. Castner, UF/IFAS competition (Lounibos 2002). The distribution of Ae. aegypti currently is limited to urban habitats in southern Distribution Texas, Florida and in New Orleans (Lounibos 2002). The distribution of Aedes albopictus is subtropical, with a Aedes albopictus is a competent vector of many viruses temperate distribution in North America, and in the United including dengue fever (CDC 2001) and Eastern equine en- States has expanded rapidly over the past few years. -
Suppressing Aedes Albopictus, an Emerging Vector of Dengue And
Am. J. Trop. Med. Hyg., 82(5), 2010, pp. 831–837 doi:10.4269/ajtmh.2010.09-0546 Copyright © 2010 by The American Society of Tropical Medicine and Hygiene Suppressing Aedes albopictus , an Emerging Vector of Dengue and Chikungunya Viruses, by a Novel Combination of a Monomolecular Film and an Insect-Growth Regulator Mark Nelder , Banugopan Kesavaraju ,* Ary Farajollahi , Sean Healy , Isik Unlu , Taryn Crepeau , Ashok Ragavendran , Dina Fonseca , and Randy Gaugler Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, New Jersey; Mercer County Mosquito Control, West Trenton, New Jersey ; Monmouth County Mosquito Extermination Commission, Eatontown, New Jersey; Department of Animal Sciences, Purdue University, West Lafayette, Indiana Abstract. The Asian tiger mosquito Aedes albopictus (Skuse) is rapidly increasing its global range and importance in transmission of chikungunya and dengue viruses. We tested pellet formulations of a monomolecular film (Agnique) and (S)-methoprene (Altosid) under laboratory and field conditions. In the laboratory, Agnique provided 80% control for 20 days, whereas Altosid, in combination with Agnique, provided 80% control for > 60 days. During field trials, the 1:1 pel- let ratio of combined products provided > 95% control for at least 32 days and 50% control for at least 50 days. Altosid remained effective after a 107-day laboratory-induced drought, suggesting that the product serves as a means of control during drought conditions and against spring broods in temperate regions. Agnique and Altosid, when used in tandem for cryptic, difficult-to-treat locations, can provide long-term control of Ae . albopictus larvae and pupae. The possible additive or synergistic effects of the combined products deserve further investigation. -
Aedes Albopictus, the Asian Tiger Mosquito
Aedes albopictus, the Asian tiger mosquito Distribution The Asian tiger mosquito, Aedes albopictus The Asian tiger mosquito, Aedes albopictus has become one of the major mosquito pest species throughout most of southcentral and eastern United States. Over the past 30 years, this invasive and particularly aggressive daytime biting mosquito has spread from its Asian origin to 5 con- tinents. It has now been detected in at least 38 countries and has become established in 28. In the U.S., Ae. albopictus first appeared in Houston, TX, in 1985 and has since spread to 1,368 counties in 40 states and the District of Columbia. Over the last 3 years, the presence of Ae. albopictus has been reported from numerous new locations reflecting an increased surveillance effort. On the map on the right side (fig. 1), all counties with block dots represent new detections, and it is very likely that many other counties, especially in states like Texas, Arkansas, Florida, Georgia, and Kentucky, may also have as yet undetected populations of Ae. albopictus. Ae. albopictus is a traveler. A primary reason for the rapid and widespread distribution of the Asian tiger mosquito is that it moves easily in shipments of lucky bamboo and in used tires across the world. In Europe, the spread of Fig. 1: Map from Hahn et al., 2017, showing the current distribution of Aedes albopictus in the US based on documented collection records this species has largely followed major highways where mosquitoes can hitch a ride from infested to non-infested areas in cars, trucks, and buses. -
Competence of Aedes Aegypti, Ae. Albopictus, and Culex
Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China Zhuanzhuan Liu, Tengfei Zhou, Zetian Lai, Zhenhong Zhang, Zhirong Jia, Guofa Zhou, Tricia Williams, Jiabao Xu, Jinbao Gu, Xiaohong Zhou, Lifeng Lin, Guiyun Yan, Xiao-Guang Chen In China, the prevention and control of Zika virus disease has and Guillian-Barré syndrome a Public Health Emergency been a public health threat since the first imported case was of International Concern (11). reported in February 2016. To determine the vector compe- Experimental studies have confirmed that Aedes mos- tence of potential vector mosquito species, we experimentally quitoes, including Ae. aegypti, Ae. albopictus, Ae. vittatus, infected Aedes aegypti, Ae. albopictus, and Culex quinquefas- and Ae. luteocephalus, serve as vectors of Zika virus (12– ciatus mosquitoes and determined infection rates, dissemina- 15). However, vector competence (ability for infection, dis- tion rates, and transmission rates. We found the highest vector competence for the imported Zika virus in Ae. aegypti mosqui- semination, and transmission of virus) differs among mos- toes, some susceptibility of Ae. albopictus mosquitoes, but no quitoes of different species and among virus strains. Ae. transmission ability for Cx. quinquefasciatus mosquitoes. Con- aegypti mosquitoes collected from Singapore are susceptible sidering that, in China, Ae. albopictus mosquitoes are widely and could potentially transmit Zika virus after 5 days of in- distributed but Ae. aegypti mosquito distribution is limited, Ae. fection; however, no Zika virus genome has been detected in albopictus mosquitoes are a potential primary vector for Zika saliva of Ae. aegypti mosquitoes in Senegal after 15 days of virus and should be targeted in vector control strategies. -
Mosquitoes of North-Western Europe As Potential Vectors of Arboviruses: a Review
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Mosquitoes of North-Western Europe as Potential Vectors of Arboviruses: A Review Jean-Philippe Martinet, Hubert Ferté, Anna-Bella Failloux, Francis Schaffner, Jérôme Depaquit To cite this version: Jean-Philippe Martinet, Hubert Ferté, Anna-Bella Failloux, Francis Schaffner, Jérôme Depaquit. Mosquitoes of North-Western Europe as Potential Vectors of Arboviruses: A Review. Viruses, MDPI, 2019, Special Issue Emerging Arboviruses, 11 (11), pp.1059. 10.3390/v11111059. pasteur-02388933 HAL Id: pasteur-02388933 https://hal-pasteur.archives-ouvertes.fr/pasteur-02388933 Submitted on 2 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Review Mosquitoes of North-Western Europe as Potential Vectors of Arboviruses: A Review Jean-Philippe Martinet 1,2,* , Hubert Ferté 1,3, Anna-Bella Failloux 2 , Francis Schaffner 4,5 -
Aedes Cinereus
Entomologist Challenge – Aedes cinereus John Shepard Sean McCann (Flicker) Department of Environmental Sciences Center for Vector Biology & Zoonotic Diseases The Connecticut Agricultural Experiment Station New Haven, CT Quick Facts • “True” Aedes • Described by German dipterist, Johann Wilhelm Meigen, in 1818 • Type species for the subgenus Aedes • Has not been subject to name changes • Synonym Species in the Northeastern US • Aedes fuscus, described from male and female specimens collected in Cambridge, MA by Osten Sacken, 1877 • Culex pallidothirta, described from female specimens collected in Orange Mts., NJ by Grossbeck, 1905 Refernce: Knight K. L, and A. Stone. 1977. A catalog of the mosquitoes of the world (Diptera: Culicidae): Vol. VI. The Thomas Say Foundation, Entomolgical Society of America, College Park, MD. Quick Facts • Holarctic distribution • northern latitudes of North America, Europe and northern Asia (Mongolia, Russia) • Does not have a “flashy” appearance as an adult • Medium-sized • Brownish-tan • Wings and legs with all dark scales • Nuisance • Aggressive biter during morning and early evening • Biting activity in wooded areas, near lavral habitat • “Ankle biter” • Medical and Veterinary Importance • Vector of a variety of pathogens Life History • Desiccation-resistant eggs laid in a variety of temporary and permanent water habitats • Larvae develop in a wide variety of freshwater habitats • Major generation in spring with sporadic egg hatch late • Overwinters in egg stage Similar life cycle with Ochlerotatus canadensis and Oc. sticticus Reference: Crans W. A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States. J. Vector Ecol. 2004. (1) 1-10. Larval Habitat • Larvae found in Temporary and Semi-Permanent pools • Shallow leaf-lined pools • Heavy to light shade • Deeper pools - associated with emergent vegetation • Sedge tussocks and boggy areas of ponds and swamps • Associated species in larval habitats include: • Oc.