OWL 2 Web Ontology Language Primer (Second Edition) W3C Recommendation 11 December 2012
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Hierarchical SVG Image Abstraction Layer for Medical Imaging
A Hierarchical SVG Image Abstraction Layer for Medical Imaging Edward Kim1, Xiaolei Huang1, Gang Tan1, L. Rodney Long2, Sameer Antani2 1Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA; 2Communications Engineering Branch, National Library of Medicine, Bethesda, MD ABSTRACT As medical imaging rapidly expands, there is an increasing need to structure and organize image data for efficient analysis, storage and retrieval. In response, a large fraction of research in the areas of content-based image retrieval (CBIR) and picture archiving and communication systems (PACS) has focused on structuring information to bridge the “semantic gap”, a disparity between machine and human image understanding. An additional consideration in medical images is the organization and integration of clinical diagnostic information. As a step towards bridging the semantic gap, we design and implement a hierarchical image abstraction layer using an XML based language, Scalable Vector Graphics (SVG). Our method encodes features from the raw image and clinical information into an extensible “layer” that can be stored in a SVG document and efficiently searched. Any feature extracted from the raw image including, color, texture, orientation, size, neighbor information, etc., can be combined in our abstraction with high level descriptions or classifications. And our representation can natively characterize an image in a hierarchical tree structure to support multiple levels of segmentation. Furthermore, being a world wide web consortium (W3C) standard, SVG is able to be displayed by most web browsers, interacted with by ECMAScript (standardized scripting language, e.g. JavaScript, JScript), and indexed and retrieved by XML databases and XQuery. Using these open source technologies enables straightforward integration into existing systems. -
Towards Ontology Based BPMN Implementation. Sophea Chhun, Néjib Moalla, Yacine Ouzrout
Towards ontology based BPMN Implementation. Sophea Chhun, Néjib Moalla, Yacine Ouzrout To cite this version: Sophea Chhun, Néjib Moalla, Yacine Ouzrout. Towards ontology based BPMN Implementation.. SKIMA, 6th Conference on Software Knowledge Information Management and Applications., Jan 2012, Chengdu, China. 8 p. hal-01551452 HAL Id: hal-01551452 https://hal.archives-ouvertes.fr/hal-01551452 Submitted on 6 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Towards ontology based BPMN implementation CHHUN Sophea, MOALLA Néjib and OUZROUT Yacine University of Lumiere Lyon2, laboratory DISP, France Natural language is understandable by human and not machine. None technical persons can only use natural language to specify their business requirements. However, the current version of Business process management and notation (BPMN) tools do not allow business analysts to implement their business processes without having technical skills. BPMN tool is a tool that allows users to design and implement the business processes by connecting different business tasks and rules together. The tools do not provide automatic implementation of business tasks from users’ specifications in natural language (NL). Therefore, this research aims to propose a framework to automatically implement the business processes that are expressed in NL requirements. -
A State-Of-The-Art Survey on Semantic Web Mining
Intelligent Information Management, 2013, 5, 10-17 http://dx.doi.org/10.4236/iim.2013.51002 Published Online January 2013 (http://www.scirp.org/journal/iim) A State-of-the-Art Survey on Semantic Web Mining Qudamah K. Quboa, Mohamad Saraee School of Computing, Science, and Engineering, University of Salford, Salford, UK Email: [email protected], [email protected] Received November 9, 2012; revised December 9, 2012; accepted December 16, 2012 ABSTRACT The integration of the two fast-developing scientific research areas Semantic Web and Web Mining is known as Se- mantic Web Mining. The huge increase in the amount of Semantic Web data became a perfect target for many re- searchers to apply Data Mining techniques on it. This paper gives a detailed state-of-the-art survey of on-going research in this new area. It shows the positive effects of Semantic Web Mining, the obstacles faced by researchers and propose number of approaches to deal with the very complex and heterogeneous information and knowledge which are pro- duced by the technologies of Semantic Web. Keywords: Web Mining; Semantic Web; Data Mining; Semantic Web Mining 1. Introduction precisely answer and satisfy the web users’ requests [1,5, 6]. Semantic Web is a part of the second generation web Semantic Web Mining is an integration of two important (Web2.0) and its original idea derived from the vision scientific areas: Semantic Web and Data Mining [1]. Se- W3C’s director and the WWW founder, Sir Tim Berners- mantic Web is used to give a meaning to data, creating complex and heterogeneous data structure, while Data Lee. -
Rdfa in XHTML: Syntax and Processing Rdfa in XHTML: Syntax and Processing
RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing A collection of attributes and processing rules for extending XHTML to support RDF W3C Recommendation 14 October 2008 This version: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014 Latest version: http://www.w3.org/TR/rdfa-syntax Previous version: http://www.w3.org/TR/2008/PR-rdfa-syntax-20080904 Diff from previous version: rdfa-syntax-diff.html Editors: Ben Adida, Creative Commons [email protected] Mark Birbeck, webBackplane [email protected] Shane McCarron, Applied Testing and Technology, Inc. [email protected] Steven Pemberton, CWI Please refer to the errata for this document, which may include some normative corrections. This document is also available in these non-normative formats: PostScript version, PDF version, ZIP archive, and Gzip’d TAR archive. The English version of this specification is the only normative version. Non-normative translations may also be available. Copyright © 2007-2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. Abstract The current Web is primarily made up of an enormous number of documents that have been created using HTML. These documents contain significant amounts of structured data, which is largely unavailable to tools and applications. When publishers can express this data more completely, and when tools can read it, a new world of user functionality becomes available, letting users transfer structured data between applications and web sites, and allowing browsing applications to improve the user experience: an event on a web page can be directly imported - 1 - How to Read this Document RDFa in XHTML: Syntax and Processing into a user’s desktop calendar; a license on a document can be detected so that users can be informed of their rights automatically; a photo’s creator, camera setting information, resolution, location and topic can be published as easily as the original photo itself, enabling structured search and sharing. -
Bibliography of Erik Wilde
dretbiblio dretbiblio Erik Wilde's Bibliography References [1] AFIPS Fall Joint Computer Conference, San Francisco, California, December 1968. [2] Seventeenth IEEE Conference on Computer Communication Networks, Washington, D.C., 1978. [3] ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Los Angeles, Cal- ifornia, March 1982. ACM Press. [4] First Conference on Computer-Supported Cooperative Work, 1986. [5] 1987 ACM Conference on Hypertext, Chapel Hill, North Carolina, November 1987. ACM Press. [6] 18th IEEE International Symposium on Fault-Tolerant Computing, Tokyo, Japan, 1988. IEEE Computer Society Press. [7] Conference on Computer-Supported Cooperative Work, Portland, Oregon, 1988. ACM Press. [8] Conference on Office Information Systems, Palo Alto, California, March 1988. [9] 1989 ACM Conference on Hypertext, Pittsburgh, Pennsylvania, November 1989. ACM Press. [10] UNIX | The Legend Evolves. Summer 1990 UKUUG Conference, Buntingford, UK, 1990. UKUUG. [11] Fourth ACM Symposium on User Interface Software and Technology, Hilton Head, South Carolina, November 1991. [12] GLOBECOM'91 Conference, Phoenix, Arizona, 1991. IEEE Computer Society Press. [13] IEEE INFOCOM '91 Conference on Computer Communications, Bal Harbour, Florida, 1991. IEEE Computer Society Press. [14] IEEE International Conference on Communications, Denver, Colorado, June 1991. [15] International Workshop on CSCW, Berlin, Germany, April 1991. [16] Third ACM Conference on Hypertext, San Antonio, Texas, December 1991. ACM Press. [17] 11th Symposium on Reliable Distributed Systems, Houston, Texas, 1992. IEEE Computer Society Press. [18] 3rd Joint European Networking Conference, Innsbruck, Austria, May 1992. [19] Fourth ACM Conference on Hypertext, Milano, Italy, November 1992. ACM Press. [20] GLOBECOM'92 Conference, Orlando, Florida, December 1992. IEEE Computer Society Press. http://github.com/dret/biblio (August 29, 2018) 1 dretbiblio [21] IEEE INFOCOM '92 Conference on Computer Communications, Florence, Italy, 1992. -
Bi-Directional Transformation Between Normalized Systems Elements and Domain Ontologies in OWL
Bi-directional Transformation between Normalized Systems Elements and Domain Ontologies in OWL Marek Suchanek´ 1 a, Herwig Mannaert2, Peter Uhnak´ 3 b and Robert Pergl1 c 1Faculty of Information Technology, Czech Technical University in Prague, Thakurova´ 9, Prague, Czech Republic 2Normalized Systems Institute, University of Antwerp, Prinsstraat 13, Antwerp, Belgium 3NSX bvba, Wetenschapspark Universiteit Antwerpen, Galileilaan 15, 2845 Niel, Belgium Keywords: Ontology, Normalized Systems, Transformation, Model-driven Development, Ontology Engineering, Software Modelling. Abstract: Knowledge representation in OWL ontologies gained a lot of popularity with the development of Big Data, Artificial Intelligence, Semantic Web, and Linked Open Data. OWL ontologies are very versatile, and there are many tools for analysis, design, documentation, and mapping. They can capture concepts and categories, their properties and relations. Normalized Systems (NS) provide a way of code generation from a model of so-called NS Elements resulting in an information system with proven evolvability. The model used in NS contains domain-specific knowledge that can be represented in an OWL ontology. This work clarifies the potential advantages of having OWL representation of the NS model, discusses the design of a bi-directional transformation between NS models and domain ontologies in OWL, and describes its implementation. It shows how the resulting ontology enables further work on the analytical level and leverages the system design. Moreover, due to the fact that NS metamodel is metacircular, the transformation can generate ontology of NS metamodel itself. It is expected that the results of this work will help with the design of larger real-world applications as well as the metamodel and that the transformation tool will be further extended with additional features which we proposed. -
Rdfs:Frbr– Towards an Implementation Model for Library Catalogs Using Semantic Web Technology
rdfs:frbr– Towards an Implementation Model for Library Catalogs Using Semantic Web Technology Stefan Gradmann SUMMARY. The paper sets out from a few basic observations (biblio- graphic information is still mostly part of the ‘hidden Web,’ library au- tomation methods still have a low WWW-transparency, and take-up of FRBR has been rather slow) and continues taking a closer look at Se- mantic Web technology components. This results in a proposal for im- plementing FRBR as RDF-Schema and of RDF-based library catalogues built on such an approach. The contribution concludes with a discussion of selected strategic benefits resulting from such an approach. [Article copies available for a fee from The Haworth Document Delivery Service: 1-800-HAWORTH. E-mail address: <[email protected]> Web- site: <http://www.HaworthPress.com> © 2005 by The Haworth Press, Inc. All rights reserved.] Stefan Gradmann, PhD, is Head, Hamburg University “Virtual Campus Library” Unit, which is part of the computing center and has a mission of providing information management services to the university as a whole, including e-publication services and open access to electronic scientific information resources. Address correspondence to: Stefan Gradmann, Virtuelle Campusbibliothek Regionales Rechenzentrum der Universität Hamburg, Schlüterstrasse 70, D-20146 Hamburg, Germany (E-mail: [email protected]). [Haworth co-indexing entry note]: “rdfs:frbr–Towards an Implementation Model for Library Cata- logs Using Semantic Web Technology.” Gradmann, Stefan. Co-published simultaneously in Cataloging & Classification Quarterly (The Haworth Information Press, an imprint of The Haworth Press, Inc.) Vol. 39, No. 3/4, 2005, pp. 63-75; and: Functional Requirements for Bibliographic Records (FRBR): Hype or Cure-All? (ed: Patrick Le Boeuf) The Haworth Information Press, an imprint of The Haworth Press, Inc., 2005, pp. -
RDF/XML: RDF Data on the Web
Developing Ontologies • have an idea of the required concepts and relationships (ER, UML, ...), • generate a (draft) n3 or RDF/XML instance, • write a separate file for the metadata, • load it into Jena with activating a reasoner. • If the reasoner complains about an inconsistent ontology, check the metadata file alone. If this is consistent, and it complains only when also data is loaded: – it may be due to populating a class whose definition is inconsistent and that thus must be empty. – often it is due to wrong datatypes. Recall that datatype specification is not interpreted as a constraint (that is violated for a given value), but as additional knowledge. 220 Chapter 6 RDF/XML: RDF Data on the Web • An XML representation of RDF data for providing RDF data on the Web could be done straightforwardly as a “holds” relation mapped according to SQLX (see ⇒ next slide). • would be highly redundant and very different from an XML representation of the same data • search for a more similar way: leads to “striped XML/RDF” – data feels like XML: can be queried by XPath/Query and transformed by XSLT – can be parsed into an RDF graph. • usually: provide RDF/XML data to an agreed RDFS/OWL ontology. 221 A STRAIGHTFORWARD XML REPRESENTATION OF RDF DATA Note: this is not RDF/XML, but just some possible representation. • RDF data are triples, • their components are either URIs or literals (of XML Schema datatypes), • straightforward XML markup in SQLX style, • since N3 has a term structure, it is easy to find an XML markup. <my-n3:rdf-graph xmlns:my-n3="http://simple-silly-rdf-xml.de#"> <my-n3:triple> <my-n3:subject type="uri">foo://bar/persons/john</my-n3:subject> <my-n3:predicate type="uri">foo://bar/meta#name</my-n3:predicate> <my-n3:object type="http://www.w3.org/2001/XMLSchema#string">John</my-n3:object> </my-n3 triple> <my-n3:triple> .. -
The Semantic Web - ISWC 2004
Lecture Notes in Computer Science 3298 The Semantic Web - ISWC 2004 Third International Semantic Web Conference, Hiroshima, Japan, November 7-11, 2004. Proceedings Bearbeitet von Sheila A. McIlraith, Dimitris Plexousakis, Frank van Harmelen 1. Auflage 2004. Taschenbuch. xxxv, 844 S. Paperback ISBN 978 3 540 23798 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 970 g Weitere Fachgebiete > EDV, Informatik > Datenbanken, Informationssicherheit, Geschäftssoftware > Datenkompression, Dokumentaustauschformate schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Preface The 3rd International Semantic Web Conference (ISWC 2004) was held Novem- ber 7–11, 2004 in Hiroshima, Japan. If it is true what the proverb says: “Once by accident, twice by habit, three times by tradition,” then this third ISWC did indeed firmly establish a tradition. After the overwhelming interest in last year’s conference at Sanibel Island, Florida, this year’s conference showed that the Semantic Web is not just a one-day wonder, but has established itself firmly on the research agenda. At a time when special interest meetings with a Seman- tic Web theme are springing up at major conferences in numerous areas (ACL, VLDB, ECAI, AAAI, ECML, WWW, to name but a few), the ISWC series has established itself as the primary venue for Semantic Web research. Response to the call for papers for the conference continued to be strong. -
Ontojit: Parsing Native OWL DL Into Executable Ontologies in an Object Oriented Paradigm
OntoJIT: Parsing Native OWL DL into Executable Ontologies in an Object Oriented Paradigm Sohaila Baset and Kilian Stoffel Information Management Institute University of Neuchatel, Neuchatel, Switzerland [email protected], [email protected] Abstract. Despite meriting the growing consensus between researchers and practitioners of ontology modeling, the Web Ontology Language OWL still has a modest presence in the communities of "traditional" web developers and software engineers. This resulted in hoarding the se- mantic web field in a rather small circle of people with a certain profile of expertise. In this paper we present OntoJIT, our novel approach to- ward a democratized semantic web where we bring OWL ontologies into the comfort-zone of end-application developers. We focus particularly on parsing OWL source files into executable ontologies in an object oriented programming paradigm. We finally demonstrate the dynamic code-base created as the result of parsing some reference OWL DL ontologies. Keywords: Ontologies, OWL, Semantic Web, Meta Programming,Dynamic Compilation 1 Background and Motivation With a stack full of recognized standards and specifications, the Web Ontology Language OWL has made long strides to allocate itself a distinctive spot in the landscape of knowledge representation and semantic web. Obviously, OWL is not the only player in the scene; over the couple of last decades many other languages have also emerged in the ontology modeling paradigm. Most of these languages are logic-based formalisms with underlying constructs in first order logic [5][7][8][11] or in one of the description logic fragments like OWL itself [3][4] and its predecessor DAML+OIL [10]. -
Data Models for Home Services
__________________________________________PROCEEDING OF THE 13TH CONFERENCE OF FRUCT ASSOCIATION Data Models for Home Services Vadym Kramar, Markku Korhonen, Yury Sergeev Oulu University of Applied Sciences, School of Engineering Raahe, Finland {vadym.kramar, markku.korhonen, yury.sergeev}@oamk.fi Abstract An ultimate penetration of communication technologies allowing web access has enriched a conception of smart homes with new paradigms of home services. Modern home services range far beyond such notions as Home Automation or Use of Internet. The services expose their ubiquitous nature by being integrated into smart environments, and provisioned through a variety of end-user devices. Computational intelligence require a use of knowledge technologies, and within a given domain, such requirement as a compliance with modern web architecture is essential. This is where Semantic Web technologies excel. A given work presents an overview of important terms, vocabularies, and data models that may be utilised in data and knowledge engineering with respect to home services. Index Terms: Context, Data engineering, Data models, Knowledge engineering, Semantic Web, Smart homes, Ubiquitous computing. I. INTRODUCTION In recent years, a use of Semantic Web technologies to build a giant information space has shown certain benefits. Rapid development of Web 3.0 and a use of its principle in web applications is the best evidence of such benefits. A traditional database design in still and will be widely used in web applications. One of the most important reason for that is a vast number of databases developed over years and used in a variety of applications varying from simple web services to enterprise portals. In accordance to Forrester Research though a growing number of document, or knowledge bases, such as NoSQL is not a hype anymore [1]. -
Open Geospatial Consortium
Open Geospatial Consortium Submission Date: 2016-08-23 Approval Date: 2016-11-29 Publication Date: 2016-01-31 External identifier of this OGC® document: http://www.opengis.net/doc/geosciml/4.1 Internal reference number of this OGC® document: 16-008 Version: 4.1 Category: OGC® Implementation Standard Editor: GeoSciML Modelling Team OGC Geoscience Markup Language 4.1 (GeoSciML) Copyright notice Copyright © 2017 Open Geospatial Consortium To obtain additional rights of use, visit http://www.opengeospatial.org/legal/. IUGS Commission for the Management and Application of Geoscience Information, Copyright © 2016-2017. All rights reserved. Warning This formatted document is not an official OGC Standard. The normative version is posted at: http://docs.opengeospatial.org/is/16-008/16-008.html This document is distributed for review and comment. This document is subject to change without notice and may not be referred to as an OGC Standard. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. Document type: OGC® Standard Document subtype: Document stage: Approved for Publis Release Document language: English i Copyright © 2016 Open Geospatial Consortium License Agreement Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this Agreement.