Viruses 2015, 7, 3053-3075; doi:10.3390/v7062760 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review HIV Rev Assembly on the Rev Response Element (RRE): A Structural Perspective Jason W. Rausch and Stuart F. J. Le Grice * Reverse Transcriptase Biochemistry Section, Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; E-Mail:
[email protected] * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel.: +1-301-846-5256; Fax: +1-301-846-6013. Academic Editor: David Boehr Received: 8 May 2015 / Accepted: 5 June 2015 / Published: 12 June 2015 Abstract: HIV-1 Rev is an ∼13 kD accessory protein expressed during the early stage of virus replication. After translation, Rev enters the nucleus and binds the Rev response element (RRE), a ∼350 nucleotide, highly structured element embedded in the env gene in unspliced and singly spliced viral RNA transcripts. Rev-RNA assemblies subsequently recruit Crm1 and other cellular proteins to form larger complexes that are exported from the nucleus. Once in the cytoplasm, the complexes dissociate and unspliced and singly-spliced viral RNAs are packaged into nascent virions or translated into viral structural proteins and enzymes, respectively. Rev binding to the RRE is a complex process, as multiple copies of the protein assemble on the RNA in a coordinated fashion via a series of Rev-Rev and Rev-RNA interactions. Our understanding of the nature of these interactions has been greatly advanced by recent studies using X-ray crystallography, small angle X-ray scattering (SAXS) and single particle electron microscopy as well as biochemical and genetic methodologies.