BODIPY- and Porphyrin-Based Sensors for Recognition of Amino Acids and Their Derivatives

Total Page:16

File Type:pdf, Size:1020Kb

BODIPY- and Porphyrin-Based Sensors for Recognition of Amino Acids and Their Derivatives molecules Review BODIPY- and Porphyrin-Based Sensors for Recognition of Amino Acids and Their Derivatives Marco Farinone, Karolina Urba ´nska and Miłosz Pawlicki * Wydział Chemii, Uniwersytet Wrocławski, F. Joliot-Curie 14, 50-383 Wrocław, Poland; [email protected] (M.F.); [email protected] (K.U.) * Correspondence: [email protected]; Tel.: +48 (71)375-7649 Academic Editor: M. Salomé Rodríguez-Morgade Received: 30 August 2020; Accepted: 29 September 2020; Published: 2 October 2020 Abstract: Molecular recognition is a specific non-covalent and frequently reversible interaction between two or more systems based on synthetically predefined character of the receptor. This phenomenon has been extensively studied over past few decades, being of particular interest to researchers due to its widespread occurrence in biological systems. In fact, a straightforward inspiration by biological systems present in living matter and based on, e.g., hydrogen bonding is easily noticeable in construction of molecular probes. A separate aspect also incorporated into the molecular recognition relies on the direct interaction between host and guest with a covalent bonding. To date, various artificial systems exhibiting molecular recognition and based on both types of interactions have been reported. Owing to their rich optoelectronic properties, chromophores constitute a broad and powerful class of receptors for a diverse range of substrates. This review focuses on BODIPY and porphyrin chromophores as probes for molecular recognition and chiral discrimination of amino acids and their derivatives. Keywords: molecular recognition; covalent recognition; chiral discrimination; BODIPY; porphyrin tweezers 1. Introduction For several reasons, the visible light became an important aspect of research focusing on specific interactions with the matter, which can find a wide scope of applications. The inexhaustible access to visible light opens many paths for searching for cost-efficient light-activated catalysts or systems properly interacting with specific wavelength (λ), essential for optoelectronic applications. The generality of the light also drives the activity towards formation of systems that can involve, e.g., intramolecular transformation leading to substantial change in absorbance or emission indicating a presence of specific factor. The analytical tools based on application of the visible light are constantly explored because of straightforward detection of the change even with the eye. The construction of skeleton responding to specific factors requires precise planning and designing of structural motifs that would react with and eventually modify the observed outcome, starting to behave as a molecular probe. Covalent recognition is the ability of designed molecular probes to react towards target skeletons with the formation of a covalent bond. As a result, a different behaviour, especially the optical response, can be used to monitor the presence of the target molecule in the medium that is tested. Molecular recognition is a specific tendency of compounds to selectively bind to each other through non-covalent interactions [1–3], such as metal coordination [4], hydrogen bonding [5], hydrophobic interactions [6], van der Waals interactions [7], π–π stacking [8] or electrostatic interactions [9]. The term “chiral recognition” refers to an event of molecular recognition, in which a receptor exhibits higher affinity towards one of existing enantiomers of guest molecule. If the host molecule is chiral, the formed Molecules 2020, 25, 4523; doi:10.3390/molecules25194523 www.mdpi.com/journal/molecules MoleculesMolecules 20202020, 25, 25, x, 4523FOR PEER REVIEW 2 2of of 28 28 molecule is chiral, the formed host-guest complexes are diastereoisomeric and therefore possess sets ofhost-guest different complexesproperties, are enabling diastereoisomeric their easy and separation, therefore possess as well sets as of differentiation different properties, in 1H enabling NMR spectroscopytheir easy separation, (chiral discrimination). as well as differentiation in 1H NMR spectroscopy (chiral discrimination). InIn the the past past decades decades the the BODIPY BODIPY chromophores chromophores (Scheme(Scheme1 1,, top)top) as as well well as as porphyrins porphyrins (Scheme (Scheme1, 1,bottom) bottom) or or porphyrinoids porphyrinoids have have found found widespread widespread applications applications as sensors as sensors for detectionfor detection of a broadof a broad scope scopeof substrates of substrates based on based several on straightforward several straight detectionforward channels, detection including channels, UV /Vis,including fluorescence UV/Vis, and fluorescencecircular dichroism and circular (CD) spectroscopies. dichroism (CD) These spectr techniquesoscopies. provideThese techniques a quick and provide accurate a responsequick and in accurateaddition response to requiring in addition minimal to amounts requiring of analyte.minimal Itamounts usually needsof analyte. a properly It usually defined needs optic a properly response definedfollowed optic by highresponse extinction followed coeffi bycients high and extinction effective coefficients fluorescence and with effective high quantum fluorescence yield. with The linearhigh quantumconstruction yield. of BODIPYThe linear leads construction to sharp absorption of BODIPY and leads highly to esharpfficient absorption emission observed,and highly what efficient opens emissiona potential observed, for application what opens of those a potential skeletons for appl as opticalication probes. of those On skeletons the other as hand,optical owing probes. to On the theunique other properties hand, owing of porphyrinoids, to the unique properties they are interesting of porphyrinoids, candidates they for are molecular interesting [10 ]candidates and chiral for [11 ] molecularrecognition [10] with and multi-channel chiral [11] andrecognition straightforward with multi-channel UV/Vis, fluorescence and straightforward and CD detection UV/Vis, [12,13 ]. fluorescenceThe macrocyclic and CD character detection of porphyrin [12,13]. The (Scheme macrocyclic1, bottom) character shows of another porphyrin aspect (Scheme of oligopyrroles. 1, bottom) showsStrongly another conjugated aspectπ -cloudsof oligop withyrroles. a diatropic Strongly circuit conjugated operating π within-clouds the with porphyrins a diatropic 18π electroncircuit operatingpath can bewithin also the applied porphyrins in NMR 18 detection,π electron eventually path can be showing also applied a significant in NMR di detection,fference in eventually registered showingchemical a shifts.significant On thedifference other hand, in registered their rich chemic opticalal properties,shifts. On the such other as intense hand, their absorption rich optical in the properties,Soret region such (400–430 as intense nm) absorption and fluorescence, in the Sore givest region further (400–430 possibilities nm) and for fluorescence, using them gives as probes further as possibilitiestheir strong for and using narrow them absorption as probes and as their fluorescence strong and bands narrow allow absorption detecting even and afluorescence slight perturbation bands allowcaused detecting by a guest even binding. a slight perturbation caused by a guest binding. SchemeScheme 1. 1. RepresentationRepresentation of ofthe the difference difference in the in thetarget target recognition recognition between: between: BODIPY BODIPY probe probe (1a); and (1a ); [18]Tetraphyrin(1.1.1.1)and [18]Tetraphyrin(1.1.1.1) probe probe (1b) ( (porphyrin1b)(porphyrin). The). yellow The yellow triangle triangle represents represents the target the target molecule, molecule, the lightthe lightblue bluetriangle triangle represents represents a leaving a leaving group. group. TheThe abundance abundance of ofmolecular molecular recognition recognition phenomena phenomena in living in living organisms organisms [14] is [ 14one] isof onethe many of the reasonsmany reasonsthis field this of fieldinterest of interestdraws attention draws attention of many of researchers. many researchers. Herein, we Herein, present we recent present reports recent onreports BODIPY- on BODIPY- and porphyrin-based and porphyrin-based sensors sensors for the for recognition the recognition of amino of amino acids acids and and discuss discuss their their respectiverespective applications. applications. The The importance importance behind behind the the recognition recognition of of amino amino acids acids lies lies on on the the fact fact that that thosethose molecules molecules are are essential essential in in the the human human body body for for many many physiological physiological processes processes such such as as protein protein synthesis,synthesis, detoxification, detoxification, metal metal bi bindingnding and and many many more more [15]. [15]. The The ov over-er- or or under-expression under-expression of of those those naturalnatural derivatives derivatives is is usually usually strictly strictly related related to to di differentfferent pathologies, pathologies, hence hence the the ability ability to to detect detect such such abnormalitiesabnormalities is is very very useful useful especially especially for for the the scr screeningeening of of diseases diseases in in patients. patients. Moreover, Moreover, recognition recognition ofof amino amino acids acids and and other other natural natural derivatives derivatives is is a apowerful powerful tool tool that, that, if if combined
Recommended publications
  • Molecular Tweezers for Lysine and Arginine –
    Volume 52 Number 76 1 October 2016 Pages 11307–11452 ChemComm Chemical Communications www.rsc.org/chemcomm ISSN 1359-7345 FEATURE ARTICLE Thomas Schrader, Gal Bitan and Frank-Gerrit Klärner Molecular tweezers for lysine and arginine – powerful inhibitors of pathologic protein aggregation ChemComm View Article Online FEATURE ARTICLE View Journal | View Issue Molecular tweezers for lysine and arginine – powerful inhibitors of pathologic protein aggregation Cite this: Chem. Commun., 2016, 52, 11318 a b a Thomas Schrader,* Gal Bitan* and Frank-Gerrit Kla¨rner* Molecular tweezers represent the first class of artificial receptor molecules that have made the way from a supramolecular host to a drug candidate with promising results in animal tests. Due to their unique structure, only lysine and arginine are well complexed with exquisite selectivity by a threading mechanism, which unites electrostatic, hydrophobic and dispersive attraction. However, tweezer design must avoid self-dimerization, self-inclusion and external guest binding. Moderate affinities of molecular tweezers towards sterically well accessible basic amino acids with fast on and off rates protect normal proteins from potential interference with their biological function. However, the early stages of Received 2nd June 2016, abnormal Ab, a-synuclein, and TTR assembly are redirected upon tweezer binding towards the Accepted 27th July 2016 generation of amorphous non-toxic materials that can be degraded by the intracellular and extracellular Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/c6cc04640a clearance mechanisms. Thus, specific host–guest chemistry between aggregation-prone proteins and lysine/arginine binders rescues cell viability and restores animal health in models of AD, PD, and www.rsc.org/chemcomm TTR amyloidosis.
    [Show full text]
  • Real-Time Monitoring of Newly Acidified Organelles During Autophagy Enabled by Reaction-Based BODIPY Dyes
    ARTICLE https://doi.org/10.1038/s42003-019-0682-1 OPEN Real-time monitoring of newly acidified organelles during autophagy enabled by reaction-based BODIPY dyes Hanzhuang Liu 1,5, Wenting Song 1,5, Delia Gröninger2, Lei Zhang3, Yinghong Lu3, Kin Shing Chan 1,4, 1234567890():,; Zhikuan Zhou1, Knut Rurack 2* & Zhen Shen 1* Real-time monitoring of newly acidified organelles during autophagy in living cells is highly desirable for a better understanding of intracellular degradative processes. Herein, we describe a reaction-based boron dipyrromethene (BODIPY) dye containing strongly electron- withdrawing diethyl 2-cyanoacrylate groups at the α-positions. The probe exhibits intense red fluorescence in acidic organelles or the acidified cytosol while exhibiting negligible fluores- cence in other regions of the cell. The underlying mechanism is a nucleophilic reaction at the central meso-carbon of the indacene core, resulting in the loss of π-conjugation entailed by dramatic spectroscopic changes of more than 200 nm between its colorless, non-fluorescent leuco-BODIPY form and its red and brightly emitting form. The reversible transformation between red fluorescent BODIPY and leuco-BODIPY along with negligible cytotoxicity qua- lifies such dyes for rapid and direct intracellular lysosome imaging and cytosolic acidosis detection simultaneously without any washing step, enabling the real-time monitoring of newly acidified organelles during autophagy. 1 State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China. 2 Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany. 3 School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 225600, China.
    [Show full text]
  • 'A Fluorophore for the Future' Design and Synthesis of Novel BODIPY Derivatives
    ‘A Fluorophore for the Future’ Design and Synthesis of Novel BODIPY Derivatives A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Chemistry University of Canterbury 2017 Joseph Fee Bruce i “I have not failed. I have just found ten thousand things that do not work" Thomas Edison (1847-1931) ii Acknowledgements Firstly I would like to say thank you to everyone who has given me any wisdom, guidance, laughter or encouragement during my masters. Undeniably, both my moral and commitment have waivered at times as I have questioned myself, and through these interactions with all of you, I have persevered. My supervisor, Dr Chris Fitchett: Your sheer aura as a chemist and mentor has kept me in the lab when I needed to be and for the knowledge you have passed on to me both during my undergraduate studies and my thesis, thank you. To the rest of Team Fitchett; Sam, Will and Nic. You were there when I began my masters and you are still there as I finish. You’ve answered every annoying question I ever asked, provided me with all the practical skills I needed to get through my thesis and kept the office feeling alive the whole way, so cheers, you guys are the best. An extra thanks goes to all of the academic and technical staff within the chemistry department, in particular Dr’s Marie Squire and Matt Polson for their extra help with Mass-Spec and NMR and X-ray Crystallography, along with Wayne Mackay and Rob McCregor for their invaluable skills.
    [Show full text]
  • Design, Synthesis, and Evaluation of Innovative BODIPY-Peptidic Conjugates for Biological Application
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2017 Design, Synthesis, and Evaluation of Innovative BODIPY-Peptidic Conjugates for Biological Application Tyrslai Menyaee Williams Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Williams, Tyrslai Menyaee, "Design, Synthesis, and Evaluation of Innovative BODIPY-Peptidic Conjugates for Biological Application" (2017). LSU Doctoral Dissertations. 4327. https://digitalcommons.lsu.edu/gradschool_dissertations/4327 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. DESIGN, SYNTHESIS, AND EVALUATION OF INNOVATIVE BODIPY-PEPTIDIC CONJUGATES FOR BIOLOGICAL APPLICATION A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Tyrslai Menyaeé Williams B.S., Southern University A&M College Baton Rouge, LA, 2011 August 2017 To my guardian angels Jency Williams, Libby Thompson, and Ann Glover we did it! To my heartbeats’ Marleigh Wright and Daviah Glover your unconditional love motivates me daily. ii ACKNOWLEDGEMENTS The impeccable journey of achieving my Doctorate of Philosophy in organic chemistry has been one of continuous learning and growth as a scientist and more importantly a woman. I would first like to thank God for being my light and salvation in everything that I do.
    [Show full text]
  • Design, Synthesis, and Testing of Bis-Corannulene Receptors for Fullerenes Based On
    Automated Template C: Created by James Nail 2013V2.1 Design, synthesis, and testing of bis-corannulene receptors for fullerenes based on Klärner’s tethers By Peumie Luckshika Abeyratne Kuragama A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry in the Department of Chemistry Mississippi State, Mississippi December 2015 Copyright by Peumie Luckshika Abeyratne Kuragama 2015 Design, synthesis, and testing of bis-corannulene receptors for fullerenes based on Klärner’s tethers By Peumie Luckshika Abeyratne Kuragama Approved: ____________________________________ Andrzej Sygula (Major Professor) ____________________________________ Keith T. Mead (Committee Member) ____________________________________ Todd E. Mlsna (Committee Member) ____________________________________ Dongmao Zhang (Committee Member) ____________________________________ Stephen C. Foster (Graduate Coordinator/Committee Member) ____________________________________ R. Gregory Dunaway Dean College of Arts & Sciences Name: Peumie Luckshika Abeyratne Kuragama Date of Degree: December 11, 2015 Institution: Mississippi State University Major Field: Chemistry Major Professor: Andrzej Sygula Title of Study: Design, synthesis, and testing of bis-corannulene receptors for fullerenes based on Klärner’s tethers Pages in Study: 141 Candidate for Degree of Doctor of Philosophy The discovery of the new allotropic forms of elemental carbon (e.g. fullerenes and carbon nanotubes)
    [Show full text]
  • A BODIPY-Based Fluorescent Sensor for Amino Acids Bearing Thiol †
    Proceedings A BODIPY-Based Fluorescent Sensor for Amino Acids Bearing Thiol † Edurne Avellanal-Zaballa 1, Ágata Ramos-Torres 2, Alejandro Prieto-Castañeda 2, Fernando García-Garrido 2, Jorge Bañuelos 1,*, Antonia R. Agarrabeitia 2 and María J. Ortiz 2,* 1 Dpto Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Aptdo 644, 48080 Bilbao, Spain; [email protected] 2 Dpto Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; [email protected] (Á.R.-T.); [email protected] (A.P.-C.); [email protected] (F.G.-G.); [email protected] (A.R.A.) * Correspondence: [email protected] (J.B.); [email protected] (M.J.O.) † Presented at the 23rd International Electronic Conference on Synthetic Organic Chemistry, 15 November–15 December 2019; Available online: https://ecsoc-23.sciforum.net/. Published: 14 November 2019 Abstract: Herein, we describe the synthetic route to access a red-emitting BODIPY from its α- diformylated precursor. The photophysical signatures of this dye are sensitive to the presence of thiol-containing amino acids (like cysteine, homocysteine, and glutathione) in the surrounding environment. This sensor provides up to three detection channels to monitor and quantify these biomolecules, even at low concentrations (down to micromolar). Moreover, owing to the pronounced splitting of the spectral band profile induced by these amino acids, the detection can be visualized following just the evolution of the fluorescence color by the naked eye. Keywords: dye chemistry; fluorescent sensors; BODIPY; amino acids; Wittig reaction 1. Introduction The molecular design of fluorescent sensors to monitor and quantify the presence of biomolecules in physiological media is actually a hot research topic, owing to the key role of some of these biomolecules in biochemical events and diseases [1,2].
    [Show full text]
  • 1 University of Hull Dipyrrin Complexes and Their Uses
    UNIVERSITY OF HULL DIPYRRIN COMPLEXES AND THEIR USES AS SELF ASSEMBLING MATERIALS Being a thesis submitted for the Degree of Doctor of Philosophy in the University of Hull By Michael Benstead, MChem(hons) December 2010 1 Acknowledgements Firstly, my thanks go to my supervisors Ross Boyle and Georg Mehl for their continued help and support throughout this project. Thanks also to Julie Haley and Rob Lewis for their help with DSC, HPLC and NMR. Many thanks go to lab members of C120 and C302 both past and present for their help and interesting banter throughout my time in the lab. In particular Chris Welch, Cristina Alonso and Francesca Giuntini for their help with various reactions and NMR interpretation. Lastly, many thanks to both my parents and my lovely wife Michelle without whose support this work would not be possible as we look forward to the arrival of baby Benstead, who will have to read this at some point I‘m sure. 2 Abstract Several series of BODIPYs bearing mesogenic substituents were synthesised and their fluorescence and liquid crystal properties were characterized. Each compound prepared consisted of one BODIPY fluorophore and one, two or three mesogenic units based primarily on a cyanobiphenyl core. Initially, the mesogens were attached to the pyrrolic positions of the fluorophore, but it was found that mesogen attachment at the BODIPY 8- phenyl ring gave an increased preference for mesophase formation due to the molecules having a more ‗rod-like‘ (calamitic) shape. For several of the compounds, a monotropic nematic phase was exhibited, however, no layered phase (e.g.
    [Show full text]
  • Design, Synthesis, and Photophysical Properties of BODIPY
    Proceeding Paper Design, Synthesis, and Photophysical Properties of † BODIPY-Labeled Lupane Triterpenoids Rinat Gubaidullin, Darya Nedopekina, Adis Tukhbatullin, Eldar Davletshin and Anna Spivak * Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, 450075 Ufa, Russia; [email protected] (R.G.); [email protected] (D.N.); [email protected] (A.T.); [email protected] (E.D.) * Correspondence: [email protected]; Tel.: +79174217106 † Presented at the 24th International Electronic Conference on Synthetic Organic Chemistry, 15 November–15 December 2020; Available online: https://ecsoc-24.sciforum.net/. Abstract: Novel boron-dipyrromethene difluoride (4,4-difluoro-4-bora-3α,4α-diaza-s-indacene) (BODIPY)-lupane triterpenoid conjugates bearing a fluorescent marker at the C-2 position of ring A of the triterpene core were obtained via the Sonogashira reaction as a key step. The starting com- pounds in the cross-coupling reaction were C-2 propynyl derivatives of betulinic or betulonic acids and fluorescent dyes with an iodo-group at C-2 or meso position of BODIPY-platform. The newly elaborated coupling procedure might have applicability in the synthesis of fluorescently-labeled triterpenoid conjugates suitable for biological assays. Keywords: pentacyclic triterpenoids; betulinic acid; BODIPY; fluorescent derivatives; Sonogashira coupling Citation: Gubaidullin, R.; Nedopekina, D.; Tukhbatullin, A.; Davletshin, E.; Spivak, A. Design, 1. Introduction Synthesis, and Photophysical Pentacyclic triterpenic acids, including the lupane family of triterpenoids (betulin, Properties of BODIPY-Labeled betulinic, and betulonic acids), are an important class of natural plant products. The wide- Lupane Triterpenoids. Chem. Proc. spread availability in nature, beneficial biological and pharmacological properties (anti- 2021, 3, 11.
    [Show full text]
  • S2 Emission from Chemically Modified Bodipys
    Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012 S2 Emission from Chemically Modified BODIPYs Dae Won Cho,*a Mamoru Fujitsuka,b Jung Ho Ryu,c Myoung Hee Lee,a Hwan Kyu Kim,c Tetsuro Majima,b Chan Ima a Konkuk University MAT - Fraunhofer ISE Next Generation Solar Cell Research Center, Konkuk University, Seoul 143-701, Korea. Fax: 82 2 2201 0407; Tel: 82 2 450 0406; E-mail: [email protected], and [email protected] b Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan, E-mail: [email protected], and [email protected] c Department of Advanced Materials Chemistry and WCU Center for Next Generation Photovoltaic Systems, Korea University, Jochiwon, Chungnam 339-700, Korea, E-mail: [email protected] Experimental Synthetic General The synthesis of BODIPYs is depicted on Scheme 2. Intermediate compound (1) was prepared by treatment of pyrrole with 1,3-dibromo-5,5-dimethylhydantoin in the presence of AIBN followed by amine protection with p-toluenesulfonyl chloride. Reaction of (1) with 4-methoxyphenylboronic acid under the conditions of Suzuki cross-coupling reaction yielded (2). After protection of the tosyl group with 15% ethanolic NaOH in ethanol, the resulting intermediate (3) was reacted with methyl 4- formylbenzoate to obtain (4), the oxidation of which was achieved by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, a stronger reactant than 1,4-benzoquinone. The reaction proceeded smoothly but separating the highly colored compound by column chromatography was difficult, which explains the somewhat low yield of this step.
    [Show full text]
  • Improved Synthesis and Enhanced Reactivity of X-Bodipys by Travis Lee Lundrigan Submitted in Partial Fulfilment of the Requireme
    Improved Synthesis and Enhanced Reactivity of X-BODIPYs by Travis Lee Lundrigan Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia December 2017 © Copyright by Travis Lee Lundrigan, 2017 TABLE OF CONTENTS List of Tables ..................................................................................................................... vi List of Figures ................................................................................................................... vii List of Schemes .................................................................................................................. ix Abstract .............................................................................................................................. xi List of Abbreviations and Symbols Used ......................................................................... xii Acknowledgements .......................................................................................................... xiv Chapter 1 – Introduction ..................................................................................................... 1 1.1 – Structure and Properties of Dipyrrinato Ligands .................................................. 1 1.2 – Synthesis of Dipyrrins ........................................................................................... 2 1.3 – Dipyrrinato Complexes ......................................................................................... 4 1.4
    [Show full text]
  • Functionalized BODIPY Dyes for Near-Infrared Emission Of
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 2017 Functionalized BODIPY Dyes for Near-Infrared Emission of Lanthanide Complexes Rukshani Wickrama Arachchi Eastern Illinois University This research is a product of the graduate program in Chemistry at Eastern Illinois University. Find out more about the program. Recommended Citation Arachchi, Rukshani Wickrama, "Functionalized BODIPY Dyes for Near-Infrared Emission of Lanthanide Complexes" (2017). Masters Theses. 2911. https://thekeep.eiu.edu/theses/2911 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. The GraduateSchool .EASTEH.N ILLINOISUNIVERSITY­ � Tbesis Maintenance and Reproduction Certificate FOR: Graduate Candidates Completing Theses in Partial Fulfillment of the Degree Graduate Faculty Advisors Directing the Theses RE: Preservation, Reproduction, and Distribution of Thesis Research Preserving, reproducing, and distributing thesis research is an important part of Booth Library's responsibility to provide access to scholarship. In order to further this goal, Booth Library makes all graduate theses completed as part of a degree program at EasternIllinois University available for personal study, research, and other not-for-profit educational purposes. Under 17 U.S.C. § 108, the library may reproduce and distribute a copy without infringing on copyright; however, professional courtesy dictates that pennission be requested from the author before doing so. Your signatures affirm the following: • The graduate candidate is the author of this thesis. • The graduate candidate retains the copyright and intellectual property rights associated with the original research, creative activity, and intellectual or artistic content of the thesis.
    [Show full text]
  • New BODIPY Dye with a Large Stokes Shift for Biopolymer Labelling †
    Proceeding Paper New BODIPY Dye with a Large Stokes Shift for Biopolymer Labelling † Valeria I. Raskolupova 1,2, Tatyana V. Popova 1, Olga D. Zakharova 1, Tatyana V. Abramova 1,* and Vladimir N. Silnikov 1 1 Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; [email protected] (V.I.R.); [email protected] (T.V.P.); [email protected] (O.D.Z.); [email protected] (V.N.S.) 2 Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia * Correspondence: [email protected] † Presented at the 24th International Electronic Conference on Synthetic Organic Chemistry, 15 November–15 December 2020; Available online: https://ecsoc-24.sciforum.net/. Abstract: As the most abundant protein with a variety of physiological functions, human serum albumin (HSA) has been used extensively for the delivery and improvement of therapeutic mole- cules. Thiolactone chemistry provides a powerful tool to prepare albumin-based multimodal imag- ing probes and agents for boron neutron capture therapy (BNCT). For this purpose, boron contain- ing 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye was designed and synthesized. BOD- IPY dyes are photostable neutral derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. These are widely used as chemosensors, laser materials and molecular probes. At the same time, BODIPY dyes, like most other fluorophores, have small or moderate Stokes shifts. Large Stokes shifts are preferred for fluorophores because of higher sensitivity of such probes and sensors. We succeeded in performing an annulation of pyrrole ring with coumarin heterocyclic system and achieved a re- markable difference in absorption and emission maximum of obtained fluorophore up to 100 nm.
    [Show full text]