Scientific Annals of Computer Science vol. 28 (1), 2018, pp. 1{38 doi: 10.7561/SACS.2018.1.1 The Theory of Finitely Supported Structures and Choice Forms Andrei Alexandru1 Abstract The theory of finitely supported algebraic structures provides a first step in computing infinite algebraic structures that are finitely sup- ported modulo certain atomic permutation actions. The motivation for developing such a theory comes from both mathematics (by modelling infinite algebraic structures, hierarchically defined by involving some basic elements called atoms, in a finitary manner, by analyzing their finite supports) and computer science (where finitely supported sets are used in various areas such as semantics foundation, automata theory, domain theory, proof theory and software verification). The results pre- sented in this paper include the meta-theoretical presentation of finitely supported structures, the study of the consistency of choice principles (and of results requiring choice principles) within this framework, and the presentation of several connections with other topics. Keywords: finitely supported set, choice principle, logical notion. 1 Introduction and Related Topics There does not exist a formal description of ‘infinite’ in those sciences which are focused on quantitative aspects. Questions such as `What represents the infinite?’, `How could the infinite be modelled?', or `Does the infinite really exist or is it just a convention?' naturally appear. In order to provide some appropriate answers, we present `Finitely Supported Mathematics (FSM)', (which is a general name for `the theory of finitely supported 1Romanian Academy, Institute of Computer Science, Ia¸si, Romania, Email:
[email protected] 2 A. Alexandru algebraic structures').