Rapid Microbial Response to the Presence of an Ancient Relic in the Antarctic Dry Valleys
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Statistical Analysis of Denaturing Gel Electrophoresis (DGE) fingerprinting Patterns
Published in Environmental Microbiology 4, issue 11, 634-643, 2002 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE which should be used for any reference to this work provided by RERO DOC Digital Library Minireview Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns N. Fromin,1* J. Hamelin,1 S. Tarnawski,1 ambiguous interpretation of the spatial and temporal D. Roesti,1 K. Jourdain-Miserez,1 N. Forestier,1 functioning of microbial communities. S. Teyssier-Cuvelle,1 F. Gillet,2 M. Aragno1 and P. Rossi1 Fingerprinting techniques applied to microbial 1Microbiology Laboratory, and 2Plant Ecology Laboratory, communities University of Neuchâtel, PO Box 2, CH-2007 Neuchâtel, Switzerland. Molecular approaches in microbial ecology A major challenge in the field of microbial ecology is to Summary assess the diversity of the microbial cells present in a defined habitat. Assessing the diversity of microbial com- Technical developments in molecular biology have munities (in terms of richness and structure) is a way to found extensive applications in the field of microbial address how they evolve in their environment. In a more ecology. Among these techniques, fingerprinting general way, it is a possible means to address the ques- methods such as denaturing gel electrophoresis tion of the modulation of microbial communities by (DGE, including the three options: DGGE, TGGE and environmental factors. Phylogenetically meaningful mac- TTGE) has been applied to environmental samples romolecules, particularly 16S rDNA directly amplified from over this last decade. Microbial ecologists took environmental DNA, are now widely used for such pur- advantage of this technique, originally developed for poses (Ranjard et al., 2000a; O’Donnell et al., 2001; the detection of single mutations, for the analysis of Schäfer and Muyzer, 2001). -
Evaluation of Automated Ribosomal Intergenic Spacer Analysis for Bacterial Fingerprinting of Rumen Microbiome Compared to Pyrosequencing Technology
Pathogens 2014, 3, 109-120; doi:10.3390/pathogens3010109 OPEN ACCESS pathogens ISSN 2076-0817 www.mdpi.com/journal/pathogens Article Evaluation of Automated Ribosomal Intergenic Spacer Analysis for Bacterial Fingerprinting of Rumen Microbiome Compared to Pyrosequencing Technology Elie Jami 1,2, Naama Shterzer 1 and Itzhak Mizrahi 1,* 1 Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel; E-Mails: [email protected] (E.J.); [email protected] (N.S.) 2 Department of Molecular Microbiology and Biotechnology , The George S. Wise Faculty of Life Science, Tel Aviv University, Ramat-Aviv 69978, Israel * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +972-3-9683026; Fax: +972-3-9683027. Received: 24 November 2013; in revised form: 18 December 2013 / Accepted: 9 January 2014 / Published: 22 January 2014 Abstract: The mammalian gut houses a complex microbial community which is believed to play a significant role in host physiology. In recent years, several microbial community analysis methods have been implemented to study the whole gut microbial environment, in contrast to classical microbiological methods focusing on bacteria which can be cultivated. One of these is automated ribosomal intergenic spacer analysis (ARISA), an inexpensive and popular way of analyzing bacterial diversity and community fingerprinting in ecological samples. ARISA uses the natural variability in length of the DNA fragment found between the 16S and 23S genes in different bacterial lineages to infer diversity. This method is now being supplanted by affordable next-generation sequencing technologies that can also simultaneously annotate operational taxonomic units for taxonomic identification. -
Comparison of CE-SSCP and DGGE for Monitoring a Complex Microbial Community Remediating Mine Drainage ⁎ Hyunsuk Hong A, Amy Pruden A, , Kenneth F
Journal of Microbiological Methods 69 (2007) 52–64 www.elsevier.com/locate/jmicmeth Comparison of CE-SSCP and DGGE for monitoring a complex microbial community remediating mine drainage ⁎ Hyunsuk Hong a, Amy Pruden a, , Kenneth F. Reardon b a Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA b Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, USA Received 23 September 2006; received in revised form 25 November 2006; accepted 25 November 2006 Available online 16 January 2007 Abstract Capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) is a promising high-throughput tool for profiling complex bioremediation communities, but has not been well characterized with respect to other methods such as denaturing gradient gel electrophoresis (DGGE). The purpose of this study was to compare CE-SSCP with DGGE with respect to: 1) overall representation of the community in terms of the dominant species identified and corresponding Shannon diversity indices; 2) reproducibility and resolution; and 3) artifacts, using a complex sulfate-reducing community remediating mine drainage as a model system. Some of the dominant microorganisms were detected by both methods, but there were also differences in the reported community compositions, and more phylogenetic groups were detected by CE-SSCP. CE-SSCP Shannon diversity indices were slightly higher than those determined from DGGE data, and differed in terms of the time point at which the community was reported to have the highest diversity. Both methods had high reproducibility, but CE-SSCP resolution was higher in terms of the total number of peaks resolved, reduced co-migration of distinct DNA sequences, and length and legibility of the DNA sequencing data of clones used to identify peaks. -
Meteorological Connectivity from Regions of High Biodiversity Within the Mcmurdo Dry Valleys of Antarctica
NOVEMBER 2019 K A T U R J I E T A L . 2437 Meteorological Connectivity from Regions of High Biodiversity within the McMurdo Dry Valleys of Antarctica a,e b c a d a M. KATURJI, B. KHAN, M. SPRENGER, R. DATTA, K. JOY, P. ZAWAR-REZA, d AND I. HAWES a Department of Geography, Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand b Institute of Meteorology and Climate Research–Atmospheric Environmental Research (IMK-IFU), Karlsruher Institut fur̈ Technologie, Garmisch-Partenkirchen, Germany c Institute for Atmospheric and Climate Science, ETH Zurich,€ Zurich, Switzerland d School of Biological Science, University of Waikato, Hamilton, New Zealand (Manuscript received 10 January 2019, in final form 26 August 2019) ABSTRACT Meteorological connectivity between biological hot spots of the McMurdo Dry Valleys (MDVs) of Antarctica is thought to play a role in species distribution and abundance through the aeolian transport of bioaerosols. Understanding the potential role of such meteorological connectivity requires an understanding of near-surface wind flow within and between valley airsheds. To address this, we applied Lagrangian wind trajectory modeling to mesoscale (spatial resolution of ;1 km) weather model output to predict connectivity pathways, focusing on regions of high biodiversity. Our models produce maps of a likelihood metric of wind connectivity that demonstrate the synoptic and mesoscale dependence of connections between local, near- local, and nonlocal areas on wind transport, modulated by synoptic weather and topographic forcing. These connectivity areas can have spatial trends modulated by the synoptic weather patterns and locally induced topographically forced winds. This method is transferrable to other regions of Antarctica for broader ter- restrial, coastal, and offshore ecological connectivity research. -
Evaluation of Automated Ribosomal Intergenic Spacer Analysis for Bacterial Fingerprinting of Rumen Microbiome Compared to Pyrosequencing Technology
Pathogens 2014, 3, 109-120; doi:10.3390/pathogens3010109 OPEN ACCESS pathogens ISSN 2076-0817 www.mdpi.com/journal/pathogens Article Evaluation of Automated Ribosomal Intergenic Spacer Analysis for Bacterial Fingerprinting of Rumen Microbiome Compared to Pyrosequencing Technology Elie Jami 1,2, Naama Shterzer 1 and Itzhak Mizrahi 1,* 1 Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel; E-Mails: [email protected] (E.J.); [email protected] (N.S.) 2 Department of Molecular Microbiology and Biotechnology , The George S. Wise Faculty of Life Science, Tel Aviv University, Ramat-Aviv 69978, Israel * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +972-3-9683026; Fax: +972-3-9683027. Received: 24 November 2013; in revised form: 18 December 2013 / Accepted: 9 January 2014 / Published: 22 January 2014 Abstract: The mammalian gut houses a complex microbial community which is believed to play a significant role in host physiology. In recent years, several microbial community analysis methods have been implemented to study the whole gut microbial environment, in contrast to classical microbiological methods focusing on bacteria which can be cultivated. One of these is automated ribosomal intergenic spacer analysis (ARISA), an inexpensive and popular way of analyzing bacterial diversity and community fingerprinting in ecological samples. ARISA uses the natural variability in length of the DNA fragment found between the 16S and 23S genes in different bacterial lineages to infer diversity. This method is now being supplanted by affordable next-generation sequencing technologies that can also simultaneously annotate operational taxonomic units for taxonomic identification. -
Redalyc.Molecular Characterization of Ruminal Bacterial Diversity in Vitro
Acta Scientiarum. Animal Sciences ISSN: 1806-2636 [email protected] Universidade Estadual de Maringá Brasil Freitas, Kárita Cláudia; Gabriel, Jane Eyre; Cunha Leite, Laudí; Dutra de Armas, Rafael; Pazzanese Duarte Lanna, Dante; França Madeira, Humberto Maciel Molecular characterization of ruminal bacterial diversity in vitro Acta Scientiarum. Animal Sciences, vol. 30, núm. 2, 2008, pp. 187-192 Universidade Estadual de Maringá .png, Brasil Available in: http://www.redalyc.org/articulo.oa?id=303126492008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Molecular characterization of ruminal bacterial diversity in vitro Kárita Cláudia Freitas 1, Jane Eyre Gabriel 1, Laudí Cunha Leite 2, Rafael Dutra de Armas 2, Dante Pazzanese Duarte Lanna 2 and Humberto Maciel França Madeira 1* 1Laboratório de Biologia Molecular Aplicada à Agropecuária, Centro de Ciências Agrárias e Ambientais, Pontifícia Universidade Católica do Paraná, Rod. BR 376, km 14, 83010-500, São José dos Pinhais, Paraná, Brazil. 2Laboratório de Nutrição e Crescimento Animal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, São Paulo, São Paulo, Brazil. *Author for correspondence. E-mail: [email protected] ABSTRACT. PCR analysis is a sensitive and specific tool to detect and monitor microorganisms in complex environmental samples. The amplification of 16S ribosomal DNA sequences followed by gel electrophoresis under denaturing gradient (DGGE) has been a powerful technique to genetically evaluate microbial ecosystems. Changes in rumen microbial populations were investigated in vitro using a basal diet with different lipid sources. -
Elemental Cycling in a Flow-Through Lake in the Mcmurdo Dry Valleys, Antarctica
Elemental Cycling in a Flow-Through Lake in the McMurdo Dry Valleys, Antarctica: Lake Miers THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Alexandria Corinne Fair Graduate Program in Earth Sciences The Ohio State University 2014 Master’s Examination Committee: Dr. W. Berry Lyons, Advisor Dr. Anne E. Carey Dr. Yu-Ping Chin Copyright by Alexandria Corinne Fair 2014 ABSTRACT The ice-free area in Antarctica known as the McMurdo Dry Valleys has been monitored biologically, meteorologically, hydrologically, and geochemically continuously since the onset of the MCM-LTER in 1993. This area contains a functioning ecosystem living in an extremely delicate environment. Only a few degrees of difference in air temperature can effect on the hydrologic system, making it a prime area to study ongoing climate change. The unique hydrology of Lake Miers, i.e. its flow- through nature, makes it an ideal candidate to study the mass balance of a McMurdo Dry Valley lake because both input and output concentrations can be analyzed. This study seeks to understand the physical and geochemical hydrology of Lake Miers relative to other MCMDV lakes. Samples were collected from the two inflowing streams, the outflowing stream, and the lake itself at 11 depths to analyze a suite of major cations (Li+, + + + 2+ - - - 2- - - Na , K , Mg , Ca ), major anions (Cl , Br , F , SO4 , ΣCO2), nutrients (NO2 , NO3 , + 3- NH4 , PO4 , Si), trace elements (Mo, Rb, Sr, Ba, U, V, Cu, As), water isotopes (δD, δ18O), and dissolved organic carbon (DOC). -
Amplicon Length Heterogeneity
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 12-3-2007 Amplicon length heterogeneity (ALH)-PCR generated bacterial community profiling : a novel application for the forensic examination of soil Todd Martin Crandall Florida International University DOI: 10.25148/etd.FI14061539 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Forensic Science and Technology Commons Recommended Citation Crandall, Todd Martin, "Amplicon length heterogeneity (ALH)-PCR generated bacterial community profiling : a novel application for the forensic examination of soil" (2007). FIU Electronic Theses and Dissertations. 2665. https://digitalcommons.fiu.edu/etd/2665 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida AMPLICON LENGTH HETEROGENEITY (ALH)-PCR GENERATED BACTERIAL COMMUNITY PROFILING; A NOVEL APPLICATION FOR THE FORENSIC EXAMINATION OF SOIL A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in FORENSIC SCIENCE by Todd Martin Crandall 2009 To: Dean Kenneth Furton College of Arts and Sciences This thesis, written by Todd Martin Crandall, and entitled Amplicon Length Heterogeneity (ALH)-PCR Generated Bacterial Community Profiling; A Novel Application for the Forensic Examination of Soil, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this thesis and recommend that it be approved. Jose Almirall DeEtta Mills Giri Narasimhan Kalai Mathee, Major Professor Date of Defense: December 3, 2007 The thesis of Todd Martin Crandall is approved. -
Colorectal Cancer Stage-Specific Fecal Bacterial Community
microorganisms Article Colorectal Cancer Stage-Specific Fecal Bacterial Community Fingerprinting of the Taiwanese Population and Underpinning of Potential Taxonomic Biomarkers Chuan-Yin Fang 1,†, Jung-Sheng Chen 2,† , Bing-Mu Hsu 3,4,* , Bashir Hussain 3,5,†, Jagat Rathod 6 and Kuo-Hsin Lee 7,8 1 Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 621, Taiwan; [email protected] 2 Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan; [email protected] 3 Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan; [email protected] 4 Center for Innovative on Aging Society (CIRAS), National Chung Cheng University, Chiayi 621, Taiwan 5 Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan 6 Department of Earth Sciences, National Cheng Kung University, Tainan 701, Taiwan; [email protected] 7 Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan; [email protected] 8 School of Medicine, I-Shou University, Kaohsiung 824, Taiwan * Correspondence: [email protected]; Tel.: +886-52720411 (ext. 66218) † Equal contribution to this work. Abstract: Despite advances in the characterization of colorectal cancer (CRC), it still faces a poor Citation: Fang, C.-Y.; Chen, J.-S.; prognosis. There is growing evidence that gut microbiota and their metabolites potentially contribute Hsu, B.-M.; Hussain, B.; Rathod, J.; Lee, K.-H. Colorectal Cancer to the development of CRC. Thus, microbial dysbiosis and their metabolites associated with CRC, Stage-Specific Fecal Bacterial based on stool samples, may be used to advantage to provide an excellent opportunity to find Community Fingerprinting of the possible biomarkers for the screening, early detection, prevention, and treatment of CRC. -
Fingerprinting the Fungal Community
Mycologist, Volume 17, Part 4 November 2003. ©Cambridge University Press Printed in the United Kingdom. DOI: 10.1017/S0269915X04004057 Fingerprinting the fungal community Nabla Kennedy and Nicholas Clipson Department of Industrial Microbiology, University College Dublin, Belfield, Dublin 4, Ireland. [email protected] +35317161574 [email protected] +35317161365 Fax +35317161183 Running title: Fingerprinting the fungal community. Corresponding Author: Nabla Kennedy Department of Industrial Microbiology, University College Dublin, Belfield, Dublin 4, Ireland Phone +35317161574 Fax +35317161183 Email: [email protected] Abstract Fungi can be found in almost any environment, and play important roles in ecosystem processes such as nutrient cycling and degradation. Despite their importance, the vast majority of fungi have not yet been isolated and identified. Due to the difficulties inherent in culture-based methods, fungal ecologists have turned to community fingerprinting techniques, which utilize signal molecules to profile the fungal members of an environmental sample without culturing. Commonly used signal molecules include chitin, ergosterol, membrane lipids, and nucleic acids. Several DNA-based fingerprinting methods have been successfully applied to fungal communities, including D/TGGE (denaturing/temperature gradient gel electrophoresis), SSCP (single-stranded conformational polymorphism), RISA (ribosomal intergenic spacer analysis), and T-RFLP (terminal restriction length fragment polymorphism). These techniques allow the fungal ecologist to rapidly profile fungal populations in an ecosystem, without the need for laborious culturing or cloning. Keywords: Fungal ecology, community fingerprinting, DGGE, TGGE, RISA, T-RFLP Introduction From the woodland floor to the mouldy shower curtain, fungi are found in almost every environment. Fungal ecologists need to assess the role of fungi in these ecosystems in terms of the fungal species present, their prevalence, and the processes they perform. -
Thesis Is Protected by the Copyright Act 1994 (New Zealand)
http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. Influences of Soil Properties on Archaeal Diversity and Distribution in the McMurdo Dry Valleys, Antarctica A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Biological Sciences By Ingrid Richter The University of Waikato, Hamilton, New Zealand 2011 Abstract The Antarctic Dry Valleys are characterized by extremely low temperatures, arid conditions, high salinity and virtual absence of plants. Therefore, food webs of these microbially dominated soils are among the simplest on earth making these mineral soils a perfect model to study microbial biogeography. This study aims to characterize the distribution and diversity of Archaea within the Dry Valleys as part of the New Zealand Terrestrial Antarctic Biocomplexity Survey (NZTABS). An international multidisciplinary organization focusing on biotic organisms, community structure and their functional linkage to determine what environmental factors drive biocomplexity. -
Developing a High Throughput Protocol for Using Soil Molecular Biology As Trace Evidence
The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Developing a High Throughput Protocol for using Soil Molecular Biology as Trace Evidence Author(s): Sabreena Larson, David O. Carter, Cheryl Bailey, Rhae A. Drijber Document No.: 240691 Date Received: January 2013 Award Number: 2009-DN-BX-K199 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. FINAL TECHNICAL REPORT Developing a high throughput protocol for using soil molecular biology as trace evidence 2009-NIJ-DN-BX-K199 Sabreena Larson, David O. Carter, Cheryl Bailey, Rhae A. Drijber University of Nebraska-Lincoln This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Abstract Soil has a long and successful history as trace evidence. Originally, the use of soil as trace evidence was accomplished via light microscopy. But the value of soil as trace evidence has expanded significantly with the development of new techniques. Most recently these include using the biochemical molecules from soil microbial communities to make a fingerprint of the specific soil.