Hypertrophies and Intraventricular Conduction Defects

Total Page:16

File Type:pdf, Size:1020Kb

Hypertrophies and Intraventricular Conduction Defects Hypertrophies and Intraventricular Conduction Defects Hypertrophies and Intraventricular Conduction Defects Causes, Presentation, and Significance Linda Josephson, MS, RN, CCRN-CMC There is an increasing need for nurses to interpret a 12-lead electrocardiogram, both in critical care units and in other areas. This can be a challenging task, especially in the presence of hypertrophies, bundle-branch blocks, and fascicular blocks. This article reviews the pathophysiology of intraventricular blocks and hypertrophy, characteristics found in the 12-lead electrocardiogram, and discusses what the significance of these findings may be. Keywords: Arrhythmias, Hypertrophies, Intraventricular conduction defects, Ischemic changes [DIMENS CRIT CARE NURS. 2010;29(6):259/275] There is an increasing need for nurses to be able to cardiodynamic conditions or changes. Hypertrophy of the accurately interpret a 12-lead electrocardiogram (ECG). different heart chambers place patients at increased risk The accurate detection of ischemic changes and the con- for cardiovascular events and may be a contributing cause firmation of arrhythmic changes all require the accurate of intraventricular conduction defects themselves.3,4 Epi- interpretation of a 12-lead ECG.1 However, there has demiological studies on the prevalence of BBBs and hy- traditionally been less emphasis placed on nurses being pertrophies demonstrate that the prevalence of both these able to interpret a 12-lead ECG and a greater expectation conditions increases with age.3,5 As the population of the that nurses would be adept at arrhythmia detection using United States continues to age, there will be an increased a 1- or 2-lead monitoring system. Because of that, many prevalence for cardiac disturbances. The presence of both nurses who are currently in practice may not have re- these conditions indicates that the individual has a higher ceived instruction in nursing school on how to read a 12- risk of other cardiac comorbidities.6 lead ECG. Some nurses may not get all the education they This article reviews the pathophysiology of intraven- need in their critical care orientation program. As a result, tricular blocks and hypertrophy, characteristics found in nurses may not feel confident or comfortable in the in- the 12-lead ECG, and discusses what the significance of terpretation of a 12-lead ECG. Even for nurses who have these findings may be. taken a formal ECG course, interpreting an ECG may not always be done accurately.2 This may be especially chal- ANATOMY OF THE HEART’S ELECTRICAL lenging for some arrhythmias such as bundle-branch CONDUCTION SYSTEM blocks (BBBs), fascicular blocks, and hypertrophies. The sinoatrial node (SA node) is the pacemaker of the These conduction defects and hypertrophies can have heart. It is located high in the left atrium near the superior considerable clinical significance as precursors to other vena cava. The SA node is connected to the right atrium DOI: 10.1097/DCC.0b013e3181f0be8d November/December 2010 259 Copyright @ 2010 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. Hypertrophies and Intraventricular Conduction Defects via Bachman bundle and to the atrioventricular (AV) node TABLE 1 Blood Supply to the Cardiac via internodal pathways that travel down the left atrium. Conduction System The AV node is located in the right atrium also, but low in the atrial wall just above the tricuspid valve. It serves to Coronary slow the impulse SA node, to allow the atria to contract Structure Blood Supply Artery and push the last of the blood from the atria into the SA node RCA RCA ventricles just before the ventricular systole (Figure 1). AV node AV nodal artery from RCA RCA Conduction of the impulse continues down through Bundle of His Left anterior descending via septal LCA the bundle of His, which is a continuation of fibers from perforator arteries the AV node. The bundle of His continues for a short distance, and then it bifurcates, forming the right and left Right bundle branch Left anterior descending artery LCA bundle branches (LBBs). The right side of the bundle Left anterior fascicle Left anterior descending artery LCA becomes the right bundle branch (RBB), which is long and Left posterior fascicle Left anterior descending and LCA, RCA slender. It travels down the right side of the intraventricu- posterior descending artery lar septum to the base. At the base of the septum, the RBB diverges into the Purkinje fibers, which serves to stimulate Abbreviations: AV, atrioventricular; LCA, left coronary artery; RCA, right coronary the right ventricle to contract. artery; SA, sinoatrial. On the left side, the left common bundle continues for a short distance before it also bifurcates into the left anterior Normally, the bundle of His receives a dual blood fascicle (LAF) and the left posterior fascicle (LPF). The supply; the bundle receives blood from the left anterior LAF, like the RBB, is long and thin. It travels down the left descending (LAD) artery and the posterior descending ar- side of the intraventricular septal wall and runs toward the tery (PDA) (Table 1). anterior-superior papillary muscle. The RBB conducts the The RBB is supplied by the LAD artery. Because the impulse from the bundle of His to the anterior and lateral left RBB is a long and slender structure, it is vulnerable to ventricular (LV) wall. The posterior fascicle travels down the damage. However, this structure has many bifurcations posterior wall of the intraventricular septum in the direction that may be less turbulent. The LBB is much more robust of the posterior-inferior papillary muscle. It is responsible for than the RBB. The anterior and medial fascicles receive stimulating the posterior ventricular wall to contract.7,8 their blood supply from the LAD artery via the septal perforating branches of the LAD artery. The posterior fas- BLOOD SUPPLY TO THE CONDUCTION SYSTEM cicle, like the bundle of His, has a dual blood supply from 9,10 The right coronary artery (RCA) provides the blood sup- both the LAD artery and PDA (Figure 2). ply to the SA node in 55% of the population, and the left circumflex artery provides the blood supply to the SA VECTOR DEVELOPMENT OF THE QRS COMPLEX node in the remaining 45% of the population. The blood During depolarization of the heart, many vectors develop supply to the AV node is commonly supplied by the RCA as the myocardium contracts. However, to simplify the in the vast majority of the population, 90% or so. In the concept, the depolarization of the ventricles can be divided 10% of the population that does not have this arrange- into a 2-phase event.7,11 The first vector is developed when ment, the AV node is supplied by the left circumflex artery. the septal wall of the ventricles depolarizes. The septum Figure 2. Blood supply to the conduction system. Courtesy of Figure 1. Conduction system. Abbreviation: AV, atrioventricular. ecgpedia, Rob Kreuger, medical illustrator; C. Carl Jaffe, MD, car- Courtesy of Wikimediacommons, drawing by Madhero88. Licensed diologist. Licensed under creative commons. http://creativecommons. under creative commons: http://creativecommons.org/licenses/by/2.5/. org/licenses/by/2.5/. 260 Dimensions of Critical Care Nursing Vol. 29 / No. 6 Copyright @ 2010 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. Hypertrophies and Intraventricular Conduction Defects depolarizes from the left side to the right. This creates a outflow tract of the left ventricle, exposing it to additional vector that travels in a rightward and slightly anterior stress. It is not uncommon to see a bifascicular block of the direction. On the surface ECG for leads that are on the RBB and the LAF. Both the RBB and LAF usually have a right side, such as aVR, and V1-V2, the first part of the single blood supply, usually from the LAD artery. The QRS complex is positive, and a small r wave is inscribed. single blood supply also makes them vulnerable to damage. For leads that are on the left side, such as I, aVL, V5-V6, A block of the LPF is relatively rare. This is due to the because the septal vector moves away from the positive LPF being stronger and more robust fascicle, than either the electrode of the leads, the first part of the QRS complex is RBB or the LAF. Additionally, the LPF also has a dual blood negative and inscribes a small q wave. This is sometimes supply from both the right and left coronary artery system.8,9 called a septal q wave.9-11 The second phase of the ventricular depolarization is Right Bundle-Branch Block the activation of the free wall of the right and left ventricle. When a right BBB (RBBB) occurs, the septum continues to The free walls of both ventricles contract simultaneously. depolarize normally. The impulses from the SA node travel However, because the left ventricle has the greatest muscle to the AV node and then continue through the bundle of mass, it generates the greatest electrical force and domi- His and down the LBB as usual. The impulse depolarizes nates the morphology of the QRS complex. The contrac- the septum in the normal fashion, from left to right, and tion of the free wall of the ventricles produces the main then the left ventricle depolarizes.7 Then the impulses vector of the heart, which travels from right to left and travel from the left ventricle to the right ventricle, across somewhat downward.9-11 the septal wall and through the myocardium to stimulate The result of this is that in leads that are right-sided, aVR, the right ventricle and cause depolarization (Table 2). V1 and V2, the deflection is seen primarily as a negative one On the surface ECG, the first portion of the QRS com- after the small initial r wave.
Recommended publications
  • Characterization of Atrial Fibrillation Adverse Events Reported in Ibrutinib Randomized Controlled Registration Trials
    Complications in Hematology SUPPLEMENTARY APPENDIX Characterization of atrial fibrillation adverse events reported in ibrutinib randomized controlled registration trials Jennifer R. Brown, 1 Javid Moslehi, 2 Susan O’Brien, 3 Paolo Ghia, 4 Peter Hillmen, 5 Florence Cymbalista, 6 Tait D. Shanafelt, 7 Graeme Fraser, 8 Simon Rule, 9 Thomas J. Kipps, 10 Steven Coutre, 11 Marie-Sarah Dilhuydy, 12 Paula Cramer, 13 Alessandra Tedeschi, 14 Ulrich Jaeger, 15 Martin Dreyling, 16 John C. Byrd, 17 Angela Howes, 18 Michael Todd, 19 Jessica Ver - meulen, 20 Danelle F. James, 21 Fong Clow, 21 Lori Styles, 21 Rudy Valentino, 21 Mark Wildgust, 19 Michelle Mahler 19 and Jan A. Burger 22 1Dana-Farber Cancer Institute, Boston, MA, USA; 2Division of Cardiovascular Medicine and Cardio-Oncology Program Vanderbilt School of Medicine, Nashville, TN, USA; 3Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA, USA; 4Univer - sità Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milano, Italy; 5CA Leeds Teaching Hospitals, St. James Insti - tute of Oncology, Leeds, UK; 6Hôpital Avicenne, AP-HP, UMR Paris13/INSERM U978, Bobigny, France; 7Mayo Clinic, Rochester, MN, USA; 8Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada; 9Department of Haematology, Plymouth University Med - ical School, Plymouth, UK; 10 Moores UCSD Cancer Center, San Diego, CA, USA; 11 Stanford University School of Medicine and Stanford Cancer Institute, Stanford, CA, USA; 12 Hôpital Haut-Lévêque, Bordeaux, Pessac, France; 13
    [Show full text]
  • Young Adults. Look for ST Elevation, Tall QRS Voltage, "Fishhook" Deformity at the J Point, and Prominent T Waves
    EKG Abnormalities I. Early repolarization abnormality: A. A normal variant. Early repolarization is most often seen in healthy young adults. Look for ST elevation, tall QRS voltage, "fishhook" deformity at the J point, and prominent T waves. ST segment elevation is maximal in leads with tallest R waves. Note high take off of the ST segment in leads V4-6; the ST elevation in V2-3 is generally seen in most normal ECG's; the ST elevation in V2- 6 is concave upwards, another characteristic of this normal variant. Characteristics’ of early repolarization • notching or slurring of the terminal portion of the QRS wave • symmetric concordant T waves of large amplitude • relative temporal stability • most commonly presents in the precordial leads but often associated with it is less pronounced ST segment elevation in the limb leads To differentiate from anterior MI • the initial part of the ST segment is usually flat or convex upward in AMI • reciprocal ST depression may be present in AMI but not in early repolarization • ST segments in early repolarization are usually <2 mm (but have been reported up to 4 mm) To differentiate from pericarditis • the ST changes are more widespread in pericarditis • the T wave is normal in pericarditis • the ratio of the degree of ST elevation (measured using the PR segment as the baseline) to the height of the T wave is greater than 0.25 in V6 in pericarditis. 1 II. Acute Pericarditis: Stage 1 Pericarditis Changes A. Timing 1. Onset: Day 2-3 2. Duration: Up to 2 weeks B. Findings 1.
    [Show full text]
  • Bundle Branch Blocks And/Or Hemiblocks Complicating Acute Myocardial Ischemia Or Infarction
    Journal of Interventional Cardiac Electrophysiology https://doi.org/10.1007/s10840-018-0430-3 Bundle branch blocks and/or hemiblocks complicating acute myocardial ischemia or infarction Samuel Lévy1 Received: 23 May 2018 /Accepted: 24 July 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Despite the bulk of anatomical and histologic evidence supporting the existence of three fascicules in the left branch of the His bundle, the concept of a bifascicular system proposed by Rosenbaum and his school has been adopted by the cardiological community as a practical teaching tool. Left anterior hemiblock (LAH) refers to block of the antero-superior branch of the left branch which is small and left posterior hemiblock (LPH) to block of the postero-inferior branch which is larger. The LAH is more common that the LPH and often associated with a complete right bundle branch block (RBBB). Coronary artery disease (CAD) is a major cause of hemiblocks. In this review article, we discuss various aspects of the relation of hemiblocks with CAD. We looked at the prevalence of LAH in consecutive patients undergoing coronary angiography and who had a significant coronary lesion in one vessel or more. In all patients with LAH, a significant lesion of the left anterior descending coronary artery was present, with in the majority of patients, an impairment of the left ventricular function. Bifascicular block (RBBB with LAH or LPH) can complicate acute myocardial infarction and is often associated with a poor prognosis and the presence of heart failure. Thrombolysis and or early angioplasty in acute myocardial infarction have significantly improved the prognosis and reduced the mortality associated with bifascicular block.
    [Show full text]
  • View Pdf Copy of Original Document
    Phenotype definition for the Vanderbilt Genome-Electronic Records project Identifying genetics determinants of normal QRS duration (QRSd) Patient population: • Patients with DNA whose first electrocardiogram (ECG) is designated as “normal” and lacking an exclusion criteria. • For this study, case and control are drawn from the same population and analyzed via continuous trait analysis. The only difference will be the QRSd. Hypothetical timeline for a single patient: Notes: • The study ECG is the first normal ECG. • The “Mildly abnormal” ECG cannot be abnormal by presence of heart disease. It can have abnormal rate, be recorded in the presence of Na-channel blocking meds, etc. For instance, a HR >100 is OK but not a bundle branch block. • Y duration = from first entry in the electronic medical record (EMR) until one month following normal ECG • Z duration = most recent clinic visit or problem list (if present) to one week following the normal ECG. Labs values, though, must be +/- 48h from the ECG time Criteria to be included in the analysis: Criteria Source/Method “Normal” ECG must be: • QRSd between 65-120ms ECG calculations • ECG designed as “NORMAL” ECG classification • Heart Rate between 50-100 ECG calculations • ECG Impression must not contain Natural Language Processing (NLP) on evidence of heart disease concepts (see ECG impression. Will exclude all but list below) negated terms (e.g., exclude those with possible, probable, or asserted bundle branch blocks). Should also exclude normalization negations like “LBBB no longer present.”
    [Show full text]
  • New Emergency Room Requirement for Hospital and Autopay List of Diagnosis Codes
    Provider update New emergency room requirement for hospitals Dell Children’s Health Plan reviewed our emergency room (ER) claims data and identified numerous reimbursements for services with diagnoses that are not indicative of urgent or emergent conditions. As a managed care organization, we promote the provision of services in the most appropriate setting and reinforce the need for members to coordinate care with their PCP unless the injury or sudden onset of illness requires immediate medical attention. Effective on or after August 1, 2020, for nonparticipating hospitals and on or after October 1, 2020, for participating hospitals, Dell Children’s Health Plan will only process an ER claim for a hospital as emergent and reimburse at the applicable contracted rate or valid out‐ of‐network Medicaid fee‐for‐service rate when a diagnosis from a designated auto‐pay list is billed as the primary diagnosis on the claim. If the primary diagnosis is not on the auto‐pay list, the provider must submit medical records with the claim. Upon receipt, the claim and records will be reviewed by a prudent layperson standard to determine if the presenting symptoms qualify the patient’s condition as emergent. If the reviewer confirms the visit was emergent, according to the prudent layperson criteria, the claim will pay at the applicable contracted rate or valid out‐of‐network Medicaid fee‐for‐service rate. If it is determined to be nonemergent, the claim will pay a triage fee. In the event a claim from a hospital is submitted without a diagnosis from the auto‐pay list as the primary diagnosis and no medical records are attached, the claim for the ER visit will automatically pay a triage fee.
    [Show full text]
  • Vectorcardiographic Study of Aberrant Conduction' of Intraventricular Block
    Br Heart J: first published as 10.1136/hrt.38.6.549 on 1 June 1976. Downloaded from British Heart journal, 1976, 38, 549-557. Vectorcardiographic study of aberrant conduction' Anterior displacement of QRS: another form of intraventricular block H. E. Kulbertus, F. de Leval-Rutten, and P. Casters From the Division of Cardiology, Institute of Medicine, University of Liege School of Medicine, Liege, Belgium Aberrant ventricular conduction was induced in 44 subjects by introduction of atrialpremature beats through a transvenous catheter-electrode. Multiple patterns of aberrant ventricular conduction were obtained in 32 patients and, in the whole group, 116 different configurations were recorded. Of these, 104 showed a classical pattern of mono- or biventricular conduction disturbance. The pattertn frequencies were as follows: right bundle-branch block, 28; left anterior hemiblock combined with right bundle-branch block, 21; left anterior hemiblock, 17; left posterior hemiblock combined with right bundle-branch block, 12; left posterior hemiblock, 10; complete left bundle-branch block, 10; and incomplete left bundle-branch block, 6. The remaining 12 configurations could not be classified into the usual categories of intraventricular blocks. In 7 of them, the alterations only consisted of trivial modifications of the QRS contour. In the other 5 instances, aberrant conduction manifested itself by a conspicuous anterior displacement of the QRS loop, with increased duration of anteriorforces. The latter observation is worthy of notice, as it indicates that, in the differential diagnosis of the vectorcardiographic pattern characterized by prominent anteriorforces, conduction disturbances should http://heart.bmj.com/ be considered a possible aetiological factor in addition to right ventricular hypertrophy, and true posterior wall myocardial infarction.
    [Show full text]
  • An Acute Stress Test to Predict Atrioventricular Block Progression
    Br Heart J: first published as 10.1136/hrt.53.3.328 on 1 March 1985. Downloaded from Br Heart J 1985; 53: 328-34 Disopyramide induced second and third degree atrioventricular block in patients with bifascicular block An acute stress test to predict atrioventricular block progression LENNART BERGFELDT, MARTEN ROSENQVIST, HANS VALLIN, OLOF EDHAG From the Cardiac Division, Department ofInternal Medicine, Karolinska Institute, Huddinge University Hospital, Huddinge, Sweden SUMMARY Syncopal attacks in patients with bifascicular block may be due to both ventricular tachyarrhythmias and intermittent atrioventricular block in addition to non-cardiac causes and lead to antiarrhythmic treatment with drugs or pacemaker or both. The acute electrophysiological effect of intravenous disopyramide 2 mg/kg body weight given over five minutes on the His-Purkinje system was assessed in 27 patients with chronic bifascicular block undergoing evaluation for perma- nent pacemaker treatment. The predictive value of this pharmacological stress test as regards the development of atrioventricular block during follow up was analysed. The HV interval increased (mean 43%) and the QRS duration was prolonged (mean 24%). Intrahisian or infrahisian second or third degree atrioventricular block occurred in 14 patients after disopyramide administration, requiring temporary pacing in four of them. Before the electrophysiological study 15 of the 27 http://heart.bmj.com/ patients had had at least two syncopal attacks of suspected cardiac origin but no evidence of second or third degree atrioventricular block. Second or third degree atrioventricular block was subse- quently recorded in five of these 15 patients during a mean of two years follow up. The sensitivity, specificity, and predictive value of second or third degree atrioventricular block produced by dis- opyramide administration including subsequent atrial pacing-a positive disopyramide test-as regards later development of atrioventricular block were 80%/o, 900/o, and 8O0/o respectively.
    [Show full text]
  • Masquerading Bundle Branch Block
    CorSalud 2020 Jul-Sep;12(3):343-347 Cuban Society of Cardiology ________________________ Case Report Masquerading bundle branch block Luis M. de la Torre Fonseca1 , MD; Ana M. Barreda Pérez2 , MD; Anabel Pérez Fernández1 , MD; Helen Leyva Rivero3 , MD; and Mónica Ruiz Carmenaty3 , MD 1 Intensive Care Unit, Hospital Universitario Clínico-Quirúrgico Comandante Manuel Fajardo. Havana, Cuba. 2 Department of Clinical Cardiology, Instituto de Cardiología y Cirugía Cardiovascular. Havana, Cuba. 3 Facultad de Medicina Manuel Fajardo, Universidad de Ciencias Médicas de La Habana. Havana, Cuba. Este artículo también está disponible en español ARTICLE INFORMATION ABSTRACT Masquerading bundle branch block is a rare form of bifascicular block, whose Received: April 10, 2019 exact mechanism is unknown. It is more frequently found in elderly patients or Accepted: May 6, 2019 those with structural heart disease such as: coronary artery disease, ventricular hypertrophy, cardiomyopathies, Chagas myocarditis and idiopathic degeneration Competing interests of the cardiac conduction system. Its electrocardiographic diagnosis is obtained by The authors declare no competing the presence of high and wide R waves in V1 (right bundle branch block pattern), interests. left axis deviation (between -80 and -120 degrees) and an S wave of less than 1 mm or absent in I and aVL leads. Its presence denotes a poor prognostic factor in pa- Figures tients. Images from complementary tests Keywords: Bundle branch block, Left anterior hemiblock, Masquerading bundle are shown with patient’s consent. branch block, Diagnosis Abbreviations Bloqueo de rama enmascarado ECG: electrocardiogram LAFB: left anterior fascicular block LBBB: left bundle branch block RESUMEN MBBB: masquerading bundle branch El bloqueo de rama enmascarado es una forma poco frecuente de bloqueo bifas- block cicular de la cual se desconoce su mecanismo con exactitud.
    [Show full text]
  • Atrioventricular Conduction in Patients with Clinical Indications for Transvenous Cardiac Pacing1
    British Heart Journal, 1975, 37, 583-592. Atrioventricular conduction in patients with clinical indications for transvenous cardiac pacing1 Stafford I. Cohen, L. Kent Smith, Julian M. Aoresty, Panagiotis Voukydis, and Eugene Morkin From the Cardiac Unit, Department of Medicine, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts, U.S.A. Eighty patients with clinical indications for cardiac pacing had atrioventricular conduction analysed by His bundle study. The indicationsfor cardiac pacing included high grade atrioventricular block, sick sinus node syndrome without tachycardia, bradycardia-tachycardia syndrome, unstable bilateral bundle-branch block, and uncontrolled ventricular irritability. Complete heart block, Wenckebach block (Mobitz I), and 2:i block were notedproximal and distal to the His bundle. Mobitz II block only occurred distal to the His bundle. Ofspecial interest were the high incidence ofdistal conduction abnormalities by His bundle analysis (40/80, 5o%), the re-establishment ofnormal atrio- ventricular conduction in acutely ill patients with recent evidence of heart block, and the high incidence of intraventricular conduction disturbances on standard electrocardiogram (48/8o, 60%). Intensive study of atrioventricular conduction by occurring electrophysiological data in this large His bundle analysis has been performed in a variety group of patients in clinical need of pacemakers of patient populations. In many instances studies constitutes the substance of this report. The data were electively undertaken in patients who had should be representative of the cardiac conduction never been threatened by a compromising cardiac abnormalities which present in a general hospital. arrhythmia. In addition, abnormalities of atrio- ventricular conduction were frequently achieved by Subjects and methods pacemaker-induced acceleration of the atrial rate.
    [Show full text]
  • CMS Limitations Guide - Cardiovascular Services
    CMS Limitations Guide - Cardiovascular Services Starting October 1, 2015, CMS will update their It is the responsibility of the provider to code to the existing medical necessity limitations on tests and highest level specified in the ICD-10-CM. The correct procedures to correspond to ICD-10 codes. This use of an ICD-10-CM code listed below does not limitations guide provides you with the latest assure coverage of a service. The service must be changes. reasonable and necessary in the specific case and must meet the criteria specified in this This guide is not an all-inclusive list of National determination. Coverage Documents (NCD) and Local Coverage Documents (LCD). You can search by LCD or NCD or We will continue to update this list as new CMS keyword and region on the CMS website at: limitations are announced. You can always find the https://www.cms.gov/medicare-coverage- most current list at: database/overview-and-quick- www.munsonhealthcare.org/medicalnecessity. search.aspx?clickon=search. If you have any questions, please contact Kari Smith, CMS will deny payment if the correct diagnosis Office Coordinator, at (231) 935-2296, or Karen codes are not entered on the order form, and your Popa, Director, Patient Access Services, at (231) 935- 7493. patient’s test or procedure will not be covered. We compiled this information in one location to make it easier for you to find the proper codes for medically necessary diagnoses. CMS Limitations Guide – Cardiovascular Services (L34636) Electrocardiographic (EKG or ECG) Monitoring (Holter
    [Show full text]
  • Clinical Arrhythmias Differential Diagnosis of Wide QRS Tachycardias
    Clinical Arrhythmias Differential Diagnosis of Wide QRS Tachycardias Demosthenes G Katritsis1 and Josep Brugada2 1. Department of Cardiology, Hygeia Hospital, Athens, Greece; 2. Cardiovascular Institute, University of Barcelona, Spain Abstract In this article, the authors discuss the differential diagnostic methods used in clinical practice to identify types of wide QRS tachycardias (QRS duration >120 ms). A correct diagnosis is critical to management, as misdiagnosis and the administration of drugs usually utilised for supraventricular tachycardia can be harmful for patients with ventricular tachycardia. Keywords Tachycardias, supraventricular tachycardia, ventricular tachycardia Disclosure: The authors have no conflicts of interest to declare. Received: 28 April 2020 Accepted: 27 May 2020 Citation: Arrhythmia & Electrophysiology Review 2020;9(3):155–60. DOI: https://doi.org/10.15420/aer.2020.20 Correspondence: Demosthenes Katritsis, Hygeia Hospital, 4 Erythrou Stavrou St, Athens 15123, Greece; E: [email protected] Open Access: This work is open access under the CC-BY-NC 4.0 License which allows users to copy, redistribute and make derivative works for non- commercial purposes, provided the original work is cited correctly. The term narrow QRS tachycardia indicates individuals with a QRS • SVT with widening of the QRS interval induced by drugs or duration ≤120 ms, while wide QRS tachycardia refers to tachycardia electrolyte disturbances. Class IC and IA drugs cause use- with a QRS duration >120 ms.1 Narrow QRS complexes are due to dependent slowing of conduction and class III drugs prolong rapid activation of the ventricles via the His–Purkinje system, refractoriness to a greater extent at the His–Purkinje tissue than in suggesting that the origin of the arrhythmia is above or within the the ventricular myocardium.
    [Show full text]
  • Pacemaker Dependence in Patients with Bifascicular Block During Acute Anterior Myocardial Infarction
    Br Heart J: first published as 10.1136/hrt.52.4.408 on 1 October 1984. Downloaded from Br Heart J 1984; 52: 408-12 Pacemaker dependence in patients with bifascicular block during acute anterior myocardial infarction 0 EDHAG,* L BERGFELDT,* N EDVARDSSON,t S HOLMBERG,t M ROSENQVIST,* H VALLIN* From the *Cardiac Division ofthe Deparments ofInternal Medicine, Huddinge Hospital, Karolinska Institute, Stockholm; and tSahlgren's Hospital, University ofGothenburg, Sweden SUMMARY Eleven patients with bifascicular block complicating anteroseptal acute myocardial infarc- tion were studied to determine the effect of prophylactic permanent pacing; eight of them also had transient high grade atrioventricular block during the acute phase of the infarction. One month after the infarction an electrophysiological study was performed and a bradycardia indicating pacemaker implanted. All the patients were followed for two years. Six had bradycardia detected, two of whom did not have high grade atrioventricular block during the index infarction. Seven patients died, four of them suddenly. There was no correlation between the electrophysiological findings and subse- quent development of bradycardia. Thus pacemaker dependence seems to be common in patients with bifascicular block complicating acute myocardial infarction. Mortality is, however, also high in patients treated with pacemakers. Prospective studies to determine the predictive factors in those patients with an anterior acute myocardial infarction and who benefit from a combination of permanent pacemaker
    [Show full text]