Astrophysics – Glossary • Gives Information of Speed Relative to Earth • Gives Information As to Rotational Speed This Question Is About the Solar System

Total Page:16

File Type:pdf, Size:1020Kb

Astrophysics – Glossary • Gives Information of Speed Relative to Earth • Gives Information As to Rotational Speed This Question Is About the Solar System 1 Astrophysics – Glossary • gives information of speed relative to Earth • gives information as to rotational speed This question is about the solar system. • the approaching star produces blue shifted lines; the receding star produces red shifted lines in the █ State the name of the planet in the solar system that spectrum. (4) has the greatest mass. ► intensity - wavelength distribution (Plank’s+Wien’s laws) ► Jupiter (1) gives information on surface temperature; █ an orbit around the Sun between that of Saturn and of █ Define the luminosity (of a star). Neptune. ► The total power (total energy per unit time) ► Uranus (1) radiated by an object (star). (1) ► █ State where, in the solar system, the asteroid belt is If we regard stars to be black body radiators, then luminosity L of a star is given by the expression. found. 2 4 4 ► between orbits of Mars and Jupiter / 4πR σT = A σT 2AU → 3 ½ AU from Sun (1) where R is the radius of the star, A it’s surface area, T it’s surface temperature, █ State two features of the orbits of comets. and σ is the Stefan-Boltzmann constant. ► highly elliptical; large orbits - most of orbit outside orbits of furthest planets (1) █ State one factor that determines the luminosity of a star ► mass / temperature / surface area / radius / type of █ Distinguish between a constellation, a stellar cluster and star / composition (1) galaxy. ► constellation: Pattern of stars/ A group of stars that █ Describe what is meant by apparent brightness. form a pattern as seen from the Earth/ ► The power from the star received (incident) per An arbitrary formation of stars perceived as a figure square metre of the Earth’s surface or design, not close to one another in space / not ► If the energy radiated by a star is emitted uniformly bound by gravitation. in all directions, then apparent brightness is ► L stellar cluster: Groups of stars held together by b gravitation in same region of space, created 4d 2 roughly at the same time; where L is luminosity (power radiated) of the star ► galaxy: A huge group of stars, dust, and gas held and d its distance from the Earth. together by gravity, often containing billions of stars, measuring many light years across. █ Magnitude Scale (e.g. ≈1010 stars, diameter≈105 ly) (4) ►Magnitudes are a way of assigning a number to a star so we know how bright it is █ State why the Hipparcos satellite which orbits Earth is █ Define apparent magnitude (Greeks). able to measure stellar parallaxes for stars at considerably ► greater distances than 130 pc. apparent magnitude is a measure of how bright an object appears from Earth; (1) ► no atmospheric turbulence / no irregular refraction; (1) ( Every one step in magnitude corresponds to a factor of 2.51 █ Briefly describe the nature of a star. 3 change in brightness. Ex: m = 6 and m = 9, then b = (2.51) b ) ► A star is a massive body of gas held together by 1 2 1 2 gravity, with fusion going on at its center, giving off █ Define absolute magnitude. electromagnetic radiation. (2) ► is the apparent magnitude that a star would have if it were at distance of 10 pc from Earth. (2) █ Stars are very massive. State why stable stars are not crushed inwards under gravitational pressure. • It is the true measurement of a star’s brightness seen ► there is an equilibrium between radiation pressure from a set distance. d and gravitational pressure (2) m – M = 5 log ( ) █ Explain the term black-body radiation m – apparent magnitude M – absolute magnitude of the star ► the radiation emitted by a black body (perfect d – its distance from the Earth measured in parsecs. emitter/perfect absorber) at temperature T • If two stars have the same absolute magnitude but different in accordance with the Planck’s law ; (1) apparent magnitude they would have the same brightness if they █ Discuss two different ways in which atomic spectra can were both at distance of 10 pc from Earth, so we conclude they be used to deduce physical data for stars. have the same luminosity , but are at different distances from Earth !!!!!!!!!!!!!! ► line absorption spectra: gives information on • Every one step in absolute magnitude corresponds to a composition of outer layers factor of 2.51 change in luminosity. Ex: M1 = – 2 and M2 = 5, ► Doppler Shift / red shift / blue shift: 7 then L1 / L2 = (2.51) 2 █ Explain the importance of Cepheid variables for █ The diagram shows the (intensity) spectrum of the estimating distances to galaxies. radiation emitted by a black-body at a temperature T. ► There is a relationship between period and luminosity Sketch the spectrum of radiation emitted by the black for Cepheid variables (discovered by Henrietta Swan Leavitt body at a higher/lower T. nearly a century ago), so measuring the period gives the ► higher temperature : lower T: luminosity and hence the distance (b = L/4πd2). peak higher; peak lower; Distances to galaxies are then known if the Cepheid peak sharper; peak blunter; can be ascertained to be within a specific galaxy; (3) peak to left; peak to right; (2) █ Cepheids are sometimes referred to as standard (In this graph it is assumed that candles. Explain what is meant by this. intensity is actually power/unit ► the phrase standard candle means having a source of surface of the star. Otherwise it light with known luminosity; might be confusing, because ► measuring the period of a Cepheid allows its luminosity bigger star at lower temperature can have greater luminosity, so to be estimated; other stars in the same galaxy can be the graph may be above the compared to this known luminosity (2) graph of the star with smaller (approximately the same distance) surface area but higher █ Describe the characteristic by which a Cepheid variable temperature.) may be identified from Earth. ► light output varies periodically; rapid brightening, (higher T: shorter wavelengths, higher frequencies; higher energy. The curve should be above the existing curve at all locations ) gradual dimming; (2) (lower T: longer wavelengths, lower frequencies, lower energy. █ Outline the cause of this characteristic. The curve should be below the existing curve at all locations ) ► Caused by expansion / contraction of surface; █ Label the x-axis of the graph brighter as it expands; (2) ► wavelength λ (1) █ State the mechanism for the variation in the luminosity of the Cepheid variable. █ Define a binary star ► outer surface expands and contracts periodically due ► A binary star is a stellar system consisting of two stars to interactions of matter and radiation in the stellar orbiting around their common center of mass. (1) atmosphere; (brighter as it expands); (Binary stars can either be distinguished optically (visual binaries) ► changing surface temperature (2) or by indirect techniques, such as spectroscopy.) █ State what can be deduced from knowing the period of █ Techniques for determining stellar distances include the the binary and the separation of the stars. use of stellar parallax, spectroscopic parallax and Cepheid ► the total mass of the binary system (1) variables. Outline all three: ► stellar parallax: █ What property, other than separation of the stars, of a two apparent positions of the star as seen by an observer visual binary system is measured in order to find the mass from two widely separated points are compared and of the system? recorded; the maximum ► the orbital period of the two stars (1) angular variation from the █ State the difference between a visual binary star, a mean, p, is recorded; the spectroscopic binary star and eclipsing binaries distance (in parsecs) can be ► visual binary: a system of stars that can be seen as calculated using geometry two separate stars with a telescope and sometimes with the unaided eye. d pc 1 ► spectroscopic binary: A binary-star system which from p sec Earth appears as a single star, but whose light spectrum (spectral lines) shows back-and-forth Doppler shifts as spectroscopic parallax: two stars orbit one another. • light from star analyzed (relative amplitudes of the ► eclipsing binary: (Rare) binary-star system in which the absorption spectrum lines) to give indication of stellar class two stars are too close to be seen separately but is • HR diagram used to estimate the luminosity aligned in such a way that from Earth we periodically • distance away calculated from apparent brightness observe changes in brightness as each star successively passes in front of the other, that is, eclipses the other. (3) Cepheid variables: • these stars’ brightness vary over time 3 • the time period of the variation is related to their █ In a Hertzsprung-Russell diagram, luminosity is plotted luminosity against temperature. Explain why the diagram alone does •thus measurements of the time period of one star can be not enable the luminosity of a particular star to be used to calculate its luminosity determined from its temperature. • its distance away is calculated from maximum apparent brightness ► luminosity depends on the surface temperature and the surface area (L = A σT4 ); A particular luminosity can not be █ A sketch of a Hertzsprung-Russell diagram is shown determined from the graph without knowing the surface below. area, but the graph does not include area. (3) On the diagram, identify the (i) main sequence █ State two characteristics of a white dwarf that are (label this M), different to the characteristics of a main sequence star. (ii) red giant region ► has smaller radius; (label this R), ► more dense; (iii) white dwarf region ► higher surface temperature; (label this W). ► energy not produced by nuclear fusion (2) Stars may be described in terms of their spectral classes. ► (2) Class Colour Class Colour O bluish F yellowish white B blue white G yellowish A white K orange M red █ Describe the colour of a B star.
Recommended publications
  • Astronomy 241: Foundations of Astrophysics I. the Solar System
    Astronomy 241: Foundations of Astrophysics I. The Solar System Astronomy 241 is the first part of a year-long Prerequisites: Physics 170, Physics 272 introduction to astrophysics. It uses basic (or concurrent), and Math 242 or 252A. classical mechanics and thermodynamics to Contact: Professor Joshua Barnes analyze the structure and evolution of the ([email protected]; 956-8138) Solar System. www.ifa.hawaii.edu/~barnes/ast241 Tuesday, August 21, 2012 Astrophysics BS Degree Proposal in ASTR PHYS MATH CHEM preparation FALL 241 251A 161, 171 or 181 year 1 161L, 171L, or 181L SPRING 170 242 252A 162 year 1 170L 162L Foundations of Astrophysics I: FALL 241 272 243 253A The Solar System year 2 272L Foundations of Astrophysics II: SPRING 242 274 244 Galaxies & Stars year 2 274L Observational Astronomy & FALL 300 310 311 (or 307?) Laboratory year 3 300L 350 SPRING 301 311 Observational Project year 3 450 FALL 423 480 Stellar Astrophysics year 4 495 SPRING 496 481 Senior Project I, II year4 485 1 of: ASTR 320, 426, or 430 Tuesday, August 21, 2012 Units Text uses MKS units (meter, kilo-gram, second); e.g. G ≃ 6.674 × 10-11 m3 kg-1 s-2 (gravitational constant). Astronomers also use non-standard units: AU ≃ 1.496 × 1011 m (“average” Earth-Sun distance) 30 M⊙ ≃ 1.989 × 10 kg (Sun’s mass) yr ≃ 3.156 × 107 s (Earth’s orbital period) Tuesday, August 21, 2012 Order of Magnitude & Dimensional Analysis: An Example Given that Jupiter’s average density is slightly greater than water, estimate the orbital period of a satellite circling just above the planet.
    [Show full text]
  • European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium
    European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium August 2017 European Astroparticle Physics Strategy 2017-2026 www.appec.org Executive Summary Astroparticle physics is the fascinating field of research long-standing mysteries such as the true nature of Dark at the intersection of astronomy, particle physics and Matter and Dark Energy, the intricacies of neutrinos cosmology. It simultaneously addresses challenging and the occurrence (or non-occurrence) of proton questions relating to the micro-cosmos (the world decay. of elementary particles and their fundamental interactions) and the macro-cosmos (the world of The field of astroparticle physics has quickly celestial objects and their evolution) and, as a result, established itself as an extremely successful endeavour. is well-placed to advance our understanding of the Since 2001 four Nobel Prizes (2002, 2006, 2011 and Universe beyond the Standard Model of particle physics 2015) have been awarded to astroparticle physics and and the Big Bang Model of cosmology. the recent – revolutionary – first direct detections of gravitational waves is literally opening an entirely new One of its paths is targeted at a better understanding and exhilarating window onto our Universe. We look of cataclysmic events such as: supernovas – the titanic forward to an equally exciting and productive future. explosions marking the final evolutionary stage of massive stars; mergers of multi-solar-mass black-hole Many of the next generation of astroparticle physics or neutron-star binaries; and, most compelling of all, research infrastructures require substantial capital the violent birth and subsequent evolution of our infant investment and, for Europe to remain competitive Universe.
    [Show full text]
  • An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies
    2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies The National Academies—comprising the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council—work together to enlist the nation’s top scientists, engineers, health professionals, and other experts to study specific issues in science, technology, and medicine that underlie many questions of national importance. The results of their deliberations have inspired some of the nation’s most significant and lasting efforts to improve the health, education, and welfare of the United States and have provided independent advice on issues that affect people’s lives worldwide. To learn more about the Academies’ activities, check the website at www.nationalacademies.org. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America This study was supported by Contract NNX08AN97G between the National Academy of Sciences and the National Aeronautics and Space Administration, Contract AST-0743899 between the National Academy of Sciences and the National Science Foundation, and Contract DE-FG02-08ER41542 between the National Academy of Sciences and the U.S. Department of Energy. Support for this study was also provided by the Vesto Slipher Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agencies that provided support for the project. 2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics ROGER D.
    [Show full text]
  • Astrophysique / Astrophysics- Bibliographie De Pierre Léna
    Astrophysique/Astrophysics Revues avec relecteurs/Journals with referees Références [1] P. Léna. Adaptive optics : a breakthrough in astronomy. Experimental Astro- nomy, 26 :35–48, August 2009. [2] Y. Clénet, D. Rouan, P. Léna, E. Gendron, and F. Lacombe. The Galactic Centre at infrared wavelengths : towards the highest spatial resolution. Comptes Rendus Physique, 8 :26–34, January 2007. [3] G. Perrin, J. Woillez, O. Lai, J. Guérin, T. Kotani, P. L. Wizinowich, D. Le Mignant, M. Hrynevych, J. Gathright, P. Léna, F. Chaffee, S. Vergnole, L. De- lage, F. Reynaud, A. J. Adamson, C. Berthod, B. Brient, C. Collin, J. Créte- net, F. Dauny, C. Deléglise, P. Fédou, T. Goeltzenlichter, O. Guyon, R. Hulin, C. Marlot, M. Marteaud, B.-T. Melse, J. Nishikawa, J.-M. Reess, S. T. Ridgway, F. Rigaut, K. Roth, A. T. Tokunaga, and D. Ziegler. Interferometric coupling of the Keck telescopes with single-mode fibers. Science, 311 :194, January 2006. [4] Y. Clénet, D. Rouan, D. Gratadour, P. Léna, and O. Marco. The infrared emission of the dust clouds close to Sgr A*. Journal of Physics Conference Series, 54 :386–390, December 2006. [5] Y. Clénet, D. Rouan, D. Gratadour, O. Marco, P. Léna, N. Ageorges, and E. Gendron. A dual emission mechanism in Sgr A* ar L’ band. A&A, 439 :L9– L13, August 2005. [6] P. Léna. Astronomie et optique : un couple heureux. Journal de Physique IV, 119 :51–56, November 2004. [7] M. Glanc, E. Gendron, D. Lafaille, J.-F. Le Gargasson, and P. Léna. Towards wide-field retinal imaging with adaptive optics. Optics Communications, pages 225–238, 2004.
    [Show full text]
  • A History of Astronomy, Astrophysics and Cosmology - Malcolm Longair
    ASTRONOMY AND ASTROPHYSICS - A History of Astronomy, Astrophysics and Cosmology - Malcolm Longair A HISTORY OF ASTRONOMY, ASTROPHYSICS AND COSMOLOGY Malcolm Longair Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE Keywords: History, Astronomy, Astrophysics, Cosmology, Telescopes, Astronomical Technology, Electromagnetic Spectrum, Ancient Astronomy, Copernican Revolution, Stars and Stellar Evolution, Interstellar Medium, Galaxies, Clusters of Galaxies, Large- scale Structure of the Universe, Active Galaxies, General Relativity, Black Holes, Classical Cosmology, Cosmological Models, Cosmological Evolution, Origin of Galaxies, Very Early Universe Contents 1. Introduction 2. Prehistoric, Ancient and Mediaeval Astronomy up to the Time of Copernicus 3. The Copernican, Galilean and Newtonian Revolutions 4. From Astronomy to Astrophysics – the Development of Astronomical Techniques in the 19th Century 5. The Classification of the Stars – the Harvard Spectral Sequence 6. Stellar Structure and Evolution to 1939 7. The Galaxy and the Nature of the Spiral Nebulae 8. The Origins of Astrophysical Cosmology – Einstein, Friedman, Hubble, Lemaître, Eddington 9. The Opening Up of the Electromagnetic Spectrum and the New Astronomies 10. Stellar Evolution after 1945 11. The Interstellar Medium 12. Galaxies, Clusters Of Galaxies and the Large Scale Structure of the Universe 13. Active Galaxies, General Relativity and Black Holes 14. Classical Cosmology since 1945 15. The Evolution of Galaxies and Active Galaxies with Cosmic Epoch 16. The Origin of Galaxies and the Large-Scale Structure of The Universe 17. The VeryUNESCO Early Universe – EOLSS Acknowledgements Glossary Bibliography Biographical SketchSAMPLE CHAPTERS Summary This chapter describes the history of the development of astronomy, astrophysics and cosmology from the earliest times to the first decade of the 21st century.
    [Show full text]
  • Astronomy, Astrophysics, and Cosmology
    Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson VI March 15, 2016 arXiv:0706.1988 L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 3-15-2016 1 / 26 L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 3-15-2016 2 / 26 Table of Contents 1 Expansion of the Universe Friedmann-Robertson-Walker cosmologies L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 3-15-2016 3 / 26 Expansion of the Universe Friedmann-Robertson-Walker cosmologies In 1917 Einstein presented model of universe which describing geometrically symmetric (spherical) space with finite volume but no boundary In accordance with Cosmological Principle model is homogeneous and isotropic It is also static + volume of space does not change To obtain static model Einstein introduced new repulsive force in his equations Size of this cosmological term is given by L Einstein presented model before redshifts of galaxies were known taking universe to be static was then reasonable When expansion of universe was discovered argument in favor of cosmological constant vanished Most recent observations seem to indicate that non-zero L has to be present L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 3-15-2016 4 / 26 22 CHAPTER 16 COSMOLOGY EXAMPLE 16.2 Critical Density of the Universe We can estimate the critical mass density of the Universe, Using H ϭ 23 ϫ 10Ϫ3 m/(s · lightyear), where 1 light- 15 Ϫ11 2 2 ␳c, using classical energy considerations. The result turns year ϭ 9.46 ϫ 10 m and G ϭ 6.67 ϫ 10 N · m /kg , out to be in agreement with the rigorous predictions of yields a present value of the critical density ␳c ϭ 1.1 ϫ general relativity because of the simplifying assumption 10Ϫ26 kg/m3.
    [Show full text]
  • Quantum Vacuum Energy and the Emergence of Gravity an Essay
    Applied Physics Research; Vol. 10, No. 2; 2018 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education Quantum Vacuum Energy and the Emergence of Gravity An Essay Philip J. Tattersall1 1 Private researcher, 8 Lenborough St, Beauty Point, Tasmania, Australia. Correspondence: Philip J. Tattersall, 8 Lenborough St, Beauty Point, Tasmania, Australia. E-mail: [email protected] Received: December 19, 2017 Accepted: January 26, 2018 Online Published: February 28, 2018 doi:10.5539/apr.v10n2p1 URL: https://doi.org/10.5539/apr.v10n2p1 Abstract Building on the work of others a novel idea is put forward regarding the possible mechanism of gravity as involving energy coupling down the energy gradient of a massive body. Free fall (acceleration) in a gravitational field is explained as arising from an interaction of the modified quantum vacuum energy in the vicinity of matter. Key words: Gravity, quantum vacuum, zero-point energy, electromagnetic energy, inertia, acceleration, free fall, gravitational energy gradient, non-gravitational acceleration 1. Introduction There has been a great deal of activity, both in terms of theoretical and experimental work exploring the possible link between quantum vacuum energy and gravity. Over the years quantum vacuum energy has become synonymous with zero-point energy (ZPE), and so this term will be used interchangeably throughout this paper. The nature of ZPE has been the subject of intense interest (Santos, 2012; Margan, nd (a&b); Rueda & Haisch, 2005; Puthoff, 2001). It was Sakharov (1967) who reached the conclusion that matter somehow induced certain changes in the quantum vacuum and that these changes might explain a number of phenomena including the Casimir effect.
    [Show full text]
  • Zero-Point Energy of Vacuum Fluctuation As a Candidate
    Zero-point energy of vacuum fluctuation as a candidate for dark energy versus a new conjecture of antigravity based on the modified Einstein field equation in general relativity Guang-jiong Ni Department of Physics, Fudan University, Shanghai, 200433, China Department of Physics, Portland State University, Portland, OR97207, U.S.A. Email address: [email protected] In order to clarify why the zero-point energy associated with the vacuum fluctuations cannot be a candidate for the dark energy in the universe, a comparison with the Casimir effect is analyzed in some detail. A principle of epistemology is stressed that it is meaningless to talk about an absolute (isolated) thing. A relative thing can only be observed when it is changing with respect to other things. Then a new conjecture of antigravity — the repulsive force between matter and antimatter derived from the modified Einstein field equation in general relativity — is proposed. This is due to the particle – antiparticle symmetry based on a new understanding about the essence of special relativity. Its possible consequences in the theory of cosmology are discussed briefly, including a new explanation for the accelerating universe and gamma-ray bursts. I. INTRODUCTION The past decade has witnessed a remarkable progress of cosmology and astrophysics. Especially, the precise data provided by the Hubble Space Telescope (HST) key project, the Wilkinson Microwave Anisotropy Probe (WMAP) team, the Sloan Digital Sky Survey (SDSS) and the discovery of acceleration of the universe expansion, etc. have shaped an observable universe quite quantitatively. The present understanding can be summarized basically as follows (see, e.g.
    [Show full text]
  • The Quantum Vacuum and the Cosmological Constant Problem
    The Quantum Vacuum and the Cosmological Constant Problem S.E. Rugh∗and H. Zinkernagely To appear in Studies in History and Philosophy of Modern Physics Abstract - The cosmological constant problem arises at the intersection be- tween general relativity and quantum field theory, and is regarded as a fun- damental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically dis- cuss how the problem rests on the notion of physically real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order to make the problem well-defined. 1. Introduction Is empty space really empty? In the quantum field theories (QFT’s) which underlie modern particle physics, the notion of empty space has been replaced with that of a vacuum state, defined to be the ground (lowest energy density) state of a collection of quantum fields. A peculiar and truly quantum mechanical feature of the quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in regions which are otherwise ‘empty’ (i.e. devoid of matter and radiation). These zero-point fluctuations of the quantum fields, as well as other ‘vacuum phenomena’ of quantum field theory, give rise to an enormous vacuum energy density ρvac. As we shall see, this vacuum energy density is believed to act as a contribution to the cosmological constant Λ appearing in Einstein’s field equations from 1917, 1 8πG R g R Λg = T (1) µν − 2 µν − µν c4 µν where Rµν and R refer to the curvature of spacetime, gµν is the metric, Tµν the energy-momentum tensor, G the gravitational constant, and c the speed of light.
    [Show full text]
  • The Sun As a Guide to Stellar Physics This Page Intentionally Left Blank the Sun As a Guide to Stellar Physics
    The Sun as a Guide to Stellar Physics This page intentionally left blank The Sun as a Guide to Stellar Physics Edited by Oddbjørn Engvold Professor emeritus, Rosseland Centre for Solar Physics, Institute of Theoretical Astrophysics, University of Oslo, Oslo, Norway Jean-Claude Vial Emeritus Senior Scientist, Institut d’Astrophysique Spatiale, CNRS-Universite´ Paris-Sud, Orsay, France Andrew Skumanich Emeritus Senior Scientist, High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado, United States Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States Copyright © 2019 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein.
    [Show full text]
  • A Astronomical Terminology
    A Astronomical Terminology A:1 Introduction When we discover a new type of astronomical entity on an optical image of the sky or in a radio-astronomical record, we refer to it as a new object. It need not be a star. It might be a galaxy, a planet, or perhaps a cloud of interstellar matter. The word “object” is convenient because it allows us to discuss the entity before its true character is established. Astronomy seeks to provide an accurate description of all natural objects beyond the Earth’s atmosphere. From time to time the brightness of an object may change, or its color might become altered, or else it might go through some other kind of transition. We then talk about the occurrence of an event. Astrophysics attempts to explain the sequence of events that mark the evolution of astronomical objects. A great variety of different objects populate the Universe. Three of these concern us most immediately in everyday life: the Sun that lights our atmosphere during the day and establishes the moderate temperatures needed for the existence of life, the Earth that forms our habitat, and the Moon that occasionally lights the night sky. Fainter, but far more numerous, are the stars that we can only see after the Sun has set. The objects nearest to us in space comprise the Solar System. They form a grav- itationally bound group orbiting a common center of mass. The Sun is the one star that we can study in great detail and at close range. Ultimately it may reveal pre- cisely what nuclear processes take place in its center and just how a star derives its energy.
    [Show full text]
  • BS Physics Concentration Astrophysics
    CLARION UNIVERSITY OF PENNSYLVANIA DEGREE: B.S. Physics College of Arts and Sciences Concentration in Astrophysics Name Transfer:*______________________________________________ Clarion ID **_____________________________________________ Entrance Date CUP: _____ _____ _____ _____ _____ _____ _____ Program Entry Date____________________________ _____ _____ _____ _____ _____ _____ _____ _____ Advisor _____ _____ _____ _____ _____ _____ _____ _____ *********************************************************************************************************************************************** GENERAL EDUCATION REQUIREMENTS – 48 CREDITS Please refer to the approved list of Gen Ed courses that appears in the published class schedule. V. REQUIREMENTS IN MAJOR: (70 – 72 credits) CR. GR I. LIBERAL EDUCATION SKILLS – 12 CREDITS CR. GR. A. REQUIRED IN PHYSICS (38-39 credits) A. English Composition (3 credits) 1 PH 258: Introductory Physics I (Lec) 3 ___ Eng 110: Writing II 3 PH 268: Introductory Physics I (Lab) 1 ___ Eng 111: Writing II 3 PH 259: Introductory Physics II (Lec) 3 ___ B. Mathematics Competency (3 credits) PH 269: Introductory Physics II (Lab) 1 ___ : PH 301: Astrophysics I 3 ___ C. Freshman Inquiry Seminar (3 credits) PH 302: Astrophysics II 3 ___ INQ : PH 351: Mechanics: Dynamics 3 ___ PH 352: Electricity & Magnetism 3 ___ D. Credits to total 12 in Category I, selected from two of the PH 353: Modern Physics I 3 ___ following: Academic Enrichment, Communication, Computer PH 354: Optics 3 ___ Information Science, Elementary Foreign Language, English PH 355: Modern Physics II 3 ___ Composition, HON 128 Logic, Mathematics, and Speech PH 356: Thermodynamics 3 ___ Communication. PH 371: Experimental Physics I 3 ___ : PH 461: Seminar 1 ___ : PH ___: * 2-3 ___ * To be selected from 300-level and 400-level physics courses or ES 310.
    [Show full text]