Moths of North Carolina - Early Draft 1

Total Page:16

File Type:pdf, Size:1020Kb

Moths of North Carolina - Early Draft 1 Noctuidae Exyra semicrocea No common name 10 9 8 n=0 7 High Mt. 6 N 5 u 4 3 • • m 2 b 1 e 0 • r 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 • 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 NC counties: 12 • • Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec • • o 10 • • f 9 n=0 • = Sighting or Collection 8 • 7 Low Mt. High counts of: in NC since 2001 F 6 • l 5 5 - Pender - 1996-05-23 = Not seen since 2001 4 • i 3 5 - Onslow - 2006-05-14 g 2 Status Rank h 1 4 - Onslow - 2005-09-11 0 NC US NC Global t 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 D Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec a 10 10 9 9 t 8 n=0 8 n=34 e 7 Pd 7 CP s 6 6 5 5 4 4 3 3 2 2 1 1 0 0 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Three periods to each month: 1-10 / 11-20 / 21-31 FAMILY: Noctuidae SUBFAMILY: Plusiinae TRIBE: Plusiini TAXONOMIC_COMMENTS: One of three members of this genus, all of which are highly associated with Pitcher Plants in the genus Sarracenia, which occurs only in eastern North America. All three species have been recorded in North Carolina. This genus was formerly placed in the Acontiinae (e.g., Forbes, 1954) but was moved to the Plusiinae by Lafontaine and Poole (1991). FIELD GUIDE DESCRIPTIONS: ONLINE PHOTOS: TECHNICAL DESCRIPTION, ADULTS: Jones (1921); Forbes (1954); Lafontaine and Poole (1991) TECHNICAL DESCRIPTION, IMMATURE STAGES: Jones (1921); Forbes (1954); Lafontaine and Poole (1991); Wagner et al. (2011) ID COMMENTS: A medium-small, black-and-yellow Noctuid. The head and front half of the thorax are dark, blackish brown, differing from the crimson-and-yellow found in Exyra fax but very similar to the pattern shown by E. ridingsii. Unlike ridingsii, semicrocea lacks a black antemedian line on the forewings, which are usually divided into a yellow basal area and a blackish terminal area, with the line separating the two zones running fairly straight across the wings. Rarely, all yellow forms occur (see illustrations in Lafontaine and Poole, 1991). Ponometia semiflava is another similar sized moth with yellow basal and black terminal areas on its wings. However that species has an all yellow head and thorax and the line dividing the black and yellow portions of the wings runs at a slant across the wings rather than straight-across. Although there has been some confusion in the past, P. semiflava is not associated with Pitcher Plants, although it also occurs in open Longleaf Pine communities where its host plants -- Goldenaster and other composites -- occur. DISTRIBUTION: Formerly occurred in the Mountains, Piedmont, and Coastal Plain, but appears to have been extirpated from the first two regions; recent records are all from the southern part of the Coastal Plain, including the Fall-line Sandhills. FLIGHT COMMENT: Adults occur throughout most of the growing season, from April through the end of September, with three apparent peaks in activity but no definite separation between flights HABITAT: All of our records come from peatlands, including Low Pocosin and Pocosin Openings; peaty areas in Wet Pine Savannas and Sandhill Seeps; and from boggy, sediment-filled portions of beaver ponds and other shallow impoundments. Always found in association with its host plants. FOOD: Stenophagous, feeding only on Pitcher Plants (Sarracenia spp.) but apparently using all seven species in that genus (Jones, 1921; Lafontaine and Poole, 1991). OBSERVATION_METHODS: Comes well to blacklights. Both adults and larvae can be found by inspecting the tubes of their host plants. NATURAL HERITAGE PROGRAM RANKS: G3G4 S2S3 STATE PROTECTION: Listed as Significantly Rare by the Natural Heritage Program. That designation, however, does not confer any legal protection, although permits are required to collect it on state parks and other public lands. COMMENTS: This species, along with other members of this genus, is highly specialized on a habitat type that naturally had a extremely patchy distribution and that underwent a severe reduction in both its range and overall extent since European settlement due to conversion to croplands and pine plantations and to suppression of the natural fire regime. These trends, moreover, are still continuing. Surveys conducted by the Natural Heritage Program in 2009-2011 in the Sandhills and the Uwharrie Mountain region of the eastern Piedmont documented a particularly strong recent decline in Pitcher Plant populations. Even where a few plants have managed to survive -- or even where Sarracenia populations have recovered due to recent prescribed burning -- Exyra species could not be found, even where they had been seen as recently as the 1990s (S. Hall, upubl. data). While populations of Exyra semicrocea still exist on several large areas of habitat located on military lands, state parks, game lands, and private nature preserves, all of those are dependent on appropriate use of prescribed burning to support their metapopulations. Too thorough or frequent burning, however, also jeopardizes this species, particularly in the small, isolated populations that are all that are left in some areas. Stephens et al. (2011) suspect that prescribed burning was the cause for the extirpation of the only known population of this species in the Mountains of North Carolina. March 2021 The Moths of North Carolina - Early Draft 1.
Recommended publications
  • Fifty Non-Flowering Pitcher Plants with Rosette Diameters > 8 Cm Were
    Gotelli & Ellison Food-web models predict abundance PROTOCOL S1 EXPERIMENTAL MANIPULATIONS The study was conducted at Moose Bog, an 86-ha peatland in northeastern Vermont, USA [1]. Fifty non-flowering pitcher plants with rosette diameters > 8 cm were haphazardly chosen at the start of the study (15 May 2000). All plants were located in the center of the Sphagnum mat, in full sun, at least 0.75 m from the nearest neighbor. Plants were assigned randomly to one of 5 experimental treatments: 1) Control. Diptera larvae and pitcher liquid were removed and censused, and then returned to leaf. 2) Trophic removal. All diptera larvae and pitcher liquid were removed and censused, and the leaf was refilled with an equal volume of distilled water. 3) Habitat expansion. All diptera larvae and pitcher liquid were removed and censused, and then returned to the leaf. The leaf was then topped up with to the brim with additional distilled water as needed. 4) Habitat expansion & trophic removal. All diptera larvae and pitcher liquid were removed and censused. The leaf was then filled to the brim with distilled water. 5) Habitat contraction & trophic removal. All diptera larvae and pitcher liquid were removed and censused. These treatments mimicked changes in habitat volume (treatments 3, 4, and 5) and removal of top trophic levels from the food web (treatments 2, 4, and 5). Changes in habitat volume also affect the food chain base, because average Sarracenia prey capture was highest in treatments 3 and 4 (habitat expansion) and lowest in treatment 5 (habitat
    [Show full text]
  • Insect Survey of Four Longleaf Pine Preserves
    A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia.
    [Show full text]
  • Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015)
    Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015) By Richard Henderson Research Ecologist, WI DNR Bureau of Science Services Summary This is a preliminary list of insects that are either well known, or likely, to be closely associated with Wisconsin’s original native prairie. These species are mostly dependent upon remnants of original prairie, or plantings/restorations of prairie where their hosts have been re-established (see discussion below), and thus are rarely found outside of these settings. The list also includes some species tied to native ecosystems that grade into prairie, such as savannas, sand barrens, fens, sedge meadow, and shallow marsh. The list is annotated with known host(s) of each insect, and the likelihood of its presence in the state (see key at end of list for specifics). This working list is a byproduct of a prairie invertebrate study I coordinated from1995-2005 that covered 6 Midwestern states and included 14 cooperators. The project surveyed insects on prairie remnants and investigated the effects of fire on those insects. It was funded in part by a series of grants from the US Fish and Wildlife Service. So far, the list has 475 species. However, this is a partial list at best, representing approximately only ¼ of the prairie-specialist insects likely present in the region (see discussion below). Significant input to this list is needed, as there are major taxa groups missing or greatly under represented. Such absence is not necessarily due to few or no prairie-specialists in those groups, but due more to lack of knowledge about life histories (at least published knowledge), unsettled taxonomy, and lack of taxonomic specialists currently working in those groups.
    [Show full text]
  • Survey of Lepidoptera of the Wainwright Dunes Ecological Reserve
    SURVEY OF LEPIDOPTERA OF THE WAINWRIGHT DUNES ECOLOGICAL RESERVE Alberta Species at Risk Report No. 159 SURVEY OF LEPIDOPTERA OF THE WAINWRIGHT DUNES ECOLOGICAL RESERVE Doug Macaulay Alberta Species at Risk Report No.159 Project Partners: i ISBN 978-1-4601-3449-8 ISSN 1496-7146 Photo: Doug Macaulay of Pale Yellow Dune Moth ( Copablepharon grandis ) For copies of this report, visit our website at: http://www.aep.gov.ab.ca/fw/speciesatrisk/index.html This publication may be cited as: Macaulay, A. D. 2016. Survey of Lepidoptera of the Wainwright Dunes Ecological Reserve. Alberta Species at Risk Report No.159. Alberta Environment and Parks, Edmonton, AB. 31 pp. ii DISCLAIMER The views and opinions expressed are those of the authors and do not necessarily represent the policies of the Department or the Alberta Government. iii Table of Contents ACKNOWLEDGEMENTS ............................................................................................... vi EXECUTIVE SUMMARY ............................................................................................... vi 1.0 Introduction ................................................................................................................... 1 2.0 STUDY AREA ............................................................................................................. 2 3.0 METHODS ................................................................................................................... 6 4.0 RESULTS ....................................................................................................................
    [Show full text]
  • Lepidoptera Recorded for Imperial County California Compiled by Jeffrey Caldwell [email protected] 1-925-949-8696 Note
    Lepidoptera Recorded for Imperial County California Compiled by Jeffrey Caldwell [email protected] 1-925-949-8696 Note: BMNA = Butterflies and Moths of North America web site MPG = Moth Photographers Group web site Most are from the Essig Museum’s California Moth Specimens Database web site Arctiidae. Tiger and Lichen Moths. Apantesis proxima (Notarctia proxima). Mexican Tiger Moth. 8181 [BMNA] Ectypia clio (clio). Clio Tiger Moth. 8249 Estigmene acrea (acrea). Salt Marsh Moth. 8131 Euchaetes zella. 8232 Autostichidae (Deoclonidae). Oegoconia novimundi. Four-spotted Yellowneck Moth. 1134 (Oegoconia quadripuncta mis-applied) Bucculatricidae. Ribbed Cocoon-maker Moths. Bucculatrix enceliae. Brittlebrush Moth. 0546 Cossidae. Goat Moths, Carpenterworm Moths, and Leopard Moths. Comadia henrici. 2679 Givira mucida. 2660 Hypopta palmata. 2656 Prionoxystus robiniae (mixtus). Carpenterworm or Locust Borer. 2693 Depressariidae. Pseudethmia protuberans. 1008 [MPG] Ethmiidae. Now assigned to Depressariidae. Ethmiinae. Ethmia timberlakei. 0984 Pseudethmia protuberans. 1008 Gelechiidae. Twirler Moths. Aristotelia adceanotha. 1726 [Sighting 1019513 BMNA] Chionodes abdominella. 2054 Chionodes dentella. 2071 Chionodes fructuaria. 2078 Chionodes kincaidella. 2086 (reared from Atriplex acanthocarpa in Texas) Chionodes oecus. 2086.2 Chionodes sistrella. 2116 Chionodes xanthophilella. 2125 Faculta inaequalis. Palo Verde Webworm. 2206 Friseria cockerelli. Mesquite Webworm. 1916 Gelechia desiliens. 1938 Isophrictis sabulella. 1701 Keiferia lycopersicella. Tomato Pinworm. 2047 Pectinophora gossypiella. Pink Bollworm. 2261 Prolita puertella. 1895 Prolita veledae. 1903 Geometridae. Inchworm Moths, Loopers, Geometers, or Measuring Worms. Archirhoe neomexicana. 7295 Chesiadodes coniferaria. 6535 Chlorochlamys appellaria. 7073 Cyclophora nanaria. Dwarf Tawny Wave. W 7140 Dichorda illustraria. 7055 Dichordophora phoenix. Phoenix Emerald. 7057 Digrammia colorata. Creosote Moth. 6381 Digrammia irrorata (rubricata). 6395 Digrammia pictipennata. 6372 Digrammia puertata.
    [Show full text]
  • Sexual Selection Drives Floral Scent Diversification in Carnivorous Pitcher Plants (Sarraceniaceae)
    bioRxiv preprint doi: https://doi.org/10.1101/079947; this version posted October 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 TITLE PAGE 2 Title: Sexual selection drives floral scent diversification in carnivorous pitcher plants (Sarraceniaceae) 3 Author Names: Winnie W. Ho1*, J. Nathan Kutz2, Julienne Ng3, Jeff A. Riffell1* 4 Author Affiliations: 1 Dept. of Biology, University of Washington, 2 Dept. of Applied Mathematics, University of 5 Washington, 3 Department of Ecology and Evolutionary Biology, University of Colorado Boulder 6 * Email address of corresponding authors: [email protected], [email protected] 7 8 ABSTRACT 9 Plant volatiles mediate vital ecological services, including pollination and herbivory. Empirical studies show 10 that both pollinators and herbivores exert strong selective pressures on plant phenotypes, leading to the 11 expectation that volatiles from floral and vegetative tissues should exhibit the respective signatures of sexual 12 and natural selection. We tested this hypothesis in the North American pitcher plants, which have modified 13 leaves to capture prey and provide an ideal opportunity to understand the evolution of scent compounds across 14 different plant organs. We collected a comprehensive dataset of floral and vegetative volatiles from across the 15 NA Sarraceniaceae, and used multivariate analysis methods to investigate scent evolution in this unique taxon. 16 Our major findings
    [Show full text]
  • The Canadian Botanical Association Bulletin De L'association Botanique
    Contents Table des matières The CanadianBotanical Plant Canada 2007 Page 45 AssociationBulletin Call for nominations Page 46 Association news Page 47 Section News Page 48 Bulletin de l’Association Rejuvenation of the Conservation Committee Botanique du Canada Dianne Fahselt Page 50 December/Décembre 200 Volume6 • 39 No. 3 /No 3 Book Review Page 52 Plant Canada 2007 Obituary George Ledingham Page 53 Saskatoon, June 10th-14th. Establishing agreement on expectations and responsibilities Arthur R. Davis, Vice President / Vice-présidente between supervisor and graduate student. Dept. of Biology, University of Saskatchewan, Kate Frego 112 Science Place Saskatoon, SK S7N 5E2. Page 55 Tel:(306)966-4732, Fax(306)966- 4461 Activities at Plant Canada 2007 You are cordially invited to Saskatoon to attend the PLANT CANADA 2007 Page 56 meeting which will be held from June 10-14, 2007. As well as the Canadian Botanical Association/L'Association Botanique du Canada, the other five member societies of Plant Canada (the Canadian Phytopathological Society, the Canadian Society of Horticultural Science, the Canadian Society of Plant Botanical research at Physiologists, the Canadian Society of Agronomy, and the Canadian Weed Acadia University Science Society) will be well represented. Accordingly, this meeting will provide Rodger Evans a significant opportunity for Canadian plant scientists from various disciplines, Page 57 both pure and applied, to meet together and share their newest discoveries. Planning for next year's meeting continues to proceed, with regular meetings of the local organizing committee. The theme is "Growing for the Future" ("Le Position available Véé g tal de Demain"), and plenary symposia include "Natural Plant Products: Page 59 Biology, Chemistry and Application" and "Plant Health Network: Quarantine and Invasive Issues".
    [Show full text]
  • Natural Piedmont Forests
    Spring 2009 Guide to Delaware Vegetation Communities Robert Coxe Guide to Delaware Vegetation Communities-Spring 2009 Acknowledgments I would like to acknowledge the contributions and help from the following people for this edition of the Guide to Delaware Vegetation Communities. Karen Bennett, Greg Moore and Janet Dennis of the Delaware Division of Fish and Wildlife Bill McAvoy of the Delaware Natural Heritage Program Dr. John Kartesz of the Biota of North America Program Dr. Keith Clancy and Pete Bowman, Ecologists, formerly of the Delaware Natural Heritage Program Ery Largay and Leslie Sneddon of Natureserve All people unmentioned who made countless contributions to this document. -Take me to the vegetation community keys- Guide to Delaware Vegetation Communities-Spring 2009 Introduction The Guide to Delaware Vegetation Communities is intended to provide a Delaware flavor to the National Vegetation Classification System (NVCS). All common names of communities, except for those not in the NVCS, follow the NVCS. This document is designed for the web and CD only, but desired sections can be printed by users. In this matter, paper and therefore trees can be preserved and impacts to the communities discussed within can be minimized. In spirit of saving these communities please only print those community descriptions that you will use or print none at all. The State of Delaware covers 1,524,863.4 acres of which 1,231,393.6 acres are terrestrial and 293,469.8 acres are water (Table 1). Currently 130 vegetation communities are known to occur in Delaware. Some of the largest vegetation communities/land covers in the state include: Table 1.
    [Show full text]
  • An Inventory of the Natural Areas of Dare County, North Carolina
    AN INVENTORY OF THE NATURAL AREAS OF DARE COUNTY, NORTH CAROLINA Bruce A. Sorrie Inventory Biologist North Carolina Natural Heritage Program Office of Land and Water Stewardship Department of Environment and Natural Resources Raleigh, NC Funding provided by the North Carolina Natural Heritage Trust Fund July 2014 Cover photograph: Buxton Woods, Maritime Shrub Swamp (Dogwood Subtype) taken by Bruce A. Sorrie. AN INVENTORY OF THE NATURAL AREAS OF DARE COUNTY, NORTH CAROLINA Bruce A. Sorrie Inventory Biologist North Carolina Natural Heritage Program Office of Land and Water Stewardship Department of Environment and Natural Resources Raleigh, NC Funding provided by the North Carolina Natural Heritage Trust Fund July 2014 ABSTRACT This inventory of the natural areas, biological communities, and rare species of Dare County was funded by the North Carolina Natural Heritage Trust Fund. The inventory identifies the most significant natural areas in the county, describes their features, and documents all natural communities and rare species of plants and animals associated with them. Habitat conditions, natural processes, and threats are also described. The inventory is intended to provide guidance for land use decisions by county, state, and federal governments, conservation and land management organizations, and interested citizens. Field work was carried out by Bruce A. Sorrie of the North Carolina Natural Heritage Program during 2012 and 2013. The inventory identifies 34 areas of outstanding ecological significance as determined by criteria established by the North Carolina Natural Heritage Program. ACKNOWLEDGMENTS Many individuals and agencies contributed to the planning, progress, and completion of this inventory. Jame Amoroso, Misty Buchanan, John Finnegan, Harry LeGrand, Janine Nicholson, and Linda Rudd reviewed the draft report and maps and assisted in the production of the final copy.
    [Show full text]
  • CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
    WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties.
    [Show full text]
  • Indiana County Endangered, Threatened and Rare Species List 03/09/2020 County: Elkhart
    Page 1 of 4 Indiana County Endangered, Threatened and Rare Species List 03/09/2020 County: Elkhart Species Name Common Name FED STATE GRANK SRANK Insect: Plecoptera (Stoneflies) Acroneuria lycorias Boreal Stonefly SE G5 S1 Perlesta golconda Two-lined Stone SE G2G3 S1 Pteronarcys dorsata American Salmonfly SE G5 S1 Mollusk: Bivalvia (Mussels) Venustaconcha ellipsiformis Ellipse G4 S2 Mollusk: Gastropoda Campeloma decisum Pointed Campeloma SSC G5 S2 Insect: Coleoptera (Beetles) Nicrophorus americanus American Burying Beetle LE SX G3 SX Insect: Hymenoptera Formica ulkei G5 S1 Insect: Lepidoptera (Butterflies & Moths) Apamea lignicolora The Wood-colored Apamea ST G5 S1S2 Apamea nigrior Black-dashed Apamea SR G5 S2S3 Capis curvata Curved Halter Moth ST G5 S2S3 Catocala praeclara Praeclara Underwing SR G5 S2S3 Crambus girardellus Orange-striped Sedge Moth SR GNR S2S3 Dasychira cinnamomea Cinnamon Tussock Moth SE G4 S1 Exyra fax Pitcher Window Moth SE G4 S1S2 Iodopepla u-album White-eyed Borer Moth SR G5 S2 Leucania multilinea Many-lined Wainscot SR G5 S1S2 Macrochilo absorptalis Slant-lined Owlet SR G4G5 S2S3 Macrochilo hypocritalis Twin-dotted Macrochilo SR G4 S2 Melanomma auricinctaria Huckleberry Eye-spot Moth SR G4 S2S3 Papaipema appassionata The Pitcher Plant Borer Moth SE G4 S1 Papaipema speciosissima The Royal Fern Borer Moth ST G4 S2S3 Insect: Odonata (Dragonflies & Damselflies) Sympetrum semicinctum Band-winged Meadowhawk SR G5 S2S3 Insect: Tricoptera (Caddisflies) Setodes oligius A Caddisfly SE G5 S1 Fish Coregonus artedi Cisco SSC
    [Show full text]
  • Delaware's Wildlife Species of Greatest Conservation Need
    CHAPTER 1 DELAWARE’S WILDLIFE SPECIES OF GREATEST CONSERVATION NEED CHAPTER 1: Delaware’s Wildlife Species of Greatest Conservation Need Contents Introduction ................................................................................................................................................... 7 Regional Context ........................................................................................................................................... 7 Delaware’s Animal Biodiversity .................................................................................................................... 10 State of Knowledge of Delaware’s Species ................................................................................................... 10 Delaware’s Wildlife and SGCN - presented by Taxonomic Group .................................................................. 11 Delaware’s 2015 SGCN Status Rank Tier Definitions................................................................................. 12 TIER 1 .................................................................................................................................................... 13 TIER 2 .................................................................................................................................................... 13 TIER 3 .................................................................................................................................................... 13 Mammals ....................................................................................................................................................
    [Show full text]