An Investigation Into the Sarracenia Alata

Total Page:16

File Type:pdf, Size:1020Kb

An Investigation Into the Sarracenia Alata Do ecological communities co-diversify? An investigation into the Sarracenia alata pitcher plant system DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Jordan David Satler Graduate Program in Evolution, Ecology, and Organismal Biology The Ohio State University 2016 Dissertation Committee: Dr. Bryan Carstens, Advisor Dr. Laura Kubatko Dr. John Freudenstein Copyright by Jordan David Satler 2016 Abstract Interactions among species are driving forces behind the formation, structure, and persistence of ecological communities. The nature of species interactions that characterize communities, however, has long been debated by ecologists, varying from communities as fluid entities to communities as evolving units. For species with obligate interactions (e.g., host and parasite, plant and pollinator), we might expect these ecologically dependent associations to be reflected in a shared evolutionary history, yet relatively few studies have demonstrated this process in nature. To address this central tenet in ecology and evolutionary biology, my research explores co-diversification in the Sarracenia alata pitcher plant system. Sarracenia alata (family Sarraceniaceae) is a carnivorous pitcher plant distributed along the Gulf Coast of the American southeast, bisected by the Mississippi River. Leaves of this plant are tube-shaped and filled with fluid, adapted for the capture and digestion of prey items. The breakdown of prey provides inorganic compounds to the plant, necessary in the nutrient-poor habitats where these plants are found. In addition to prey capture, the plant’s modified leaves harbor a unique biota of associated organisms (i.e., inquilines)—diverse species that share ecological relationships and often provide important services (e.g., secrete digestive enzymes) for the plant. My dissertation tests coevolution theory, exploring how a host ii plant may influence the population genetic structure of associated species. Shared structure would suggest stable ecological relationships through evolutionary time, and would provide evidence that ecologically interacting lineages can evolve as a unit. I first analyzed DNA sampled directly from the pitcher fluid to identify microorganisms contained within the community (Chapter 2). My results recover a diverse set of taxa found within the pitcher fluid, and demonstrate that roughly half of the small eukaryotes (e.g., fungi, mites) share population genetic structure with S. alata, suggesting a shared evolutionary history among these interacting species. I further explored these questions of co-diversification with six arthropod species (insects and arachnids) that interact with the host plant; these species range on the ecological spectrum from obligate symbionts to opportunistic predators (Chapter 3). I first developed a novel method for quantifying phylogeographic congruence (Phylogeographic Concordance Factors; PCFs). Results show ecological association correlates with a shared evolutionary history, and suggests that multiple arthropods co-diversified with the host pitcher plant. I then tested for simultaneous divergence across the Mississippi River, an important biogeographic barrier in this region, by estimating population splitting times in five arthropods spanning this barrier (Chapter 4). Results suggest that two of the arthropods dispersed across the Mississippi River (from east to west) synchronously with the plant. A third arthropod displays similar population genetic patterns as the plant, but is estimated to have dispersed across the Mississippi River at a later time. My dissertation provides evidence for the evolutionary stability of interacting lineages, suggesting that ecological communities co-diversify. iii This dissertation is dedicated to my parents, June and Larry Satler, for their love, support, and encouragement as I pursued my interests. iv Acknowledgments First and foremost, I would like to thank my advisor, Dr. Bryan Carstens, for being an outstanding mentor as I pursued my PhD. Bryan has been a wonderful advisor, and has helped me grow as a biologist and as a person. I have appreciated Bryan’s time and efforts with me, and his willingness to listen to my ideas, provide constructive criticism, and to help clarify concepts when they didn’t quite make sense. Bryan has also been incredibly patient and understanding with me, and I am tremendously thankful for that. I feel fortunate to have had Bryan as a PhD advisor. I would also like to thank my other committee members, Dr. Laura Kubatko and Dr. John Freudenstein, for their helpful comments, suggestions, and discussion over the years, and for providing their time towards this process. In particular, I would like to thank Dr. Laura Kubatko for her fantastic seminars each spring, covering topics I am eager to learn and discuss and in explaining difficult concepts in a way to make them understandable. These seminars have been instrumental in my growth as a scientist. In addition, I would like to thank Dr. Norm Johnson for being a valuable member of my candidacy committee. I appreciated Norm’s questions and comments during this time, and in our discussions over the years. I would like to thank my funding sources for making much of my project possible. Specifically, I would like to thank the National Science Foundation (Doctoral v Dissertation Improvement Grant DEB-1501474), the Ohio State University (Presidential Fellowship), the Society for the Study of Evolution (Rosemary Grant Award for Graduate Student Research), and the Society of Systematic Biologists (Graduate Student Research Award). I would also like to thank Dr. Marshal Hedin, Dr. Robb Brumfield, and Dr. Frank Burbrink for writing letters of recommendation for me for the Presidential Fellowship. The bulk of my analyses were carried out on the Oakley cluster at the Ohio Supercomputer Center and the Ohio Biodiversity Conservation Partnership (OBCP) Informatics Infrastructure housed at the Museum of Biological Diversity. These two computing resources were fantastic. In addition, I would like to thank Joe Cora, who was an excellent resource when I had questions or needed assistance with the OBCP cluster. I have been fortunate to have had many wonderful lab mates during my PhD. I would like to thank current students Ariadna Morales-Garcia, Megan Smith, Sergei Soloneko, and Greg Wheeler, for excellent discussion and interactions over the years. I have thoroughly enjoyed our lab meetings and discussions of papers and ideas. I’m excited to see where their paths go during their academic careers! It’s crucial for me to thank the Carsten lab members present when I first entered the lab, Sarah Hird, John McVay, Tara Pelletier, and Noah Reid. My first year in the lab was incredible, and I have many wonderful memories of our time together at Louisiana State University. A big reason for me initially joining Bryan’s lab was because of these four people, and I know I made the right decision and greatly value the time we had together. In addition, Danielle Fuselier was a superstar undergraduate in the lab at LSU, and helped with both field work and lab work during my first year. I would like to thank Michael Gruenstaeudl for great vi discussion and help with computer coding while he was a postdoc in the lab at Ohio State. I would also like to thank Matt Demarest and Maxim Kim for help and assistance regarding computer coding for data analysis while they worked in the lab my first couple of years at Ohio State. So many people have helped contribute to where I am today in my academic career; there are too many to thank but I will give it my best shot! First, I would like to thank my Master’s advisor, Dr. Marshal Hedin. Marshal was instrumental in getting me started with research, and in learning how to be a scientist. I wouldn’t be where I am today without Marshal’s guidance and tutelage, and am forever thankful that as an undergraduate at San Diego State University, I enrolled in a course called Terrestrial Arthropod Biology. That class changed my life. I would like to thank the many faculty and graduate students at LSU that I interacted with during the first year of my PhD. I had many wonderful discussions pertaining to science and life during this time, and look back fondly on those conversations and experiences. I would also like to thank the many faculty and graduate students at Ohio State. These past four years have been very important in my life, and the interactions, discussions, and experiences with these wonderful people has made it a time I will never forget. I am hesitant to list names for concern I may leave someone out, but I have forged many strong friendships over these past few years, and those people know who they are. Academia is a gift and a curse in that we get the opportunity to meet such wonderful people, but many of our stays are fleeting in time. I’m thankful for all the wonderful relationships I’ve had over the years at vii Ohio State, and look forward to continuing our friendships as we move forward in our careers. I would like to thank Greg Dahlem and Rob Naczi for help with the identification of flesh flies in my study. I would like to thank Maggie Koopman and Amanda Zellmer for data collection and analysis pertaining to Chapter 2, and for their roles in the earlier work on Sarracenia alata building a foundation for the system with which I could explore with the arthropods. I would like to thank Kelly Zamudio, the Zamudio lab, and Steve Bogdanowicz for assistance with RAD sequencing. I would also like to thank Mike Sovic for discussion regarding RAD sequencing and protocols, and various aspects of the analysis of RAD data. Finally, I would like to thank my family, friends, and those closest to me for their love, support, and encouragement over the years as I pursued my PhD. Lisa Miller has been a wonderful girlfriend and companion the past couple years, and has provided much needed relief to get my mind off work and explore nature and the many wonderful things life has to offer.
Recommended publications
  • Curriculum Vitae Bradley Evan Carlson, Ph.D
    Curriculum Vitae Bradley Evan Carlson, Ph.D. Byron K. Trippet Assistant Professor of Biology Wabash College Crawfordsville, IN 47933 Email: [email protected] Telephone: (765) 361-6460 Website: carlsonecolab.weebly.com Professional Experience 2014 - present Byron K. Trippet Assistant Professor of Biology, Wabash College Education 2009-2014 PhD in Ecology, minor in Statistics, The Pennsylvania State University, University Park, PA Advisor: Dr. Tracy Langkilde Dissertation: The evolutionary ecology of intraspecific trait variation in larval amphibians 2008 B.S. in Biology, Bethel University, St. Paul, MN Summa cum laude, Honors Graduate Thesis: Temperature and desiccation effects on the antipredator behavior of Centruroides vittatus (Scorpiones: Buthidae) Research Interests Evolutionary ecology – phenotypic diversity, local adaptation, trait integration Behavioral ecology – phenotypic plasticity, predator-prey interactions, personality traits Community ecology – trait-mediated indirect interactions, predation, aquatic ecology Zoology – herpetology, arachnology, comparative morphology Publications (*co-author was undergraduate) Kashon*, EAF, and BE Carlson. 2018. Consistently bolder turtles maintain higher body temperatures in the field but may experience greater predation risk. Behavioral Ecology and Sociobiology 72:9. Carlson, BE, and T Langkilde. 2017. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecology and Evolution 7:9978-9990. Lambert, MR, Carlson, BE, Smylie, MS, and L Swierk. 2017. Ontogeny of sexual dichromatism in the explosively breeding Wood Frog. Herpetological Conservation and Biology 12:447-456. Media coverage: InsideEcology.com (https://insideecology.com/2018/02/12/amphibians-that-change-colour/) Carlson, BE, and T Langkilde. 2016. The role of resources in microgeographic variation in Red- spotted Newt (Notophthalmus v. viridescens) morphology. Journal of Herpetology 50:442-448.
    [Show full text]
  • Sexual Selection Research on Spiders: Progress and Biases
    Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters.
    [Show full text]
  • Sari Et Al. 2012 J. Biogeography.Pdf
    Journal of Biogeography (J. Biogeogr.) (2012) ORIGINAL Tracking the origins of lice, haemospo- ARTICLE ridian parasites and feather mites of the Galapagos flycatcher (Myiarchus magnirostris) Eloisa H. R. Sari1*, Hans Klompen2 and Patricia G. Parker1,3 1Department of Biology and Whitney R. ABSTRACT Harris World Ecology Center, University of Aim To discover the origins of the lice, haemosporidian parasites and feather Missouri-St. Louis, St Louis, MO, 63121, 2 mites found on or in Galapagos flycatchers (Myiarchus magnirostris), by testing USA, Department of Evolution, Ecology and Organismal Biology, The Ohio State whether they colonized the islands with the ancestors of M. magnirostris or if University, Columbus, OH, 43212, USA, they were acquired by M. magnirostris after its arrival in the Galapagos Islands. 3 Saint Louis Zoo WildCare Institute, St Louis, Location The Galapagos Islands (Ecuador) and north-western Costa Rica. MO, 63110, USA Methods We collected lice, feather mites and blood samples from M. magni- rostris on seven of the Galapagos Islands (n = 254), and from its continental sister species, M. tyrannulus, in Costa Rica (n = 74), and identified them to species level using traditional taxonomy and DNA sequencing. Results The blood parasites from the two bird species were different: Plasmo- dium was found only in M. tyrannulus, while a few individuals of M. magnirostris were infected by Haemoproteus multipigmentatus from Galapagos doves (Zenaida galapagoensis). Myiarchus tyrannulus was parasitized by three louse species, two of which (Ricinus marginatus and Menacanthus distinctus) were also found on Myiarchus magnirostris. We also collected one louse specimen from M. magnirostris, which was identified as Brueelia interposita, a species commonly found on finches and yellow warblers from the Galapagos, but never recorded on M.
    [Show full text]
  • Dipterists Forum
    BULLETIN OF THE Dipterists Forum Bulletin No. 76 Autumn 2013 Affiliated to the British Entomological and Natural History Society Bulletin No. 76 Autumn 2013 ISSN 1358-5029 Editorial panel Bulletin Editor Darwyn Sumner Assistant Editor Judy Webb Dipterists Forum Officers Chairman Martin Drake Vice Chairman Stuart Ball Secretary John Kramer Meetings Treasurer Howard Bentley Please use the Booking Form included in this Bulletin or downloaded from our Membership Sec. John Showers website Field Meetings Sec. Roger Morris Field Meetings Indoor Meetings Sec. Duncan Sivell Roger Morris 7 Vine Street, Stamford, Lincolnshire PE9 1QE Publicity Officer Erica McAlister [email protected] Conservation Officer Rob Wolton Workshops & Indoor Meetings Organiser Duncan Sivell Ordinary Members Natural History Museum, Cromwell Road, London, SW7 5BD [email protected] Chris Spilling, Malcolm Smart, Mick Parker Nathan Medd, John Ismay, vacancy Bulletin contributions Unelected Members Please refer to guide notes in this Bulletin for details of how to contribute and send your material to both of the following: Dipterists Digest Editor Peter Chandler Dipterists Bulletin Editor Darwyn Sumner Secretary 122, Link Road, Anstey, Charnwood, Leicestershire LE7 7BX. John Kramer Tel. 0116 212 5075 31 Ash Tree Road, Oadby, Leicester, Leicestershire, LE2 5TE. [email protected] [email protected] Assistant Editor Treasurer Judy Webb Howard Bentley 2 Dorchester Court, Blenheim Road, Kidlington, Oxon. OX5 2JT. 37, Biddenden Close, Bearsted, Maidstone, Kent. ME15 8JP Tel. 01865 377487 Tel. 01622 739452 [email protected] [email protected] Conservation Dipterists Digest contributions Robert Wolton Locks Park Farm, Hatherleigh, Oakhampton, Devon EX20 3LZ Dipterists Digest Editor Tel.
    [Show full text]
  • Kirill Glebovich Mikhailov: on the Occasion of His 60Th Birthday
    Zootaxa 5006 (1): 006–012 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Biography ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.5006.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:B883A8B0-F324-400F-B670-304511C53963 Kirill Glebovich Mikhailov: On the occasion of his 60th Birthday YURI M. MARUSIK1 & VICTOR FET2 1Institute for Biological Problems of the North, Portovaya Street 18, Magadan 685000, Russia Department of Zoology & Entomology, University of the Free State, Bloemfontein 9300, South Africa [email protected]; https://orcid.org/0000-0002-4499-5148 2Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755-2510, USA [email protected]; https://orcid.org/0000-0002-1016-600X Kirill Glebovich Mikhailov was born on 29 July 1961 in Moscow, Russia. Both of his parents, Gleb K. Mikhailov (1929–2021) and Galina R. Mikhailova (1926–2019), were research scientists. Kirill’s father was an expert in the history of mechanics, and mother, a biologist. Since early childhood Kirill was raised mainly by his maternal grandparents, Ro- man P. Nosov and Antonina V. Nosova. Kirill’s grandfather, a CPSU official and a career administrator at the Ministry of Energetics, retired from his post in 1965 to take care of the grandson. Kirill’s grandmother, an obstetrician by profession, received disability at a military plant during the WWII in evacuation, and was a housewife after the war. In 1978, Kirill began his studies at the Division of Biology (Biologicheskii Fakul’tet) of the Moscow State University (below, MSU). Even earlier, as a schoolboy, Kirill used to buy books on zoology, especially separate issues of the Fauna of the USSR and Keys to the Fauna of the USSR, then relatively cheap and available.
    [Show full text]
  • Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
    Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • Crop Protection Compendium USDA Aphis the World’S Most Comprehensive Site for Crop Signed in Via: Protection Information Username/Password
    2/3/2017 The potential of plant pathogens collected in Trinidad for biological control of Chromolaena odorata (L.) King &amp; Robinson. Other CABI sites Home Overview About Help Contact Mobile Sign out You are signed in as: Crop Protection Compendium USDA Aphis The world’s most comprehensive site for Crop Signed in via: Protection Information Username/Password Datasheets Abstracts Full Text Library Glossary More Resources Search Crop Protection Compendium Smart searches My CPC Search over 27,000 datasheets and over 390,000 abstracts Enter keyword or phrase Filter by type Search Advanced Bibliographic Search Advanced Datasheet Search Abstract details << Previous: Cionothrix praelonga Next: Chromolaena odorata (Siam weed) >> Author(s) Return to Search Results Elango, D. E.; Holden, A. N. G.; Prior, C. Author Affiliation Abstract CAB International Institute of Biological Control, Caribbean and Latin American The potential of plant pathogens collected in Station, Gordon Street, Curepe, Trinidad for biological control of Chromolaena Trinidad, Trinidad and Tobago. odorata (L.) King & Robinson. Journal article International Journal of Pest Management 1993 39 4 393­396 Abstract ISSN 0967­0874 A survey for pathogens of Chromolaena odorata was conducted in Trinidad and Tobago over a 24­month period. The rust Cionothrix praelonga was reported in Trinidad for the first time, DOI 10.1080/09670879309371829 where it was found at two sites in Temple Village, Armina and on the Macqueripe Road, Chaguaramas. No seasonal fluctuation in the incidence of the disease was observed in the Language of Text field during the 2­year study. The optimum conditions for infection were established and English infection was achieved with laboratory­inoculated plants.
    [Show full text]
  • Revision of the Neotropical Neurigoninae
    NAGLIS: 267314 Studia dipterologica 10 (2003) Heft 1 ɀ ISSN 0945-3954 Revision of the Neotropical Neurigoninae (Diptera: Dolichopodidae) V: Neurigona RONDANI [Revision der neotropischen Neurigoninae (Diptera: Dolichopodidae) V: Neurigona RONDANI] by Stefan M. NAGLIS Zurich (Switzerland) Abstract The Neotropical species of the genus Neurigona RONDANI (Diptera: Dolichopodidae) are re- vised, comprising 39 species of which 32 are described as new. Descriptions, illustrations and keys to species and species-groups are given. The following species are described as new (spec. nov.): alajuela (Costa Rica), albitarsis (Costa Rica), aragua (Venezuela), argentifacies (Costa Rica, Brazil), brevitibia (Venezuela, Peru, Brazil), cantareira (Brazil), crinitarsis (Mexico), guanacasta (Costa Rica), hachaensis (Costa Rica), lamellata (Costa Rica, Panama, Honduras), latifacies (Costa Rica), limonensis (Costa Rica, Venezuela), longipalpa (Costa Rica), longitarsis (Costa Rica), maculosa (Tobago, Panama), magnipalpa (Costa Rica), mi- cra (Costa Rica), montebello (Mexico), nervosa (Costa Rica), obscurata (Mexico), pitilla (Costa Rica), plumitarsis (Costa Rica), pressitarsis (Venezuela), procera (Honduras), pseudobanksi (Brazil), purulha (Guatemala), sirena (Costa Rica, Panama, Venezuela, Guyana, Peru, Bra- zil), starki (Venezuela), subnervosa (Mexico, Guatemala), tatumbia (Mexico, Honduras), tenuicauda (Venezuela), yacambo (Venezuela). Neurigona banksi VAN DUZEE has been raised from synonymy. Neurigona brasiliensis (SCHINER) and Neurigona derelicta PARENT are
    [Show full text]
  • Comparison of Coleoptera Emergent from Various Decay Classes of Downed Coarse Woody Debris in Great Smoky Mountains National Park, USA
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 11-30-2012 Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains National Park, USA Michael L. Ferro Louisiana State Arthropod Museum, [email protected] Matthew L. Gimmel Louisiana State University AgCenter, [email protected] Kyle E. Harms Louisiana State University, [email protected] Christopher E. Carlton Louisiana State University Agricultural Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Ferro, Michael L.; Gimmel, Matthew L.; Harms, Kyle E.; and Carlton, Christopher E., "Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains National Park, USA" (2012). Insecta Mundi. 773. https://digitalcommons.unl.edu/insectamundi/773 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA A Journal of World Insect Systematics MUNDI 0260 Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains Na- tional Park, USA Michael L. Ferro Louisiana State Arthropod Museum, Department of Entomology Louisiana State University Agricultural Center 402 Life Sciences Building Baton Rouge, LA, 70803, U.S.A. [email protected] Matthew L. Gimmel Division of Entomology Department of Ecology & Evolutionary Biology University of Kansas 1501 Crestline Drive, Suite 140 Lawrence, KS, 66045, U.S.A.
    [Show full text]
  • René Antoine Ferchault De Réaumur (1683–1757), a Naturalist and Pioneer of Acarology and His Contacts with Poland
    BIOLOGICAL LETT. 2016, 53(1): 9–17 Available online at: http:/www.degruyter.com/view/j/biolet DOI: 10.1515/biolet-2017-0002 René Antoine Ferchault de Réaumur (1683–1757), a naturalist and pioneer of acarology and his contacts with Poland PIOTR DASZKIEWICZ Institute for the History of Science, Polish Academy of Sciences, Nowy Świat 72, 00-330 Warsaw, Poland; and National Museum of Natural History, 57 Rue Cuvier, 75005 Paris France; e-mail: [email protected] Corresponding author: Piotr Daszkiewicz, e-mail: [email protected] (Received on 7 January 2016; Accepted on 12 July 2016) Abstract: René Antoine Ferchault de Réaumur was one of the most important scientists of the Age of Enlightenment. His relations with Polish scientists are analysed, with particular reference to Franciszek Bieliński (Grand Marshal of the Crown), Konstanty Franciszek Fremel (a Saxon specialist of glass tech- nology in Poland), and Johann Ernst Stieff (a Silesian scientist). Réaumur’s work on mites is discussed in the context of his entomological publications. For the first time, illustrations of mites drawn by Claude Aubriet (from Réaumur’s collection) are reproduced here. INTRODUCTION: RÉAUMUR’S SCIENTIFIC RESEARCH The 18th century marked a revolution in the natural sciences. The cabinets of curiosities, i.e. collections of natural history specimens, became more and more im- portant then. Descriptions of those collections resulted in many zoological, mineral- ogical, and botanical works. Carl Linnaeus (1707-1778) proposed the new rules of nomenclature and systematics: it was the beginning of the modern taxonomic system that we still use today. The work of Antoine Lavoisier revolutionized chemistry.
    [Show full text]
  • Sexual Selection Drives Floral Scent Diversification in Carnivorous Pitcher Plants (Sarraceniaceae)
    bioRxiv preprint doi: https://doi.org/10.1101/079947; this version posted October 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 TITLE PAGE 2 Title: Sexual selection drives floral scent diversification in carnivorous pitcher plants (Sarraceniaceae) 3 Author Names: Winnie W. Ho1*, J. Nathan Kutz2, Julienne Ng3, Jeff A. Riffell1* 4 Author Affiliations: 1 Dept. of Biology, University of Washington, 2 Dept. of Applied Mathematics, University of 5 Washington, 3 Department of Ecology and Evolutionary Biology, University of Colorado Boulder 6 * Email address of corresponding authors: [email protected], [email protected] 7 8 ABSTRACT 9 Plant volatiles mediate vital ecological services, including pollination and herbivory. Empirical studies show 10 that both pollinators and herbivores exert strong selective pressures on plant phenotypes, leading to the 11 expectation that volatiles from floral and vegetative tissues should exhibit the respective signatures of sexual 12 and natural selection. We tested this hypothesis in the North American pitcher plants, which have modified 13 leaves to capture prey and provide an ideal opportunity to understand the evolution of scent compounds across 14 different plant organs. We collected a comprehensive dataset of floral and vegetative volatiles from across the 15 NA Sarraceniaceae, and used multivariate analysis methods to investigate scent evolution in this unique taxon. 16 Our major findings
    [Show full text]