The Next Generation Virgo Cluster Survey. XXXIV. Ultra-Compact Dwarf (UCD) Galaxies in the Virgo Cluster
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dynamos on Galactic Scales, Or Dynamos Around Us
Dynamos on galactic scales, or Dynamos around us. Part I. Galaxies and galaxy clusters Anvar Shukurov School of Mathematics and Statistics, Newcastle University, U.K. 1. Introduction: basic facts and parameters 2. Spiral galaxies 2.1. Rotation 2.2. Hydrostatic equilibrium of the gas layer 2.3. Interstellar gas and its multi-phase structure 2.4. Interstellar turbulence 3. Elliptical galaxies 4. Galaxy clusters Warning cgs units will be used, 1 G = 10 -4 T, 1 µG = 10 -6 G = 0.1 nT. G ≈ 6.67 ×10 −8 cm 3 g−1 s−2; k ≈ 1.38 ×10 −16 erg K −1; ≈ × −24 ≈ × 7 ≈ × −12 mp 1.7 10 g, 1 year 3 10 s; 1 eV 1.6 10 erg. 1 parsec ≈ 3 × 10 18 cm ≈ 3.26 light years, 1 kpc = 10 3 pc; c ≈ 3×10 10 cm 3 cm s −1 (1 parsec distance: Earth orbit’s par allax = 1 sec ond of arc). Solar mass, radius and luminosity: ≈ × 33 ≈ × 10 ≈ × 33 −1 M 2 10 g; R 7 10 cm; L 4 10 erg s . Notation: HI = neutral hydrogen, HII = p+ = ionized hydrogen, CIV = triply ionized carbon, etc. Further reading R. G. Tayler, Galaxies: Structures and Evolution , Cambridge Univ. Press, 1993 (a high-level scientific popular book on galactic astrophysics, entertaining and informative, very well written). J.E Dyson and D.A Williams, The Physics of the Interstellar Medium , Second Edition (The Graduate Series in Astronomy), IOP, 1997 (a good textbook on interstellar medium, presents appropriate equations and their solutions together with clear qualitative arguments and explanations and order of magnitude estimates). -
Formation of an Ultra-Diffuse Galaxy in the Stellar Filaments of NGC 3314A
A&A 652, L11 (2021) Astronomy https://doi.org/10.1051/0004-6361/202141086 & c ESO 2021 Astrophysics LETTER TO THE EDITOR Formation of an ultra-diffuse galaxy in the stellar filaments of NGC 3314A: Caught in the act? Enrichetta Iodice1 , Antonio La Marca1, Michael Hilker2, Michele Cantiello3, Giuseppe D’Ago4, Marco Gullieuszik5, Marina Rejkuba2, Magda Arnaboldi2, Marilena Spavone1, Chiara Spiniello6, Duncan A. Forbes7, Laura Greggio5, Roberto Rampazzo5, Steffen Mieske8, Maurizio Paolillo9, and Pietro Schipani1 1 INAF-Astronomical Observatory of Capodimonte, Salita Moiariello 16, 80131 Naples, Italy e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei Muenchen, Germany 3 INAF-Astronomical Observatory of Abruzzo, Via Maggini, 64100 Teramo, Italy 4 Instituto de Astrofísica, Facultad de Fisica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile 5 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 6 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK 7 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia 8 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 9 University of Naples “Federico II”, C.U. Monte Sant’Angelo, Via Cinthia, 80126 Naples, Italy Received 14 April 2021 / Accepted 9 July 2021 ABSTRACT The VEGAS imaging survey of the Hydra I cluster has revealed an extended network of stellar filaments to the south-west of the spiral galaxy NGC 3314A. Within these filaments, at a projected distance of ∼40 kpc from the galaxy, we discover an ultra-diffuse galaxy −2 (UDG) with a central surface brightness of µ0;g ∼ 26 mag arcsec and effective radius Re ∼ 3:8 kpc. -
A High Stellar Velocity Dispersion and ~100 Globular Clusters for the Ultra
San Jose State University From the SelectedWorks of Aaron J. Romanowsky 2016 A High Stellar Velocity Dispersion and ~100 Globular Clusters for the Ultra-Diffuse Galaxy Dragonfly 44 Pieter van Dokkum, Yale University Roberto Abraham, University of Toronto Jean P. Brodie, University of California Observatories Charlie Conroy, Harvard-Smithsonian Center for Astrophysics Shany Danieli, Yale University, et al. Available at: https://works.bepress.com/aaron_romanowsky/117/ The Astrophysical Journal Letters, 828:L6 (6pp), 2016 September 1 doi:10.3847/2041-8205/828/1/L6 © 2016. The American Astronomical Society. All rights reserved. A HIGH STELLAR VELOCITY DISPERSION AND ∼100 GLOBULAR CLUSTERS FOR THE ULTRA-DIFFUSE GALAXY DRAGONFLY 44 Pieter van Dokkum1, Roberto Abraham2, Jean Brodie3, Charlie Conroy4, Shany Danieli1, Allison Merritt1, Lamiya Mowla1, Aaron Romanowsky3,5, and Jielai Zhang2 1 Astronomy Department, Yale University, New Haven, CT 06511, USA 2 Department of Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada 3 University of California Observatories, 1156 High Street, Santa Cruz, CA 95064, USA 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, USA 5 Department of Physics and Astronomy, San José State University, San Jose, CA 95192, USA Received 2016 June 20; revised 2016 July 14; accepted 2016 July 15; published 2016 August 25 ABSTRACT Recently a population of large, very low surface brightness, spheroidal galaxies was identified in the Coma cluster. The apparent survival of these ultra-diffuse galaxies (UDGs) in a rich cluster suggests that they have very high masses. Here, we present the stellar kinematics of Dragonfly44, one of the largest Coma UDGs, using a 33.5 hr fi +8 -1 integration with DEIMOS on the Keck II telescope. -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
The Puzzling Nature of Dwarf-Sized Gas Poor Disk Galaxies
Dissertation submitted to the Department of Physics Combined Faculties of the Astronomy Division Natural Sciences and Mathematics University of Oulu Ruperto-Carola-University Oulu, Finland Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Joachim Janz born in: Heidelberg, Germany Public defense: January 25, 2013 in Oulu, Finland THE PUZZLING NATURE OF DWARF-SIZED GAS POOR DISK GALAXIES Preliminary examiners: Pekka Heinämäki Helmut Jerjen Opponent: Laura Ferrarese Joachim Janz: The puzzling nature of dwarf-sized gas poor disk galaxies, c 2012 advisors: Dr. Eija Laurikainen Dr. Thorsten Lisker Prof. Heikki Salo Oulu, 2012 ABSTRACT Early-type dwarf galaxies were originally described as elliptical feature-less galax- ies. However, later disk signatures were revealed in some of them. In fact, it is still disputed whether they follow photometric scaling relations similar to giant elliptical galaxies or whether they are rather formed in transformations of late- type galaxies induced by the galaxy cluster environment. The early-type dwarf galaxies are the most abundant galaxy type in clusters, and their low-mass make them susceptible to processes that let galaxies evolve. Therefore, they are well- suited as probes of galaxy evolution. In this thesis we explore possible relationships and evolutionary links of early- type dwarfs to other galaxy types. We observed a sample of 121 galaxies and obtained deep near-infrared images. For analyzing the morphology of these galaxies, we apply two-dimensional multicomponent fitting to the data. This is done for the first time for a large sample of early-type dwarfs. A large fraction of the galaxies is shown to have complex multicomponent structures. -
Teacher's Guide
Teacher’s guide CESAR Science Case – The secrets of galaxies Material that is necessary during the laboratory o CESAR Booklet o Computer with an Internet browser o CESAR List of Galaxies (.txt file) o Paper, pencil or pen o CESAR Student’s guide o o Introduction o o This Science Case provides an introduction to galaxies based on real multi-wavelength observations with space missions. It discusses concepts such as the Hubble Tuning Fork and the morphological classification of galaxies, stellar and ISM content of the different types of galaxies, and galaxy interaction and evolution. The activity is designed to encourage students to discover the properties of galaxies on their own. o During the laboratory, students make use of ESASky1, a portal for exploration and retrieval of space astronomical data, to visualise different galaxies and classify them according to their shapes and optical colours. Students can load different sky maps to see how the galaxies look like when they are observed at different wavelength ranges, and discuss how the presence of the ISM is affecting these observations. o Before starting this activity, students must be familiar with the properties of stars and of the interstellar medium, as well as have some basic concepts of stellar evolution. In particular, they must understand that young, massive stars display blue colors, while evolved stars look yellowish or reddish. They must also understand the relation between the ISM and young stars. o o Learning Outcomes o o By the end of this laboratory, students will be able to: 1. Explain how astronomers classify galaxies according to their shapes and contents. -
Spatially Resolved Stellar Kinematics of the Ultra-Diffuse Galaxy Dragonfly 44
The Astrophysical Journal, 880:91 (26pp), 2019 August 1 https://doi.org/10.3847/1538-4357/ab2914 © 2019. The American Astronomical Society. All rights reserved. Spatially Resolved Stellar Kinematics of the Ultra-diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, and Cold Dark Matter Halo Fits Pieter van Dokkum1 , Asher Wasserman2 , Shany Danieli1 , Roberto Abraham3 , Jean Brodie2 , Charlie Conroy4 , Duncan A. Forbes5, Christopher Martin6, Matt Matuszewski6, Aaron J. Romanowsky2,7 , and Alexa Villaume2 1 Astronomy Department, Yale University, 52 Hillhouse Avenue, New Haven, CT 06511, USA 2 University of California Observatories, 1156 High Street, Santa Cruz, CA 95064, USA 3 Department of Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, USA 5 Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122, Australia 6 Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 278-17, Pasadena, CA 91125, USA 7 Department of Physics and Astronomy, San José State University, San Jose, CA 95192, USA Received 2019 March 31; revised 2019 May 25; accepted 2019 June 5; published 2019 July 30 Abstract We present spatially resolved stellar kinematics of the well-studied ultra-diffuse galaxy (UDG) Dragonfly44, as determined from 25.3 hr of observations with the Keck Cosmic Web Imager. The luminosity-weighted dispersion +3 −1 within the half-light radius is s12= 33-3 km s , lower than what we had inferred before from a DEIMOS spectrum in the Hα region. There is no evidence for rotation, with Vmax áñ<s 0.12 (90% confidence) along the major axis, in possible conflict with models where UDGs are the high-spin tail of the normal dwarf galaxy distribution. -
Structural Parameters of Compact Stellar Systems
Structural Parameters of Compact Stellar Systems Juan Pablo Madrid Presented in fulfillment of the requirements of the degree of Doctor of Philosophy May 2013 Faculty of Information and Communication Technology Swinburne University Abstract The objective of this thesis is to establish the observational properties and structural parameters of compact stellar systems that are brighter or larger than the “standard” globular cluster. We consider a standard globular cluster to be fainter than M 11 V ∼ − mag and to have an effective radius of 3 pc. We perform simulations to further un- ∼ derstand observations and the relations between fundamental parameters of dense stellar systems. With the aim of establishing the photometric and structural properties of Ultra- Compact Dwarfs (UCDs) and extended star clusters we first analyzed deep F475W (Sloan g) and F814W (I) Hubble Space Telescope images obtained with the Advanced Camera for Surveys. We fitted the light profiles of 5000 point-like sources in the vicinity of NGC ∼ 4874 — one of the two central dominant galaxies of the Coma cluster. Also, NGC 4874 has one of the largest globular cluster systems in the nearby universe. We found that 52 objects have effective radii between 10 and 66 pc, in the range spanned by extended star ∼ clusters and UCDs. Of these 52 compact objects, 25 are brighter than M 11 mag, V ∼ − a magnitude conventionally thought to separate UCDs and globular clusters. We have discovered both a red and a blue subpopulation of Ultra-Compact Dwarf (UCD) galaxy candidates in the Coma galaxy cluster. Searching for UCDs in an environment different to galaxy clusters we found eleven Ultra-Compact Dwarf and 39 extended star cluster candidates associated with the fossil group NGC 1132. -
An Ultra Diffuse Galaxy in the NGC 5846 Group from the VEGAS Survey Duncan A
A&A 626, A66 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935499 & c ESO 2019 Astrophysics An ultra diffuse galaxy in the NGC 5846 group from the VEGAS survey Duncan A. Forbes1, Jonah Gannon1, Warrick J. Couch1, Enrichetta Iodice2, Marilena Spavone2, Michele Cantiello3, Nicola Napolitano4, and Pietro Schipani2 1 Centre for Astrophysics & Supercomputing, Swinburne University, Hawthorn, VIC 3122, Australia e-mail: [email protected] 2 INAF-Astronomical Observatory of Capodimonte, Salita Moiariello 16, 80131 Naples, Italy 3 INAF Astronomical Observatory of Abruzzo, Via Maggini snc, 64100 Teramo, Italy 4 School of Physics and Astronomy, Sun Yat-sen University Zhuhai Campus, 2 Daxue Road, Tangjia, Zhuhai, Guangdong 519082, PR China Received 19 March 2019 / Accepted 10 May 2019 ABSTRACT Context. Many ultra diffuse galaxies (UDGs) have now been identified in clusters of galaxies. However, the number of nearby UDGs suitable for detailed follow-up remain rare. Aims. Our aim is to begin to identify UDGs in the environments of nearby bright early-type galaxies from the VEGAS survey. Methods. Here we use a deep g band image of the NGC 5846 group, taken as part of the VEGAS survey, to search for UDGs. Results. We found one object with properties of a UDG if it associated with the NGC 5846 group, which seems likely. The galaxy, 8 we name NGC 5846_UDG1, has an absolute magnitude of Mg = −14.2, corresponding to a stellar mass of ∼10 M . It also reveals a system of compact sources which are likely globular clusters. Based on the number of globular clusters detected we estimate a halo 10 mass that is greater than 8 × 10 M for UDG1. -
Aaron J. Romanowsky Curriculum Vitae (Rev. 1 Septembert 2021) Contact Information: Department of Physics & Astronomy San
Aaron J. Romanowsky Curriculum Vitae (Rev. 1 Septembert 2021) Contact information: Department of Physics & Astronomy +1-408-924-5225 (office) San Jose´ State University +1-409-924-2917 (FAX) One Washington Square [email protected] San Jose, CA 95192 U.S.A. http://www.sjsu.edu/people/aaron.romanowsky/ University of California Observatories +1-831-459-3840 (office) 1156 High Street +1-831-426-3115 (FAX) Santa Cruz, CA 95064 [email protected] U.S.A. http://www.ucolick.org/%7Eromanow/ Main research interests: galaxy formation and dynamics – dark matter – star clusters Education: Ph.D. Astronomy, Harvard University Nov. 1999 supervisor: Christopher Kochanek, “The Structure and Dynamics of Galaxies” M.A. Astronomy, Harvard University June 1996 B.S. Physics with High Honors, June 1994 College of Creative Studies, University of California, Santa Barbara Employment: Professor, Department of Physics & Astronomy, Aug. 2020 – present San Jose´ State University Associate Professor, Department of Physics & Astronomy, Aug. 2016 – Aug. 2020 San Jose´ State University Assistant Professor, Department of Physics & Astronomy, Aug. 2012 – Aug. 2016 San Jose´ State University Research Associate, University of California Observatories, Santa Cruz Oct. 2012 – present Associate Specialist, University of California Observatories, Santa Cruz July 2007 – Sep. 2012 Researcher in Astronomy, Department of Physics, Oct. 2004 – June 2007 University of Concepcion´ Visiting Adjunct Professor, Faculty of Astronomical and May 2005 Geophysical Sciences, National University of La Plata Postdoctoral Research Fellow, School of Physics and Astronomy, June 2002 – Oct. 2004 University of Nottingham Postdoctoral Fellow, Kapteyn Astronomical Institute, Oct. 1999 – May 2002 Rijksuniversiteit Groningen Research Fellow, Harvard-Smithsonian Center for Astrophysics June 1994 – Oct. -
Draft181 182Chapter 10
Chapter 10 Formation and evolution of the Local Group 480 Myr <t< 13.7 Gyr; 10 >z> 0; 30 K > T > 2.725 K The fact that the [G]alactic system is a member of a group is a very fortunate accident. Edwin Hubble, The Realm of the Nebulae Summary: The Local Group (LG) is the group of galaxies gravitationally associ- ated with the Galaxy and M 31. Galaxies within the LG have overcome the general expansion of the universe. There are approximately 75 galaxies in the LG within a 12 diameter of ∼3 Mpc having a total mass of 2-5 × 10 M⊙. A strong morphology- density relation exists in which gas-poor dwarf spheroidals (dSphs) are preferentially found closer to the Galaxy/M 31 than gas-rich dwarf irregulars (dIrrs). This is often promoted as evidence of environmental processes due to the massive Galaxy and M 31 driving the evolutionary change between dwarf galaxy types. High Veloc- ity Clouds (HVCs) are likely to be either remnant gas left over from the formation of the Galaxy, or associated with other galaxies that have been tidally disturbed by the Galaxy. Our Galaxy halo is about 12 Gyr old. A thin disk with ongoing star formation and older thick disk built by z ≥ 2 minor mergers exist. The Galaxy and M 31 will merge in 5.9 Gyr and ultimately resemble an elliptical galaxy. The LG has −1 vLG = 627 ± 22 km s with respect to the CMB. About 44% of the LG motion is due to the infall into the region of the Great Attractor, and the remaining amount of motion is due to more distant overdensities between 130 and 180 h−1 Mpc, primarily the Shapley supercluster. -