Hindawi Publishing Corporation International Journal of Analysis Volume 2013, Article ID 368150, 3 pages http://dx.doi.org/10.1155/2013/368150

Research Article Infinite-Scroll Generated by the Complex Pendulum Model

Sachin Bhalekar

Department of Mathematics, Shivaji University, Vidyanagar, Kolhapur 416004, India

Correspondence should be addressed to Sachin Bhalekar; [email protected]

Received 20 November 2012; Revised 4 February 2013; Accepted 12 February 2013

Academic Editor: Rodica Costin

Copyright Β© 2013 Sachin Bhalekar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We report the finding of the simple nonlinear autonomous system exhibiting infinite-scroll attractor. The system is generated from the pendulum equation with complex-valued function. The proposed system is having infinitely many saddle points of index two which are responsible for the infinite-scroll attractor.

1. Introduction where π‘Ž>0is constant and π‘₯ is a real valued function. We propose a complex version of (1)givenby A variety of natural systems show a chaotic (aperiodic) behaviour. Such systems depend sensitively on initial data, 𝑧=βˆ’π‘ŽΜˆ sin (𝑧) , (2) and one cannot predict the future of the solutions. There are various chaotic systems such as the [1], the where 𝑧(𝑑) = π‘₯(𝑑) + πš€π‘¦(𝑑) is a complex-valued function. The Rossler system [2], the Chen system [3], and the Lusystem[Β¨ 4] system (2) gives rise to a coupled where the dependent variables are the real-valued functions. Though the chaos has been intensively studied over the past π‘₯=βˆ’π‘ŽΜˆ sin (π‘₯) cosh (𝑦) , several decades, very few articles are devoted to study the (3) complex dynamical systems. Ning and Haken [5]proposed 𝑦=βˆ’π‘ŽΜˆ sinh (𝑦) cos (π‘₯) . a complex Lorenz system arising in lasers. Wang et al. [6] discussed the applications in genetic networks. Mahmoud Using the new variables π‘₯1 =π‘₯,π‘₯2 = π‘₯Μ‡, π‘₯3 =𝑦,andπ‘₯4 = 𝑦̇, and coworkers have studied complex the system (3) can be written as the autonomous system of [7], new complex system [8], complex Duffing oscillator9 [ ], first-order ordinary differential equations given by and so forth. Complex multiscroll have a close relationshipwithcomplexnetworksalso[10–12]. π‘₯Μ‡1 =π‘₯2, In this work, we propose a complex pendulum equation π‘₯Μ‡ =βˆ’π‘Ž (π‘₯ ) (π‘₯ ), exhibiting infinite-scroll attractor. The chaotic phase portraits 2 sin 1 cosh 3 (4) are plotted, and maximum Lyapunov exponents are given for π‘₯Μ‡3 =π‘₯4, the different values of the parameter. π‘₯Μ‡4 =βˆ’π‘Žsinh (π‘₯3) cos (π‘₯1). 2. The Model 2.1. Symmetry. Symmetry about the π‘₯1, π‘₯2-axes (or π‘₯3, The real pendulum equation is given by [13] π‘₯4 axes), since (π‘₯1,π‘₯2,π‘₯3,π‘₯4)β†’(π‘₯1,π‘₯2,βˆ’π‘₯3,βˆ’π‘₯4) (or (π‘₯1,π‘₯2,π‘₯3,π‘₯4) β†’ (βˆ’π‘₯1,βˆ’π‘₯2,π‘₯3,π‘₯4))donotchangethe π‘₯=βˆ’π‘ŽΜˆ (π‘₯) , sin (1) equations. 2 International Journal of Analysis

0.5 30 0.4

20 0.3 1 π‘Ž π‘₯ 𝐿 10 0.2

0 0.1 200 400 600 800 1000 𝑑 βˆ’10 0 0 0.2 0.4 0.6 0.8 1 (a) π‘Ž

Figure 1: Maximum Lyapunov exponents. 4

2.2. Conservation. Consider the following: 2 4 πœ•π‘₯̇𝑖 βˆ‡β‹…πΉ=βˆ‘ =0. (5) πœ•π‘₯ 2 0 𝑖=1 𝑖 π‘₯ 750 800 850 900 950 1000 System is conservative. 𝑑 βˆ’2 2.3. Equilibrium Points and Their Stability. It can be checked that the system (4) has infinitely many real equilibrium points βˆ’4 𝐸 = (π‘˜πœ‹,0,0,0) π‘˜ = 0,Β±1,Β±2,... given by π‘˜ ,where . Jacobian (b) matrix corresponding to the system (4)is 0100 βˆ’π‘Ž (π‘₯ ) (π‘₯ )0βˆ’π‘Ž (π‘₯ ) (π‘₯ )0 10 𝐽=( cos 1 cosh 3 sin 1 sinh 3 ). 0001 π‘Ž (π‘₯ ) (π‘₯ )0βˆ’π‘Ž (π‘₯ ) (π‘₯ )0 sin 1 sinh 3 cos 1 cosh 3 5 (6) 3

𝐽(𝐸 ) πš€βˆšπ‘Ž πš€βˆšπ‘Ž βˆ’πš€βˆšπ‘Ž βˆ’πš€βˆšπ‘Ž π‘₯ Since the eigenvalues of 2π‘˜ are , , ,and , 0 the points 𝐸2π‘˜ are stable equilibrium points. The eigenvalues 750 800 850 900 950 1000 of 𝐽(𝐸2π‘˜+1) are βˆšπ‘Ž, βˆšπ‘Ž, βˆ’βˆšπ‘Ž,andβˆ’βˆšπ‘Ž. 𝑑 𝑝 An equilibrium point is called a saddle point if the βˆ’5 Jacobian matrix at 𝑝 has at least one eigenvalue with negative real part (stable) and one eigenvalue with nonnegative real part (unstable). A saddle point is said to have index one (/two) if there is exactly one (/two) unstable eigenvalue/s. It is (c) establishedintheliterature[14–17] that scrolls are generated only around the saddle points of index two. It is now clear that the system (4)hasinfinitelymany 4 saddle equilibrium points 𝐸2π‘˜+1, π‘˜ = 0,Β±1,Β±2,... of index twowhichgivesrisetoaninfinite-scrollattractor. 2 4

2.4. Chaos. Maximum Lyapunov exponents (MLEs) for the π‘₯ 0 system (4)areplottedinFigure 1.ThepositiveMLEsindicate 750 800 850 900 950 1000 𝑑 that the system is chaotic for π‘Ž>0.Figures2(a)–2(d) show βˆ’2 the chaotic time series for π‘Ž = 0.3.Forthesamevalues π‘Ž of ,Figures3(a) and 3(b) represent multiscroll attractor in βˆ’4 (π‘₯1,π‘₯3) plane and in (π‘₯1,π‘₯2,π‘₯3) space, respectively.

3. Conclusions (d)

We have generalized the real function in the pendulum Figure 2: (a) Time series π‘₯1,(b)timeseriesπ‘₯2, (c) time series π‘₯3, equation to a complex one and studied the chaotic behaviour. and (d) time series π‘₯4. International Journal of Analysis 3

10 Duffing’s oscillators,” Physica A,vol.292,no.1–4,pp.193–206, 2001. 5 [10] J. LuΒ¨ and G. Chen, β€œAtime-varying complex dynamical network

3 model and its controlled synchronization criteria,” IEEE Trans- π‘₯ 0 actions on Automatic Control, vol. 50, no. 6, pp. 841–846, 2005. 10 20 30 [11] J. Lu,X.Yu,G.Chen,andD.Cheng,β€œCharacterizingtheΒ¨ βˆ’5 synchronizability of small-world dynamical networks,” IEEE Transactions on Circuits and Systems,vol.51,no.4,pp.787–796, π‘₯1 2004. [12] J. Zhu, J. Lu, and X. Yu, β€œFlocking of multi-agent non-holonomic (a) systems with proximity graphs,” IEEE Transactions on Circuits 4 π‘₯1 2 2 0 and Systems I, vol. 60, no. 1, pp. 199–210, 2013. π‘₯ 0 10 βˆ’2 20 βˆ’4 30 [13] H. Goldstein, Classical Mechanics, Addison-Wesley, New York, 10 NY, USA, 1980. [14] L. O. Chua, M. Komuro, and T. Matsumoto, β€œThe double scroll 5 family,” IEEE Transactions on Circuits and Systems,vol.33,no. 3

0 π‘₯ 11, pp. 1072–1097, 1986. [15] C. P. Silva, β€œShil’cprime nikov’s theoremβ€”a tutorial,” IEEE βˆ’5 Transactions on Circuits and Systems,vol.40,no.10,pp.675– 682, 1993. [16] D. Cafagna and G. Grassi, β€œNew 3D-scroll attractors in hyper- chaotic Chua’s circuits forming a ring,” International Journal of (b) Bifurcation and Chaos in Applied Sciences and Engineering,vol. Figure 3: (a) Phase portrait, and (b) phase portrait in space. 13, no. 10, pp. 2889–2903, 2003. [17] J. Lu,G.Chen,X.Yu,andH.Leung,β€œDesignandanalysisofΒ¨ multiscroll chaotic attractors from saturated function series,” The new system is equivalent to a system of four first- IEEE Transactions on Circuits and Systems,vol.51,no.12,pp. 2476–2490, 2004. order ordinary differential equations. There are infinitely many saddle points of index two for this system which are responsible for the infinite-scroll chaotic attractor. Such example of infinite-scroll attractor will help researchers in the fieldofchaostostudythepropertiesofsuchsystemsindetail.

References

[1] E. N. Lorenz, β€œDeterministic nonperiodic flow,” Journal of the Atmospheric Sciences,vol.20,pp.130–141,1963. [2] O.E.Rossler,β€œAnequationforcontinuouschaos,”Physics Letters A, vol. 57, pp. 397–398, 1976. [3] G. Chen and T. Ueta, β€œYet another chaotic attractor,” Interna- tional Journal of Bifurcation and Chaos in Applied Sciences and Engineering,vol.9,no.7,pp.1465–1466,1999. [4] J. LuΒ¨ and G. R. Chen, β€œA new chaotic attractor coined,” Interna- tional Journal of Bifurcation and Chaos in Applied Sciences and Engineering,vol.12,no.3,pp.659–661,2002. [5] C. Z. Ning and H. Haken, β€œDetuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurca- tions,” Physical Review A,vol.41,pp.3826–3837,1990. [6] P. Wang, J. Lu, and M. J. Ogorzalek, β€œGlobal relative parameter sensitivities of the feed-forward loops in genetic networks,” Neurocomputing,vol.78,no.1,pp.155–165,2012. [7]G.M.MahmoudandA.A.M.Farghaly,β€œChaoscontrolof chaotic limit cycles of real and complex van der Pol oscillators,” Chaos, Solitons and ,vol.21,no.4,pp.915–924,2004. [8]G.M.Mahmoud,S.A.Aly,andM.A.AL-Kashif,β€œDynamical properties and chaos synchronization of a new chaotic complex nonlinear system,” Nonlinear Dynamics,vol.51,no.1-2,pp.171– 181, 2008. [9]G.M.Mahmoud,A.A.Mohamed,andS.A.Aly,β€œStrange attractors and chaos control in periodically forced complex Advances in Decision Sciences

Advances in The Scientific Mathematical Problems International Journal of Mathematical Physics in Engineering Combinatorics World Journal Hindawi Publishing Corporation Hindawi Publishing Corporation Volume 2013 Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 Hindawi Publishing Corporation Volume 2013 http://www.hindawi.com http://www.hindawi.com Volume 2013 http://www.hindawi.com Volume 2013 http://www.hindawi.com

Journal of Abstract and Applied Mathematics Applied Analysis

Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 http://www.hindawi.com Volume 2013

Discrete Dynamics in Nature and Society Submit your manuscripts at http://www.hindawi.com

Journal of Function Spaces and Applications Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 http://www.hindawi.com Volume 2013

International Advances in Journal of Journal of Operations Probability Mathematics and Research and Mathematical Statistics Sciences

International Journal of Differential International Journal of Equations Stochastic Analysis

Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 http://www.hindawi.com Volume 2013 http://www.hindawi.com Volume 2013 http://www.hindawi.com Volume 2013 http://www.hindawi.com Volume 2013

ISRN ISRN ISRN Mathematical Discrete ISRN Applied ISRN Analysis Mathematics Algebra Mathematics Geometry Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2013 http://www.hindawi.com Volume 2013 http://www.hindawi.com Volume 2013 http://www.hindawi.com Volume 2013 http://www.hindawi.com Volume 2013