Reprint 1073 Application of Dvorak Technique During the Weakening

Total Page:16

File Type:pdf, Size:1020Kb

Reprint 1073 Application of Dvorak Technique During the Weakening Reprint 1073 Application of Dvorak Technique during the Weakening Stage of Tropical Cyclones C.T. Shum & S.T. Chan The 6th China-Korea Joint Workshop on Tropical Cyclones Shanghai, China 26-28 May 2013 APPLICATION OF DVORAK TECHNIQUE DURING THE WEAKENING STAGE OF TROPICAL CYCLONES C.T. SHUM and S.T. CHAN Hong Kong Observatory, Hong Kong, China Abstract The Dvorak technique has been widely used by operational warning centres in different parts of the world as a major analysis tool to determine the intensity of tropical cyclone (TC). However, there exist noticeable differences in the application of the technique among different warning centres. In particular, the weakening rules in the technique that governs the determination of TC intensity during the TC weakening stage constitute one such difference and are the subject of review in this paper. Three options to modify the weakening rules are introduced and evaluated based on verification against the best-track datasets from various centres. Keywords: Dvorak technique, tropical cyclones, weakening rules. 1. Introduction Based on the infrared imageries from geostationary satellites, the Enhanced Infrared (EIR) Dvorak technique (Dvorak, 1984) has long been used in the Hong Kong Observatory (HKO) as one of the references for estimating the intensity of tropical cyclones (TCs). Once a potential TC is suspected to be forming within the area 0o-36oN, 100o-140oE, Dvorak analysis will be performed at 6-hourly intervals. For TCs within the HKO area of responsibility (i.e. 10o-30oN, 105o-125oE), additional analysis will be performed at 3-hourly intervals. While Dvorak analysis serves as one of the important references in determining the maximum sustained surface wind speed (MSW) of the TC, surface wind reports, Doppler wind observations from weather radars, reconnaissance aircraft reports when available, wind scatterometer data and other objective analysis data, e.g. from Automatic Dvorak Technique, SATCON and the Multi-platform Tropical Cyclone Surface Wind Analysis by NOAA, are also taken into account. 2. HKO practice and local adaptations in other operational centres The Dvorak technique has been widely used by operational warning centres in different parts of the world to determine the MSW of TCs, obtained by converting directly the Current Intensity number (CI) from the Dvorak analysis. The Dvorak technique adopted in HKO essentially follows the original scheme constructed by Dvorak (1984). However, there exist noticeable differences in the application of the technique across different warning centres. The weakening rules (viz. Rule 9 in the Dvorak technique), that governs the determination of TC intensity during the weakening stage, constitute one such difference and are evaluated in this paper. 1 According to Dvorak (1984), CI of weakening TCs is determined by the following rules: a. CI is held constant during the first 12 hours of weakening. b. After 12 hours of holding period, CI is held 1.0 higher than the final T-number as the storm weakens (CI is held 0.5 higher than the final T-number when the final T-number shows a 24-hour decrease of only 0.5). c. When redevelopment occurs, CI is not lowered even if the final T-number is lower than CI. CI is held the same until the final T-number increases to the value of CI. Rules (a) and (b) are sometimes controversial in operation, particularly when applying to landfalling TCs (the applicability on which though not specifically mentioned in the Dvorak technique, a number of centres including HKO have been applying the technique on such cases). The rationale behind rule (a) is to take the time lag between the weakening of TC pattern and the drop in TC intensity into account (see Fig. 1a). However, it is found that the rule has sometimes led to intensity estimates lagging behind the actual weakening rate for landfalling TCs, thereby devaluing its usefulness in intensity determination. Examples will be discussed in Section 4. Weakening rule (b) only gives directions on handling CI when the TC weakens but no explicit guidance is given when the TC stops weakening and the final T-number has flattened for some period of time. A supplementary rule to handle such situation is indeed necessary for completeness. (a) (b) Fig. 1. Relationship between the final T-number (blue line) and CI (pink line) in cases of TCs (a) weakening over the sea; (b) weakening over land; (c) weakening partly over sea and over land as adopted by JMA. The red line along the x-axis indicates the timing of landfall. (Adapted from Velden et al. 2006) (c) Some centres have modified the weakening rules to cope with the above two issues. Regarding the first issue, the Bureau of Meteorology, Australia (BoM) and the Tropical 2 Prediction Centre in Miami have relaxed the holding rule to 6 hours only (Velden et al. 2006). The Regional Specialized Meteorological Centre (RSMC) at La Reunion has also applied the same modification for small systems (Burton & Velden, 2011). The Japan Meteorological Agency (JMA) has adopted the following modifications specifically for TCs making landfall (Koba et al. 1989): J1. If the final T-number is steady or increasing before landfall, but decreases immediately after landfall, the 12-hour holding rule to determine CI is not applied. CI is determined to be equal to the final T-number over land. (Fig. 1b). J2. If the final T-number is decreasing prior to landfall, and continues the way after landfall, then CI is decreased by the same amount as the final T-number (Fig. 1c). J3. The above relationships are maintained even if the TC re-emerges over the sea until there are apparent signs of re-development. For weakening TCs over the sea, the original rule of holding CI for 12 hours is still applied in the JMA scheme considering higher chance of re-development in such cases (Fig. 1a). Regarding the second issue discussed above, there is no mechanism in the modified Dvorak technique by JMA to eliminate the gap between the final T-number and CI even when the TC stops weakening. 3. Options of modifications to the original scheme This paper specifically reviews the weakening rules in the Dvorak technique for landfalling TCs as a TC affecting Hong Kong will very often cross Taiwan or the Philippines prior to entering the South China Sea and then make landfall and dissipate over China. To cope with the two issues discussed in Section 2, three different options for modification of the rules have been tested and evaluated. Option A: Adopting the JMA rules In this option, the JMA-modified Dvorak technique with rules J1 to J3 listed in Section 2 are followed. Fig. 2 shows the flowchart of this option. 3 Final T-number decreases in current analysis TC over sea or over land? Land Sea Did the TC re-emerge from landmass after some weakening over land?* Yes No Decrease CI by the same Hold CI the same within amount as the drop in final 12 hours from initial T-number weakening, then hold CI 1.0 higher as storm weakens. (Hold CI 0.5 higher if final T-number only shows 24-hour decrease of 0.5.) * This question is to cater for TCs crossing landmass and then re-emerging over the sea. If weakening occurs over land, the rule of ‘decreasing CI by the same amount as the drop in final T-number’ will be followed until re-development. If weakening occurs over the sea, the original weakening rules in Dvorak technique will apply. Fig. 2 Flowchart of option A. Option B: Holding CI 0.5 higher than the final T-number immediately upon landfall In this scheme, the weakening rules are modified as follows: B1. As the TC makes landfall and weakens, CI is immediately held 0.5 higher than the final T-number. B2. When the final T-number has already plateaued for more than 12 hours, CI is held the same as the final T-number. This applies to TCs over land or TCs returning to sea after landfall. B3. When redevelopment occurs over land, CI is held the same as the final T-number. Fig. 3 illustrates the evolution of the final T-number and CI under this option. Landfall is made between T = 6 h and T = 12 h for this TC. CI is held 0.5 higher than 4 the final T-number from T = 12 h after landfall. As the final T-number has plateaued for more than 12 hours at T = 42 h, CI can then converge with it according to rule B2. 5 T 4.5 CI 4 I C , T 3.5 3 Landfall 2.5 0 6 12 18 24 30 36 42 T-number flattened for 12 hours hour Fig. 3. Evolution of the final T-number and CI under Option B. Option C: Holding CI 1.0 higher than the final T-number immediately upon landfall In this scheme, the weakening rules are modified as follows: C1. As the TC makes landfall and weakens, CI is held 1.0 higher than the final T-number (CI is held 0.5 higher than the final T-number if the decrease in final T-number is only 0.5 from the peak value). C2. If the final T-number has already plateaued for more than 12 hours, CI is held the same as the final T-number. This applies to TCs over land or TCs returning to sea after landfall. C3. When redevelopment occurs, CI is held the same until the final T-number increases above the value of CI. Option C is the same as Option B except that CI is held 1.0 higher than the final T-number instead of 0.5.
Recommended publications
  • Risk Reduction and Management in Escalating Water Hazards: How Fare the Poor?
    Risk Reduction and Management in Escalating Water Hazards: How Fare the Poor? Leonardo Q. Liongson, PhD The article aims to take stock of and rapidly assess the human and economic damages brought about, not only by Typhoon Yolanda, but also by the recent Bohol 7.2 magnitude earthquake and its aftershocks during the period October-November 2013, and comparatively, the most recent typhoons and monsoons (habagat) rainstorm and flood events in the 21st century. It will also cover the positive new steps and efforts of the infrastructure and S&T arms of the national government, and the needed additional steps and tasks which must follow, for alleviating and mitigating the hazard risks of water-based natural disasters, with emphasis on helping and protecting the most exposed and vulnerable to the hazard risks, being the poor sector of the society. The article has emphasized the need for implementing structural mitigation measures in poor unprotected towns and regions in the country, especially under the challenge and threat posed by growing population and climate change. Likewise, non-structural mitigation measures (which have shorter gestation periods of months and few years only, compared to decades for major structural measures) must be provided under the imperative or necessity implied by the structural gap of existing structures to adequately reduce and effectively manage the increasing flood and storm surge hazard risks, caused by growing population and climate change. NO PRIOR WARNING OF SUPER STORM SURGES of 225 kilometers per hour (kph) and gusts of 260 kph coming from PAGASA, with the attendant rains and the Many days before the first landfall of super Typhoon wind-blown piled-up sea waves hitting the coastal areas Haiyan (Yolanda) in Samar and Leyte (in Region 8) last of the region.
    [Show full text]
  • Efforts for Emergency Observation Mapping in Manila Observatory
    Efforts for Emergency Observation Mapping in Manila Observatory: Development of a Typhoon Impact Estimation System (TIES) focusing on Economic Flood Loss of Urban Poor Communities in Metro Manila UN-SPIDER International Conference on Space-based Technologies for Disaster Risk Reduction – “Enhancing Disaster Preparedness for Effective Emergency Response” Session 4: Demonstrating Advances in Earth Observation to Build Back Better September 25, 2018 Ma. Flordeliza P. Del Castillo Manila Observatory EMERGENCY OBSERVATION MAPPING IN MANILA OBSERVATORY • Typhoon Reports • Sentinel Asia Data Analysis Node (2011-present) • Flood loss estimation for urban poor households in Metro Manila (2016-present) 1. Regional Climate Systems (RCS) – Hazard analysis (Rainfall and typhoon forecast) 2. Instrumentation and Efforts before typhoon arrives Technology Development – Automated Weather Stations 3. Geomatics for Environment and Development – Mapping and integration of Hazard, Exposure and Vulnerability layers Observing from space and also from the ground. Efforts during typhoon event Now, incorporating exposure and vulnerability variables Efforts after a typhoon event Data Analysis Node (Post- Disaster Event) Image Source: Secretariat of Sentinel Asia Japan Aerospace Exploration Agency, Sentinel Asia Annual Report 2016 MO Emergency Observation (EO) and Mapping Protocol (15 October 2018) Step 1: Step 2: Step 3: Establish the Apply for EMERGENCY Elevate status to LOCATION/COVERAGE of OBSERVATION to International Disaster EOR Sentinel Asia (SA) Charter (IDC) by ADRC Step 6: Step 5: Step 4: Upload maps in MO, SA MAP Download images & IDC websites PRODUCTION Emergency Observation Mapping Work • December 2011 – T.S. Washi “Sendong” • August 2012 – Southwest Monsoon Flood “Habagat” • ” Emergency Observation Mapping Work • December 2011 – T.S. Washi “Sendong” • August 2012 – Southwest Monsoon Flood “Habagat” • December 2012 – Bopha “Pablo” • August 2013 – Southwest Monsoon Flood and T.S.
    [Show full text]
  • 6 2. Annual Summaries of the Climate System in 2009 2.1 Climate In
    2. Annual summaries of the climate system in above normal in Okinawa/Amami because hot and 2009 sunny weather was dominant under the subtropical high in July and August. 2.1 Climate in Japan (d) Autumn (September – November 2009, Fig. 2.1.1 Average surface temperature, precipitation 2.1.4d) amounts and sunshine durations Seasonal mean temperatures were near normal in The annual anomaly of the average surface northern and Eastern Japan, although temperatures temperature over Japan (averaged over 17 observatories swung widely. In Okinawa/Amami, seasonal mean confirmed as being relatively unaffected by temperatures were significantly above normal due to urbanization) in 2009 was 0.56°C above normal (based the hot weather in the first half of autumn. Monthly on the 1971 – 2000 average), and was the seventh precipitation amounts were significantly below normal highest since 1898. On a longer time scale, average nationwide in September due to dominant anticyclones. surface temperatures have been rising at a rate of about In contrast, in November, they were significantly 1.13°C per century since 1898 (Fig. 2.1.1). above normal in Western Japan under the influence of the frequent passage of cyclones and fronts around 2.1.2 Seasonal features Japan. In October, Typhoon Melor (0918) made (a) Winter (December 2008 – February 2009, Fig. landfall on mainland Japan, bringing heavy rainfall and 2.1.4a) strong winds. Since the winter monsoon was much weaker than (e) December 2009 usual, seasonal mean temperatures were above normal In the first half of December, temperatures were nationwide. In particular, they were significantly high above normal nationwide, and heavy precipitation was in Northern Japan, Eastern Japan and Okinawa/Amami.
    [Show full text]
  • Global Catastrophe Review – 2015
    GC BRIEFING An Update from GC Analytics© March 2016 GLOBAL CATASTROPHE REVIEW – 2015 The year 2015 was a quiet one in terms of global significant insured losses, which totaled around USD 30.5 billion. Insured losses were below the 10-year and 5-year moving averages of around USD 49.7 billion and USD 62.6 billion, respectively (see Figures 1 and 2). Last year marked the lowest total insured catastrophe losses since 2009 and well below the USD 126 billion seen in 2011. 1 The most impactful event of 2015 was the Port of Tianjin, China explosions in August, rendering estimated insured losses between USD 1.6 and USD 3.3 billion, according to the Guy Carpenter report following the event, with a December estimate from Swiss Re of at least USD 2 billion. The series of winter storms and record cold of the eastern United States resulted in an estimated USD 2.1 billion of insured losses, whereas in Europe, storms Desmond, Eva and Frank in December 2015 are expected to render losses exceeding USD 1.6 billion. Other impactful events were the damaging wildfires in the western United States, severe flood events in the Southern Plains and Carolinas and Typhoon Goni affecting Japan, the Philippines and the Korea Peninsula, all with estimated insured losses exceeding USD 1 billion. The year 2015 marked one of the strongest El Niño periods on record, characterized by warm waters in the east Pacific tropics. This was associated with record-setting tropical cyclone activity in the North Pacific basin, but relative quiet in the North Atlantic.
    [Show full text]
  • Appendix 8: Damages Caused by Natural Disasters
    Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall.
    [Show full text]
  • Briefing Note on Typhoon Goni
    Briefing note 12 November 2020 PHILIPPINES KEY FIGURES Typhoon Goni CRISIS IMPACT OVERVIEW 1,5 million PEOPLE AFFECTED BY •On the morning of 1 November 2020, Typhoon Goni (known locally as Rolly) made landfall in Bicol Region and hit the town of Tiwi in Albay province, causing TYPHOON GONI rivers to overflow and flood much of the region. The typhoon – considered the world’s strongest typhoon so far this year – had maximum sustained winds of 225 km/h and gustiness of up to 280 km/h, moving at 25 km/h (ACT Alliance 02/11/2020). • At least 11 towns are reported to be cut off in Bato, Catanduanes province, as roads linking the province’s towns remain impassable. At least 137,000 houses were destroyed or damaged – including more than 300 houses buried under rock in Guinobatan, Albay province, because of a landslide following 128,000 heavy rains caused by the typhoon (OCHA 09/11/2020; ECHO 10/11/2020; OCHA 04/11/2020; South China Morning Post 04/11/2020). Many families will remain REMAIN DISPLACED BY in long-term displacement (UN News 06/11/2020; Map Action 08/11/2020). TYPHOON GONI • As of 7 November, approximately 375,074 families or 1,459,762 people had been affected in the regions of Cagayan Valley, Central Luzon, Calabarzon, Mimaropa, Bicol, Eastern Visayas, CAR, and NCR. Of these, 178,556 families or 686,400 people are in Bicol Region (AHA Centre 07/11/2020). • As of 07 November, there were 20 dead, 165 injured, and six missing people in the regions of Calabarzon, Mimaropa, and Bicol, while at least 11 people were 180,000 reported killed in Catanduanes and Albay provinces (AHA Centre 07/11/2020; UN News 03/11/2020).
    [Show full text]
  • State of the Climate in 2015
    STATE OF THE CLIMATE IN 2015 Special Supplement to the Bulletin of the American Meteorological Society Vol. 97, No. 8, August 2016 severed during the storm, and four days after the Islands, on 28 June. Over the next couple of days, the storm nearly 60% of the nation’s inhabited islands system moved westward into the Australian region, remained cut off from the outside world. According where it was named a TC. Raquel then moved east- to UNESCO, 268 million U.S. dollars was required for ward into the South Pacific basin, where it weakened total recovery and rehabilitation of Vanuatu. into a tropical depression. On 4 July, the system The storm’s winds gradually slowed afterwards as moved south-westward and impacted the Solomon Pam tracked west of the Tafea Islands. However, the Islands with high wind gusts and heavy rain. Fiji Meteorological Service indicated that the TC’s pressure dropped farther to 896 hPa on 14 March. f. Tropical cyclone heat potential—G. J. Goni, J. A. Knaff, As Pam travelled farther south, the storm’s eye faded and I.-I. Lin away and Pam’s low-level circulation became dis- This section summarizes the previously described placed from its associated thunderstorms, indicating tropical cyclone (TC) basins from the standpoint of a rapid weakening phase. Later on 15 March, Pam en- tropical cyclone heat potential (TCHP) by focusing on tered a phase of extratropical transition and affected vertically integrated upper ocean temperature condi- northeast New Zealand and the Chatham Islands tions during the season for each basin with respect to with high winds, heavy rain, and rough seas.
    [Show full text]
  • Inter-Agency Real Time Evaluation (IA-RTE) of the Humanitarian Response to Typhoons Ketsana and Parma in the Philippines
    Inter-Agency Real Time Evaluation (IA-RTE) of the Humanitarian Response to Typhoons Ketsana and Parma in the Philippines April 2010 Riccardo Polastro Bernardo Roa Nicolai Steen DARA – Development Assistance Research Associates List of Content 1. Executive Summary ...................................................................................................................... 1 2. Introduction .................................................................................................................................... 6 3. Methodology and Data Collection ............................................................................................. 9 4. Context ...........................................................................................................................................13 5. Needs Assessments .....................................................................................................................18 6. Funding ..........................................................................................................................................22 7. Coordination .................................................................................................................................28 8. Response ........................................................................................................................................34 9. Annexes: ........................................................................................................................................42
    [Show full text]
  • Weekly Update on ASEAN Plus Three Food Security Related Information Is Based on All Available Sources During the Period
    Development of Geological Disaster Technology (BPPTKG) has increased the alert status of the volcano to the third level. As a result, 1,294 people living in nearby vicinity had to leave their homes to find safer places. WEEKLY UPDATE ON Source: ECHO. (2020, Nov 12). Indonesia- Mount Merapi volcanic eruption (GDACS, BNPB, BPPTKG). ASEAN PLUS THREE FOOD SECURITY The Philippines RELATED INFORMATION Typhoon Vamco caused catastrophic destructions and put millions of people No. 193 into sufferings. Typhoon Vamco, locally known as typhoon Ulysses, came ashore at 11 - 17 November 2020 Catanduanes on 11 November 2020, bringing incessantly torrential downpours and extensive flooding. There were at least 69 people killed in the areas such as Calabarzon, Bicol and Metro Manila. Around 40,000 houses were damaged, Indonesia while 4,500 of them were completely destroyed. Flash floods struck widespread areas across Indonesia. During 11-15 The Department of Social Welfare and November 2020, several provinces in Development (DSWD) stated that the Indonesia comprising Riau, West Java and hardest hit regions were National Capital Aceh experienced flash floods generated Region (NCR), Ilocos, Cagayan Valley, by high intensity rainfalls along with strong Central Luzon, CALABARZON, wind collectively. Due to this, around 400 MIMAROPA, Bicol and Cordillera houses were damaged while almost 1,000 Administrative Region (CAR), where three persons were affected and 25 people were million people were affected and nearly displaced. Roughly 75 hectares of 300,000 had to leave their homes to stay in plantation fields together with about 30 evacuation centers. livestock were lost. In relation to this, the National Disaster Source: AHA Centre.
    [Show full text]
  • The Situation Information Bulletin Philippines: Typhoon Melor
    Information bulletin Philippines: Typhoon Melor Information bulletin no° 2 Glide number no° TC-2015-000168-PHL Date of issue: 18 December 2015 Host National Society: Philippine Red Cross Number of people affected: 222,438 persons (76,796 families) in six cities, 139 municipalities in 19 provinces [Source: NDRRMC] This bulletin is being issued for information only, and reflects the current situation. After the Typhoon Melor brought heavy to intense rains and strong winds over Central Philippines, the Philippine Red Cross (PRC) – with support of the International Federation of Red Cross and Red Crescent Societies (IFRC) – has already deployed rescue and assessment teams to assist affected families and determine the extent of the damage caused by the typhoon. Funding or other assistance from donors is not being sought at this time; however a Disaster Relief Emergency Fund (DREF) request is currently being considered to support the immediate relief needs of the affected population. <Click here for detailed contact information> The situation Typhoon Melor (locally known as Nona) entered the Philippine Area of Responsibility (PAR) in the morning of 12 December and intensified into a Category 3 typhoon the following day. According to Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA), Typhoon Melor made landfall over Batag Island, Northern Samar province on 14 December and then tracked slowly west making a total of five landfalls on the way before exiting the last land mass on 16 December. The typhoon then tracked northward along the west coast of Luzon. As of 18 December, Typhoon Melor was last sighted as a low pressure area west of the Philippine Sea.
    [Show full text]
  • Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong
    78 BAVI AUG : ,- HAISHEN JANGMI SEP AUG 6 KUJIRA MAYSAK SEP SEP HAGUPIT AUG DOLPHIN SEP /1 CHAN-HOM OCT TD.. MEKKHALA AUG TD.. AUG AUG ATSANI Hong Kong HIGOS NOV AUG DOLPHIN() 2012 SEP : 78 HAISHEN() 2010 NURI ,- /1 BAVI() 2008 SEP JUN JANGMI CHAN-HOM() 2014 NANGKA HIGOS(2007) VONGFONG AUG ()2005 OCT OCT AUG MAY HAGUPIT() 2004 + AUG SINLAKU AUG AUG TD.. JUL MEKKHALA VAMCO ()2006 6 NOV MAYSAK() 2009 AUG * + NANGKA() 2016 AUG TD.. KUJIRA() 2013 SAUDEL SINLAKU() 2003 OCT JUL 45 SEP NOUL OCT JUL GONI() 2019 SEP NURI(2002) ;< OCT JUN MOLAVE * OCT LINFA SAUDEL(2017) OCT 45 LINFA() 2015 OCT GONI OCT ;< NOV MOLAVE(2018) ETAU OCT NOV NOUL(2011) ETAU() 2021 SEP NOV VAMCO() 2022 ATSANI() 2020 NOV OCT KROVANH(2023) DEC KROVANH DEC VONGFONG(2001) MAY 二零二零年 熱帶氣旋 TROPICAL CYCLONES IN 2020 2 二零二一年七月出版 Published July 2021 香港天文台編製 香港九龍彌敦道134A Prepared by: Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong © 版權所有。未經香港天文台台長同意,不得翻印本刊物任何部分內容。 © Copyright reserved. No part of this publication may be reproduced without the permission of the Director of the Hong Kong Observatory. 知識產權公告 Intellectual Property Rights Notice All contents contained in this publication, 本刊物的所有內容,包括但不限於所有 including but not limited to all data, maps, 資料、地圖、文本、圖像、圖畫、圖片、 text, graphics, drawings, diagrams, 照片、影像,以及數據或其他資料的匯編 photographs, videos and compilation of data or other materials (the “Materials”) are (下稱「資料」),均受知識產權保護。資 subject to the intellectual property rights 料的知識產權由香港特別行政區政府 which are either owned by the Government of (下稱「政府」)擁有,或經資料的知識產 the Hong Kong Special Administrative Region (the “Government”) or have been licensed to 權擁有人授予政府,為本刊物預期的所 the Government by the intellectual property 有目的而處理該等資料。任何人如欲使 rights’ owner(s) of the Materials to deal with 用資料用作非商業用途,均須遵守《香港 such Materials for all the purposes contemplated in this publication.
    [Show full text]
  • Typhoon Initialization in a Mesoscale Model — Combination of the Bogused Vortex and the Dropwindsonde Data in DOTSTAR
    Typhoon Initialization in a Mesoscale Model — Combination of the Bogused Vortex and the Dropwindsonde Data in DOTSTAR Kun-Hsuan Chou and Chun-Chieh Wu Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan Submitted to Monthly Weather Review (Revised on April 23, 2007) ___________________ Corresponding author address: Dr. Chun-Chieh Wu, Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan. ([email protected]) Abstract Issues on the initialization and simulation of tropical cyclones by integrating both the dropwindsonde data and the bogused vortex into a mesoscale model have been studied. A method is proposed to combine the dropwindsonde data with the bogused vortex for the tropical cyclone initialization and to improve the track and intensity prediction. Clear positive impact of this proposed method on both the tropical cyclone track and intensity forecasts in a mesoscale model is demonstrated in three cases of typhoons, Meari (2004), Conson (2004) and Megi (2004). The effectiveness of the proposed method in improving the track and intensity forecasts are also demonstrated in the evaluation of all 10 cases of DOTSTAR (Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region) missions in 2004. This method provides a useful and practical means to improve the operational tropical cyclones prediction with the dropwindsonde observations. 1 1 Introduction Over the past 30 years, persistent and steady progress on the track forecasts of tropical cyclone (TC) have been well demonstrated through the improvement of the numerical models, the data assimilation and bogusing systems, the targeted observations, and the satellite and dropwindsonde data available to the forecast systems (Wu et al.
    [Show full text]