Digitopodium, with Particular Reference to Mycoparasites of the Coffee Leaf Rust, Hemileia Vastatrix Adans A

Total Page:16

File Type:pdf, Size:1020Kb

Digitopodium, with Particular Reference to Mycoparasites of the Coffee Leaf Rust, Hemileia Vastatrix Adans A Colmán et al. IMA Fungus (2021) 12:1 https://doi.org/10.1186/s43008-020-00052-w IMA Fungus RESEARCH Open Access A fungus-eat-fungus world: Digitopodium, with particular reference to mycoparasites of the coffee leaf rust, Hemileia vastatrix Adans A. Colmán1, Harry C. Evans1,2, Sara S. Salcedo-Sarmiento1, Uwe Braun3, Kifle Belachew-Bekele4 and Robert W. Barreto1* Abstract Digitopodium hemileiae was described originally in 1930 as Cladosporium hemileiae; growing as a mycoparasite of the coffee leaf rust (CLR), Hemileia vastatrix, in a sample of diseased leaves of Coffea canephora collected in the Democratic Republic of Congo. No cultures from this material exist. More recently, the type material was re- examined and, based on morphological features, considered to be incorrectly placed in Cladosporium. The new genus Digitopodium was erected to accommodate this species. Interest in fungal antagonists of H. vastarix,as potential biocontrol agents of CLR, led to comprehensive surveys for mycoparasites, both in the African centre of origin of the rust, as well as in its South American exotic range. Among the rust specimens from Ethiopia, one was found to be colonized by a fungus congeneric with, and similar to, D. hemileiae. Pure cultures obtained from the Ethiopian material enabled a molecular study and for its phylogenetic position to be elucidated, based on DNA sequence data from the ITS and LSU regions. Molecular data showed that two members of the recently erected genus Hyalocladosporiella (Herpotrichiellaceae: Chaetothyriales) are congeneric with Digitopodium from Ethiopia and morphologically similar to both D. hemileiae and the two Ethiopian isolates. These isolates were found to be morphologically and genetically identical to H. tectonae, described previously from Brazil. Thus, species of Hyalocladosporiella are re-allocated to Digitopodium here; including D. tectonae, and a novel species, D. canescens, recently found in Brazil growing as a mycoparasite of Puccinia thaliae. The potential use of D. hemileiae and D. tectonae for classical biological control of CLR is discussed. Keywords: Classical biological control, Ethiopia, Fungicolous fungi, Herpotrichiellaceae, Hyalocladosporiella, New taxa`, Phylogenetics INTRODUCTION growers in Central America (Avelino et al. 2015, Talhin- Hemileia vastatrix is the most important pathogen of has et al. 2017) and have prompted mass migrations – coffee plants worldwide, causing coffee leaf rust (CLR) refugee caravans – to Mexico and the USA (Ward et al. (Zambolim 2016, Talhinhas et al., 2017). The economic 2017). and social crisis provoked by CLR outbreaks of the past Efforts in mitigating the impact of CLR have included are well documented (Avelino et al. 2015, McCook & a pioneering initiative towards the development of a Vandermeer 2015). Since 2012, disastrous outbreaks of classical biological control management strategy, based CLR have been destroying the livelihoods of the coffee on the use of fungal natural enemies from the native range of coffee and Hemileia vastatrix in Africa. A num- ber of mycoparasitic fungi of CLR have been reported * Correspondence: [email protected] 1Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG previously (Carrion & Rico-Gray 2002, James et al. 36570-900, Brazil 2016). However, the latter records are all from the Full list of author information is available at the end of the article © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Colmán et al. IMA Fungus (2021) 12:1 Page 2 of 11 Americas, where coffee and H. vastatrix are exotic spe- obtained directly from rust pustules were mounted in cies. Such mycoparasites are interpreted, therefore, as lactoglycerol or lactofuchsin and the microscope slides generalists that have jumped from other fungal hosts were examined under a light microscope, Olympus BX and did not co-evolve as specialized parasites of the CLR 53 (Olympus, Melville, NY, USA), connected to an fungus. Only two mycoparasites have been reported ex- Olympus Q-color 5 camera (Olympus, Center Valley, clusively from the centre of origin of cultivated Coffea in PA, USA). Conidial morphology was based on shape, Africa, namely: Digitopodium hemileiae (Steyaert 1930, colour, and presence or absence of septation. Biometric Heuchert et al. 2005) and Paranectriella hemileiae (Piro- data were generated from the observation of at least 30 zynski 1977). In order for any classical biocontrol agent structures. to be introduced against its target in an exotic situation, DNA was extracted from single spore isolates cultivated it is critical to have its taxonomy fully elucidated (Scott on potato dextrose liquid medium at 25 °C for 5 d. Total 1995). This publication deals with a reappraisal of the genomic DNA was extracted from approximately 50–80 taxonomy of D. hemileiae and related taxa, based on mg of mycelium. Mycelial masses were disrupted with a newly-collected specimens obtained during surveys for L-Beader 3 (Loccus Biotecnologia, Cotia, SP, Brazil) ad- mycoparasites of H. vastatrix in Africa and of related justed to a speed of 4000 rpm, 2 cycles of 10 s each. DNA material collected in Brazil. extraction was carried using the Wizard Genomic DNA Purification Kit (Promega, Madison,WI, USA), according MATERIAL AND METHODS to the manufacturer’s recommendations. Surveys involved scientists from Ethiopia, Brazil, and the DNA PCR amplifications were performed with the pri- UK and were concentrated in areas where Coffea arab- mer pairs LR0R/LR5 (Vilgalys & Hester 1990) and ITS4/ ica still occurs in the wild or is cultivated in semi-wild ITS5 (White et al. 1990) for the partial 28S rDNA (LSU) conditions, as in Ethiopia. At each selected site, coffee and ITS/5.8 nr-DNA (ITS) regions. The polymerase plants were examined for rust pustules – with particular chain reactions (PCR) were performed using a total vol- attention to collecting rust colonies overgrown by other ume of 12 μL in reactions with mixture containing 30 μg fungi, or appearing to be abnormal (unusual colour, DNA, 0.5 μm of each primer and 1X Master mix Dream- poor sporulation). Specimens were dried in a plant press Taq DNA polymerase, as recommended by the manufac- for later processing in the laboratory (preliminary identi- turer (Thermo Fisher Scientific Baltics, Vilnius, fication and isolation). The dried samples were proc- Lithuania). The amplification was performed for LSU essed within 2 weeks of collection after transport to with an initial denaturing at 94 °C at 5 min, followed by laboratories in the UK or Brazil. Mono-conidial cultures 40 cycles of denaturation at 94 °C for 30 s, annealing at were obtained by direct isolation of the fungi by aseptic 55 °C for 30 s, extension initial at 72 °C for 30 s, and 7 transfer of fungal propagules from colonized tissue with min final extension at 72 °C. The PCR products were a sterile fine point needle onto potato dextrose-agar purified by using an ExoSAP-IT purification kit (Amer- (PDA) plates. Pure cultures were preserved temporarily sham Biosciences, Arlington Heights, IL, USA), accord- in potato carrot-agar (PCA) slants and long-term preser- ing to the manufacturer’s recommendations. Amplified vation was in silica-gel and in 10% glycerol at -80 °C, as fragments were sequenced by Macrogen (Seoul, South described in Dhingra & Sinclair (1995). Pure cultures Korea, http://www.macrogen.com). were deposited in the culture collection of the Universi- dade Federal de Viçosa (COAD) and dried specimens Phylogenetic analyses were deposited in the herbarium of the Universidade The nucleotide sequences obtained from forward and re- Federal de Viçosa (VIC). verse primers were used to obtain consensus sequences Culture characteristics were described based on col- using SeqAssem (SequentiX—Digital DNA Processing, onies formed on 2% malt extract-agar (MEA), PDA, and Klein Raden, Germany) (Hepperle, 2004). Complemen- oatmeal-agar (OA) for 7 d at 25 ± 2 °C under a 12 h light tary sequences used in the analyses were obtained from regime (light provided by two white and one near-UV GenBank (http:// www.ncbi.nlm.nih.gov) (Table 1). The lamps placed 35 cm above the plates). Colony colour ter- alignment performed using MUSCLE implemented in minology followed Rayner (1970). the MEGA 7 (Kumar et al. 2016). The aligned sequences Morphology was described based on the structures were manually corrected where needed. The consensus formed on colonized rust pustules on dried specimens, sequences were deposited in GenBank (Table 1) and complemented with observations made on slide cultures, taxonomic novelties in MycoBank (Crous et al. 2004). as described in Waller et al. (1998); colonies being Phylogenetic analyses were reconstructed by means of formed on blocks of synthetic nutrient poor-agar (SNA) methods based on an analysis of Bayesian Inference (BI) (Nirenberg, 1981) for 14 d, under the conditions men- of the combined LSU/ITS alignments using the Markov tioned above. Slide cultures and fungal structures chain Monte Carlo (MCMC) algorithm. Models of Colmán et al. IMA Fungus (2021) 12:1 Page 3 of 11 Table 1 Isolates included in the phylogenetic analyses. GenBank numbers in boldface indicate new sequences Species Isolates Substrate Genbank number LSU ITS Cladosporium adianticola CBS 582.92 Adiantum tenerum DQ008143 – Cladosporium adianticola CBS 735.87 Adiantum sp.
Recommended publications
  • Inventario De Plagas Y Enfermedades En Viveros Forestales En Costa Rica
    Revista Forestal Mesoamericana Kurú (Enero-Junio, 2021) 18 (42): 17-29 DOI: 10.18845/rfmk.v16i42.5543 Inventario de plagas y enfermedades en viveros forestales en Costa Rica Review of pests and diseases in forest nurseries in Costa Rica Marcela Arguedas Gamboa1 • María Rodríguez-Solís1 • Jaume Cots Ibiza2 • Adrián Martínez Araya3 Recibido: 24/4/2020 Aceptado: 6/8/2020 Publicado: 17/12/2020 Abstract Forest nurseries are the sites of intensive plant production for reforestation and arboriculture programs, which must be of high quality and free from pests and diseases. A sanitary evaluation was carried out in seven forest nurseries in Costa Rica, to prepare the diagnosis of phytosanitary problems. 15 species of insects were diagnosed, 44 of pathogens and 5 of mites, in a total of 80 forest species under production. At the apex, the most important damages are caused by the borer Hypsipila grandella and the cutter Trigona sp. and as pathogens Botrytis sp., Cylindrocladium sp. and Phomopsis sp.; in the foliage, by the insects Eulepte concordalis, Dictyla monotropidia and Austropuccinia psidii, Colletotrichum spp., Dothistroma septosporum, Melampsoridium alni, Oidium sp., Olivea tectonae, and Phyllachora balansae as pathogens. These problems are described and the principles and practices contemplated in Integrated Pest Management (IPM) are recommended for their control. Key words: Seedlings, pathogens, insects, mites, phytosanitary diagnosis. 1. Escuela de Ingeniería Forestal, Instituto Tecnológico de Costa Rica, Cartago Costa Rica; [email protected], [email protected] 2. BC Fertilis, Valencia, España; [email protected] 3. Instituto Costarricense de Electricidad, Cartago, Costa Rica; [email protected] 17 Revista Forestal Mesoamericana Kurú (Enero-Junio, 2021) 18 (42): 17-29 Resumen [8], [9].
    [Show full text]
  • Phaeoseptaceae, Pleosporales) from China
    Mycosphere 10(1): 757–775 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/17 Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China Liu NG1,2,3,4,5, Hyde KD4,5, Bhat DJ6, Jumpathong J3 and Liu JK1*,2 1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China 3 Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Mushroom Research Foundation, Chiang Rai 57100, Thailand 6 No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17 Abstract A new hyphomycete genus, Pleopunctum, is introduced to accommodate two new species, P. ellipsoideum sp. nov. (type species) and P. pseudoellipsoideum sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and TEF1α sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to Lignosphaeria and Thyridaria macrostomoides.
    [Show full text]
  • Genomic Analysis of Ant Domatia-Associated Melanized Fungi (Chaetothyriales, Ascomycota) Leandro Moreno, Veronika Mayer, Hermann Voglmayr, Rumsais Blatrix, J
    Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota) Leandro Moreno, Veronika Mayer, Hermann Voglmayr, Rumsais Blatrix, J. Benjamin Stielow, Marcus Teixeira, Vania Vicente, Sybren de Hoog To cite this version: Leandro Moreno, Veronika Mayer, Hermann Voglmayr, Rumsais Blatrix, J. Benjamin Stielow, et al.. Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota). Mycolog- ical Progress, Springer Verlag, 2019, 18 (4), pp.541-552. 10.1007/s11557-018-01467-x. hal-02316769 HAL Id: hal-02316769 https://hal.archives-ouvertes.fr/hal-02316769 Submitted on 15 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mycological Progress (2019) 18:541–552 https://doi.org/10.1007/s11557-018-01467-x ORIGINAL ARTICLE Genomic analysis of ant domatia-associated melanized fungi (Chaetothyriales, Ascomycota) Leandro F. Moreno1,2,3 & Veronika Mayer4 & Hermann Voglmayr5 & Rumsaïs Blatrix6 & J. Benjamin Stielow3 & Marcus M. Teixeira7,8 & Vania A. Vicente3 & Sybren de Hoog1,2,3,9 Received: 20 August 2018 /Revised: 16 December 2018 /Accepted: 19 December 2018 # The Author(s) 2019 Abstract Several species of melanized (Bblack yeast-like^) fungi in the order Chaetothyriales live in symbiotic association with ants inhabiting plant cavities (domatia) or with ants that use carton-like material for the construction of nests and tunnels.
    [Show full text]
  • Diversity of Biodeteriorative Bacterial and Fungal Consortia in Winter and Summer on Historical Sandstone of the Northern Pergol
    applied sciences Article Diversity of Biodeteriorative Bacterial and Fungal Consortia in Winter and Summer on Historical Sandstone of the Northern Pergola, Museum of King John III’s Palace at Wilanow, Poland Magdalena Dyda 1,2,* , Agnieszka Laudy 3, Przemyslaw Decewicz 4 , Krzysztof Romaniuk 4, Martyna Ciezkowska 4, Anna Szajewska 5 , Danuta Solecka 6, Lukasz Dziewit 4 , Lukasz Drewniak 4 and Aleksandra Skłodowska 1 1 Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; [email protected] 2 Research and Development for Life Sciences Ltd. (RDLS Ltd.), Miecznikowa 1/5a, 02-096 Warsaw, Poland 3 Laboratory of Environmental Analysis, Museum of King John III’s Palace at Wilanow, Stanislawa Kostki Potockiego 10/16, 02-958 Warsaw, Poland; [email protected] 4 Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; [email protected] (P.D.); [email protected] (K.R.); [email protected] (M.C.); [email protected] (L.D.); [email protected] (L.D.) 5 The Main School of Fire Service, Slowackiego 52/54, 01-629 Warsaw, Poland; [email protected] 6 Department of Plant Molecular Ecophysiology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +48-786-28-44-96 Citation: Dyda, M.; Laudy, A.; Abstract: The aim of the presented investigation was to describe seasonal changes of microbial com- Decewicz, P.; Romaniuk, K.; munity composition in situ in different biocenoses on historical sandstone of the Northern Pergola in Ciezkowska, M.; Szajewska, A.; the Museum of King John III’s Palace at Wilanow (Poland).
    [Show full text]
  • Current Status of Research on Rust Fungi (Pucciniales) in India
    Asian Journal of Mycology 4(1): 40–80 (2021) ISSN 2651-1339 www.asianjournalofmycology.org Article Doi 10.5943/ajom/4/1/5 Current status of research on Rust fungi (Pucciniales) in India Gautam AK1, Avasthi S2, Verma RK3, Devadatha B 4, Sushma5, Ranadive KR 6, Bhadauria R2, Prasher IB7 and Kashyap PL8 1School of Agriculture, Abhilashi University, Mandi, Himachal Pradesh, India 2School of Studies in Botany, Jiwaji University, Gwalior, Madhya Pradesh, India 3Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India 4 Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, India 5Department of Biosciences, Chandigarh University Gharuan, Punjab, India 6Department of Botany, P.D.E.A.’s Annasaheb Magar Mahavidyalaya, Mahadevnagar, Hadapsar, Pune, Maharashtra, India 7Department of Botany, Mycology and Plant Pathology Laboratory, Panjab University Chandigarh, India 8ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, India Gautam AK, Avasthi S, Verma RK, Devadatha B, Sushma, Ranadive KR, Bhadauria R, Prasher IB, Kashyap PL 2021 – Current status of research on Rust fungi (Pucciniales) in India. Asian Journal of Mycology 4(1), 40–80, Doi 10.5943/ajom/4/1/5 Abstract Rust fungi show unique systematic characteristics among all fungal groups. A single species of rust fungi may produce up to five morphologically and cytologically distinct spore-producing structures thereby attracting the interest of mycologist for centuries. In India, the research on rust fungi started with the arrival of foreign visiting scientists or emigrant experts, mainly from Britain who collected fungi and sent specimens to European laboratories for identification. Later on, a number of mycologists from India and abroad studied Indian rust fungi and contributed a lot to knowledge of the rusts to the Indian Mycobiota.
    [Show full text]
  • Fungal Diversity in Lichens: from Extremotolerance to Interactions with Algae
    life Review Fungal Diversity in Lichens: From Extremotolerance to Interactions with Algae Lucia Muggia 1,* ID and Martin Grube 2 1 Department of Life Sciences, University of Trieste, via Licio Giorgieri 10, 34127 Trieste, Italy 2 Institute of Biology, Karl-Franzens University of Graz, Holteigasse 6, 8010 Graz, Austria; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +39-040-558-8825 Received: 11 April 2018; Accepted: 21 May 2018; Published: 22 May 2018 Abstract: Lichen symbioses develop long-living thallus structures even in the harshest environments on Earth. These structures are also habitats for many other microscopic organisms, including other fungi, which vary in their specificity and interaction with the whole symbiotic system. This contribution reviews the recent progress regarding the understanding of the lichen-inhabiting fungi that are achieved by multiphasic approaches (culturing, microscopy, and sequencing). The lichen mycobiome comprises a more or less specific pool of species that can develop symptoms on their hosts, a generalist environmental pool, and a pool of transient species. Typically, the fungal classes Dothideomycetes, Eurotiomycetes, Leotiomycetes, Sordariomycetes, and Tremellomycetes predominate the associated fungal communities. While symptomatic lichenicolous fungi belong to lichen-forming lineages, many of the other fungi that are found have close relatives that are known from different ecological niches, including both plant and animal pathogens, and rock colonizers. A significant fraction of yet unnamed melanized (‘black’) fungi belong to the classes Chaethothyriomycetes and Dothideomycetes. These lineages tolerate the stressful conditions and harsh environments that affect their hosts, and therefore are interpreted as extremotolerant fungi. Some of these taxa can also form lichen-like associations with the algae of the lichen system when they are enforced to symbiosis by co-culturing assays.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • Teak Rust Olivea Tectona : Occurrence, Epidemiology, Its Chemical Control in Vitro and Recation of Teak Clones and Provenances
    Leaflet No. 10/2000 Government of the Union of Myanmar Ministry of Forestry Forest Department Teak Rust Olivea Tectona : Occurrence, Epidemiology, Its Chemical Control In Vitro and Recation of Teak Clones and Provenances Daw Wai Wai Than, B.Sc. ( Zoo), M.Sc, ( Thesis ) Forest Pathology Assistant Research Officer Forest Research Institute April, 2000 i Acknowledgements I am very much grateful to U Saw Yan Aung C Doo, former Rector of the Institute of Forestry, Dr. Yi Yi Myint, Professor, Plant Pathology, Yezin Agricultural University and U Maung Maung Myint, Lecturer, Plant Pathology of the YAU for their guidance and support in preparation of this paper. ii uGGseff;oHHacs;rSSKdd Olivea tectinae: a&m*gjzpffay;rSSK? ysHHhhESSHHYYrSSK ? a&m*gumuGG,ffEddkkiffrSSKuddkk "gwkkaA'ypöönff;rsm;jziffhh "gwffcGGJJceff;twGGiff; prff;oyffjciff;ESSiffhh usGGeff; Clones ESSiffhh a'orsddK;wddkkYY&*gtay: wkkHHYYjyeffrSSKrsm;uddkk avhhvmjciff; a':a0a0oef; odyÜHbGJY ( owÅaA' )? r[modyÜH ( usrf;jyK ) opfawma&m*gaA' vufaxmufokawoet&m&Sd? opfawmokawoeXme? a&qif; pmwrf;tusOf;csKyf þpmwrf;wGif Olivea tectonae aMumifhjzpfaom uRef;&GufoHacs;rSdKa&m*gudk avhvm xm;ygonf/ ylíajcmufaoGYaom &moDOwktajcaeonf a&m*gjyif;xefrSKudk jzpfay: aponf/ a'o (5)rsdK;rS þa&m*gudk avhvmí a&m*gvu©Pm? &kyfoGifaA'wdkhudk ESdKif;,SOf xm;ygonf/ a&m*gxdk;oGif;í jzpfay:vmaom vu©Pmonf rlvvu©PmESifh wlnDaMumif; awGY&ygonf/ a&m*gonf tylcsdef 22 - 26°C ESifh tarSmifxJwGif ydkí aygufEdkifpGrf; &Sdygonf/ rSdKowfaq; (5)rsdK;\ a&m*gtay: [efYwm;EdkifrSKudk avhvm&m tcsdKY rSdKowfaq; wdkYonf tcsdKYaomjyif;tm;ü xda&mufpGm [efYwm;aMumif; awGY&ygonf/ cHEdkif&nf &Sdaom uRef;rsdK; rsm;a&G;cs,fjcif;udk ueOD;avhvmxm;&m xyfrHí avhvm okawoejyK&ef vdktyfygonf/ iii Teak Rust Olivea Tectonae : Occurrence, Epidemiology, Its Chemical Control In Vitro and Reaction of Teak Clones and Provenances Daw Wai Wai Than B.Sc.
    [Show full text]
  • A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity
    Mycosphere 10(1): 798–1079 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/19 A worldwide list of endophytic fungi with notes on ecology and diversity Rashmi M, Kushveer JS and Sarma VV* Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, Puducherry, India Rashmi M, Kushveer JS, Sarma VV 2019 – A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1), 798–1079, Doi 10.5943/mycosphere/10/1/19 Abstract Endophytic fungi are symptomless internal inhabits of plant tissues. They are implicated in the production of antibiotic and other compounds of therapeutic importance. Ecologically they provide several benefits to plants, including protection from plant pathogens. There have been numerous studies on the biodiversity and ecology of endophytic fungi. Some taxa dominate and occur frequently when compared to others due to adaptations or capabilities to produce different primary and secondary metabolites. It is therefore of interest to examine different fungal species and major taxonomic groups to which these fungi belong for bioactive compound production. In the present paper a list of endophytes based on the available literature is reported. More than 800 genera have been reported worldwide. Dominant genera are Alternaria, Aspergillus, Colletotrichum, Fusarium, Penicillium, and Phoma. Most endophyte studies have been on angiosperms followed by gymnosperms. Among the different substrates, leaf endophytes have been studied and analyzed in more detail when compared to other parts. Most investigations are from Asian countries such as China, India, European countries such as Germany, Spain and the UK in addition to major contributions from Brazil and the USA.
    [Show full text]
  • Environmental Prospecting of Black Yeast-Like Agents of Human Disease
    www.nature.com/scientificreports OPEN Environmental prospecting of black yeast‑like agents of human disease using culture‑independent methodology Flávia de Fátima Costa1, Nickolas Menezes da Silva1, Morgana Ferreira Voidaleski2, Vinicius Almir Weiss2, Leandro Ferreira Moreno2, Gabriela Xavier Schneider2, Mohammad J. Najafzadeh3, Jiufeng Sun4, Renata Rodrigues Gomes2, Roberto Tadeu Raittz5, Mauro Antonio Alves Castro5, Graciela Bolzón Inez de Muniz6, G. Sybren de Hoog2,7* & Vania Aparecida Vicente1,2* Melanized fungi and black yeasts in the family Herpotrichiellaceae (order Chaetothyriales) are important agents of human and animal infectious diseases such as chromoblastomycosis and phaeohyphomycosis. The oligotrophic nature of these fungi enables them to survive in adverse environments where common saprobes are absent. Due to their slow growth, they lose competition with common saprobes, and therefore isolation studies yielded low frequencies of clinically relevant species in environmental habitats from which humans are thought to be infected. This problem can be solved with metagenomic techniques which allow recognition of microorganisms independent from culture. The present study aimed to identify species of the family Herpotrichiellaceae that are known to occur in Brazil by the use of molecular markers to screen public environmental metagenomic datasets from Brazil available in the Sequence Read Archive (SRA). Species characterization was performed with the BLAST comparison of previously described barcodes and padlock probe sequences. A total of 18,329 sequences was collected comprising the genera Cladophialophora, Exophiala, Fonsecaea, Rhinocladiella and Veronaea, with a focus on species related to the chromoblastomycosis. The data obtained in this study demonstrated presence of these opportunists in the investigated datasets. The used techniques contribute to our understanding of environmental occurrence and epidemiology of black fungi.
    [Show full text]
  • An Integrated Dematiaceous Fungal Genomes
    Database, 2016, 1–11 doi: 10.1093/database/baw008 Original article Original article DemaDb: an integrated dematiaceous fungal genomes database Chee Sian Kuan1, Su Mei Yew1, Chai Ling Chan1, Yue Fen Toh1, Kok Wei Lee2, Wei-Hien Cheong2, Wai-Yan Yee2, Chee-Choong Hoh2, Soon-Joo Yap2 and Kee Peng Ng1,* 1Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia and 2Codon Genomics SB, No.26, Jalan Dutamas 7, Taman Dutamas, Balakong, 43200 Seri Kembangan, Selangor Darul Ehsan, Malaysia *Corresponding author: Tel: þ60 3 79492418; Fax: þ60 3 79494881; Email: [email protected] Citation details: Kuan, C.S., Yew, S.M., Chan, C.L. et al. DemaDb: an integrated dematiaceous fungal genomes database. Database (2016) Vol. 2016: article ID baw008; doi:10.1093/database/baw008 Received 23 October 2015; Revised 17 January 2016; Accepted 18 January 2016 Abstract Many species of dematiaceous fungi are associated with allergic reactions and potentially fatal diseases in human, especially in tropical climates. Over the past 10 years, we have iso- lated more than 400 dematiaceous fungi from various clinical samples. In this study, DemaDb, an integrated database was designed to support the integration and analysis of dematiaceous fungal genomes. A total of 92 072 putative genes and 6527 pathways that identified in eight dematiaceous fungi (Bipolaris papendorfii UM 226, Daldinia eschscholtzii UM 1400, D. eschscholtzii UM 1020, Pyrenochaeta unguis-hominis UM 256, Ochroconis mir- abilis UM 578, Cladosporium sphaerospermum UM 843, Herpotrichiellaceae sp. UM 238 and Pleosporales sp. UM 1110) were deposited in DemaDb. DemaDb includes functional an- notations for all predicted gene models in all genomes, such as Gene Ontology, EuKaryotic Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes (KEGG), Pfam and InterProScan.
    [Show full text]
  • Some Rare and Interesting Fungal Species of Phylum Ascomycota from Western Ghats of Maharashtra: a Taxonomic Approach
    Journal on New Biological Reports ISSN 2319 – 1104 (Online) JNBR 7(3) 120 – 136 (2018) Published by www.researchtrend.net Some rare and interesting fungal species of phylum Ascomycota from Western Ghats of Maharashtra: A taxonomic approach Rashmi Dubey Botanical Survey of India Western Regional Centre, Pune – 411001, India *Corresponding author: [email protected] | Received: 29 June 2018 | Accepted: 07 September 2018 | ABSTRACT Two recent and important developments have greatly influenced and caused significant changes in the traditional concepts of systematics. These are the phylogenetic approaches and incorporation of molecular biological techniques, particularly the analysis of DNA nucleotide sequences, into modern systematics. This new concept has been found particularly appropriate for fungal groups in which no sexual reproduction has been observed (deuteromycetes). Taking this view during last five years surveys were conducted to explore the Ascomatal fungal diversity in natural forests of Western Ghats of Maharashtra. In the present study, various areas were visited in different forest ecosystems of Western Ghats and collected the live, dried, senescing and moribund leaves, logs, stems etc. This multipronged effort resulted in the collection of more than 1000 samples with identification of more than 300 species of fungi belonging to Phylum Ascomycota. The fungal genera and species were classified in accordance to Dictionary of fungi (10th edition) and Index fungorum (http://www.indexfungorum.org). Studies conducted revealed that fungal taxa belonging to phylum Ascomycota (316 species, 04 varieties in 177 genera) ruled the fungal communities and were represented by sub phylum Pezizomycotina (316 species and 04 varieties belonging to 177 genera) which were further classified into two categories: (1).
    [Show full text]