Semantic Similarity Analysis and Application in Knowledge Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Semantic Similarity Analysis and Application in Knowledge Graphs Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros de Telecomunicación SEMANTIC SIMILARITY ANALYSIS AND APPLICATION IN KNOWLEDGE GRAPHS Tesis Doctoral Ganggao Zhu Máster en Software y Sistemas 2017 Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros de Telecomunicación SEMANTIC SIMILARITY ANALYSIS AND APPLICATION IN KNOWLEDGE GRAPHS Tesis Doctoral Ganggao Zhu Máster en Software y Sistemas 2017 Departamento de Ingeniería de Sistemas Telemáticos Escuela Técnica Superior de Ingenieros de Telecomunicación Universidad Politécnica de Madrid SEMANTIC SIMILARITY ANALYSIS AND APPLICATION IN KNOWLEDGE GRAPHS Autor: Ganggao Zhu Máster en Software y Sistemas Tutor: Carlos Ángel Iglesias Fernández Doctor Ingeniero de Telecomunicación 2017 Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la Universidad Politécnica de Madrid, el día de de . Presidente: Vocal: Vocal: Vocal: Secretario: Suplente: Suplente: Realizado el acto de defensa y lectura de la Tesis el día de de . en la E.T.S.I. Telecomunicación habiendo obtenido la calificación de . EL PRESIDENTE LOS VOCALES EL SECRETARIO A mi madre, a mi padre, gracias por todo. Acknowledgements Foremost, I would like to express my sincere gratitude to my adviser, Carlos A. Iglesias, for the continuous support of my Ph.D study and research, for his patience, motivation, enthusiasm, and immense knowledge. He provided me an excellent freedom atmosphere for doing research and implementing new ideas. His excellent guidance helped me in all the time of research and writing of this thesis. Besides, I would like to thank my fellow labmates for the discussions, lunch talk, pizza time, morning coffee game, working together before deadlines, and for all the fun we have had in the last five years. It was fantastic to have the opportunity to work with Álvaro, Miguel, Fernando, Óscar, Adam, Emilio, Geovanny, and Shengjing. Also, a very special gratitude goes out to all my good friends in Madrid, who were willing to help and give their best suggestions. It would have been a lonely time without Zhi, Bo, Xian, Jiayao, Rong, Jianguo, Qiong, Meijuan, Shan, Jie, Qi, Yu, Pengming, Sisi, Yongjun, Baojun, Irene, Angel and many others. It was great, fantastic, wonderful six years, having all the stimulating discussions, sleepless party nights, festival celebrations, Chinese food, games and all the fun. Last but not the least, I would like to thank my parents. They were always supporting me and encouraging me with their best wishes. Without their precious support it would not be possible for me to study abroad and to conduct this research. I am also grateful to my other family members and friends in China who have encouraged and supported me along the way. My deepest appreciation for all your encouragement and help! Resumen Las técnicas avanzadas de extracción de información y la creciente disponibilidad de datos vinculados han dado a luz a la noción de Grafo de Conocimiento (Knowledge Graph, KG) de gran escala. Con la creciente popularidad de KGs que contienen millones de conceptos y entidades, la investigación de herramientas fundamentales que estudian características semánticas de KGs es crítica para el desarrollo de aplicaciones basadas en KG, aparte del estudio de las técnicas de población de KG. Con este enfoque, esta tesis explora la similitud semántica en KGs teniendo en cuenta el concepto de taxonomía, concepto de distribución, la entidad descripciones y las categorías. La similitud semántica captura la cercanía de significados. A través del estudio de la red semántica de conceptos y entidades con relaciones significativas en KGs, hemos propuesto una nueva métrica de semántica WPath semántica, y un nuevo método de computación basado en información gráfica (IC). Con el WPath y el IC basado en gráfos, la similitud semántica de los conceptos se puede calcular directamente, basándose únicamente en el conocimiento estructural y el conocimiento estadístico contenido en KGs. Los experimentos en similitud de palabras han demostrado que la mejora de los métodos propuestos es es- tadísticamente significativa en comparación con los métodos convencionales. Por otra parte, observando que los conceptos suelen ser colocados con descripciones textuales, proponemos un nuevo enfoque de incorporación para formar el concepto y incorporación de palabras conjuntamente. El espacio vectorial compartido de conceptos y palabras ha proporcionado una computación de la similitud conveniente entre conceptos y palabras a través de simili- tud vectorial. De manera adicional, se ilustran algunas aplicaciones de modelos basados en el conocimiento, en corpus y en embeddings en la tarea de desambiguación y clasificación semántica, con el fin de demostrar la capacidad e idoneidad de diferentes métodos de simil- itud en aplicaciones específicas. Por último, la búsqueda de entidad semántica se utiliza como una demostración ilustrativa de un nivel más alto de la aplicación que consiste en similitud basado en el texto de concordancia, la desambiguación y la expansión de la con- sulta. Para implementar la demostración completa de la consulta de información centrada en la entidad, también proponemos un enfoque basado en reglas para construir y ejecutar automáticamente consultas SPARQL. I II Abstract The advanced information extraction techniques and increasing availability of linked data have given birth to the notion of large scale Knowledge Graph (KG). With the increasing popularity of KGs containing millions of concepts and entities, the research of fundamental tools studying semantic features of KGs is critical for the development of KG-based appli- cations, apart from the study of KG population techniques. With such focus, this thesis exploits semantic similarity in KGs taking into consideration of concept taxonomy, concept distribution, entity descriptions and categories. Semantic similarity captures the closeness of meanings. Through studying the semantic network of concepts and entities with meaningful relations in KGs, we proposed a novel WPath semantic similarity metric and new graph-based Information Content (IC) compu- tation method. With the WPath and graph-based IC, semantic similarity of concepts can be computed directly and only based on the structural and statistical knowledge contained in KG. The word similarity experiments have shown that the improvement of the proposed methods is statistical significant comparing to conventional methods. Moreover, observing that concepts are usually collocated with textual descriptions, we propose a novel embedding approach to train concept and word embedding jointly. The shared vector space of concepts and words, has provided convenient similarity computation between concepts and words through vector similarity. Furthermore, the applications of knowledge-based, corpus-based and embedding-based similarity methods are shown and compared in the task of semantic disambiguation and classification, in order to demonstrate the capability and suitability of different similarity methods in specific application. Finally, semantic entity search is used as an illustrative showcase to demonstrate higher level of the application consisting of text matching, disambiguation and query expansion. To implement the complete demonstration of entity-centric information querying, we also propose a rule-based approach for construct- ing and executing SPARQL queries automatically. In summary, the thesis exploits various similarity methods and illustrates their corre- sponding applications for KGs. The proposed similarity methods and presented similarity- based applications would help in facilitating the research and development of applications in KGs. III IV Contents Resumen I Abstract III Contents V 1 Introduction 1 1.1 Motivation . .2 1.2 Objectives . .6 1.3 Solution Outline . .7 1.4 Thesis Organization . .9 2 Foundations: Knowledge Graph and Similarity 11 2.1 Semantic Web and Knowledge Graph . 12 2.1.1 RDF, RDFS, OWL and SPARQL . 13 2.1.2 Knowledge Graph Formalization . 15 2.2 Semantic Similarity . 18 2.2.1 Distance and Similarity . 18 2.2.2 Terminology and Classification . 19 2.2.3 Knowledge-based Similarity Methods . 21 2.2.4 Corpus-based Similarity Methods . 28 2.3 Summary . 34 3 Semantic Similarity Framework 35 V CONTENTS CONTENTS 3.1 Introduction . 37 3.2 WPath Semantic Similarity Metric . 38 3.3 Graph-Based Information Content . 42 3.4 Semantic Similarity Evaluation . 44 3.4.1 Datasets and Implementation . 45 3.4.2 Metrics and Evaluation . 47 3.4.3 Result Analysis and Discussion . 53 3.5 Summary . 55 4 Semantic Disambiguation Framework 57 4.1 Word Sense Disambiguation . 58 4.1.1 Related Works . 59 4.1.2 The Synset2Vec Embedding . 61 4.1.3 Fine-Grained Sense Disambiguation . 65 4.1.4 Evaluation . 67 4.2 Named Entity Disambiguation . 71 4.2.1 Background . 74 4.2.2 Semantic Contextual Similarity for NED . 83 4.2.3 Evaluation . 93 4.3 Summary . 102 5 Semantic Classification and Entity Search 103 5.1 Similarity-Based Classification . 104 5.1.1 Unsupervised Classification . 105 5.1.2 Supervised Classification . 107 5.2 Semantic Entity Search . 111 5.2.1 Related Works . 113 VI CONTENTS CONTENTS 5.2.2 Entity Search Framework . 114 5.2.3 SPARQL Query Generation . 116 5.2.4 Evaluation . 118 5.3 Summary . 121 6 Conclusions and Future Research 123 6.1 Conclusions . 124 6.2 Future Research . 126 Bibliography 129 List of Figures 149 List of Tables 151 Glossary 153 Appendix A Publications 157 A.1 Journal Articles . 157 A.2 Conference Proceedings . 157 Appendix B Developed Tool 159 VII CONTENTS
Recommended publications
  • Combining Semantic and Lexical Measures to Evaluate Medical Terms Similarity?
    Combining semantic and lexical measures to evaluate medical terms similarity? Silvio Domingos Cardoso1;2, Marcos Da Silveira1, Ying-Chi Lin3, Victor Christen3, Erhard Rahm3, Chantal Reynaud-Dela^ıtre2, and C´edricPruski1 1 LIST, Luxembourg Institute of Science and Technology, Luxembourg fsilvio.cardoso,marcos.dasilveira,[email protected] 2 LRI, University of Paris-Sud XI, France [email protected] 3 Department of Computer Science, Universit¨atLeipzig, Germany flin,christen,[email protected] Abstract. The use of similarity measures in various domains is corner- stone for different tasks ranging from ontology alignment to information retrieval. To this end, existing metrics can be classified into several cate- gories among which lexical and semantic families of similarity measures predominate but have rarely been combined to complete the aforemen- tioned tasks. In this paper, we propose an original approach combining lexical and ontology-based semantic similarity measures to improve the evaluation of terms relatedness. We validate our approach through a set of experiments based on a corpus of reference constructed by domain experts of the medical field and further evaluate the impact of ontology evolution on the used semantic similarity measures. Keywords: Similarity measures · Ontology evolution · Semantic Web · Medical terminologies 1 Introduction Measuring the similarity between terms is at the heart of many research inves- tigations. In ontology matching, similarity measures are used to evaluate the relatedness between concepts from different ontologies [9]. The outcomes are the mappings between the ontologies, increasing the coverage of domain knowledge and optimize semantic interoperability between information systems. In informa- tion retrieval, similarity measures are used to evaluate the relatedness between units of language (e.g., words, sentences, documents) to optimize search [39].
    [Show full text]
  • Evaluating Lexical Similarity to Build Sentiment Similarity
    Evaluating Lexical Similarity to Build Sentiment Similarity Grégoire Jadi∗, Vincent Claveauy, Béatrice Daille∗, Laura Monceaux-Cachard∗ ∗ LINA - Univ. Nantes {gregoire.jadi beatrice.daille laura.monceaux}@univ-nantes.fr y IRISA–CNRS, France [email protected] Abstract In this article, we propose to evaluate the lexical similarity information provided by word representations against several opinion resources using traditional Information Retrieval tools. Word representation have been used to build and to extend opinion resources such as lexicon, and ontology and their performance have been evaluated on sentiment analysis tasks. We question this method by measuring the correlation between the sentiment proximity provided by opinion resources and the semantic similarity provided by word representations using different correlation coefficients. We also compare the neighbors found in word representations and list of similar opinion words. Our results show that the proximity of words in state-of-the-art word representations is not very effective to build sentiment similarity. Keywords: opinion lexicon evaluation, sentiment analysis, spectral representation, word embedding 1. Introduction tend or build sentiment lexicons. For example, (Toh and The goal of opinion mining or sentiment analysis is to iden- Wang, 2014) uses the syntactic categories from WordNet tify and classify texts according to the opinion, sentiment or as features for a CRF to extract aspects and WordNet re- emotion that they convey. It requires a good knowledge of lations such as antonymy and synonymy to extend an ex- the sentiment properties of each word. This properties can isting opinion lexicons. Similarly, (Agarwal et al., 2011) be either discovered automatically by machine learning al- look for synonyms in WordNet to find the polarity of words gorithms, or embedded into language resources.
    [Show full text]
  • Domain-Based Sense Disambiguation in Multilingual Structured Data
    Domain-Based Sense Disambiguation in Multilingual Structured Data Gabor´ Bella and Alessio Zamboni and Fausto Giunchiglia1 Abstract. Natural language text is pervasive in structured data Techniques such as cross-lingual semantic matching [2], seman- sets—relational database tables, spreadsheets, XML documents, tic search [7], or semantic service integration [13] were designed RDF graphs, etc.—requiring data processing operations to possess to tackle diversity in data and therefore invariably have some kind some level of natural language understanding capability. This, in of built-in meaning extraction capabilities. In semantic search, nat- turn, involves dealing with aspects of diversity present in structured ural language queries should be interpreted and matched to data in data such as multilingualism or the coexistence of data from multi- a robust way so that search is based on meaning and not on sur- ple domains. Word sense disambiguation is an essential component face forms of words (a tourist’s query on ‘bars’ should also return of natural language understanding processes. State-of-the-art WSD establishments indicated as ‘winebar’, cf. fig. 1 a, but preferably techniques, however, were developed to operate on single languages no results on the physical unit of pressure). In classification tasks, and on corpora that are considerably different from structured data natural-language labels indicating classes need to be formalised sets, such as articles, newswire, web pages, forum posts, or tweets. and compared to each other (establishments categorised as ‘malga’, In this paper we present a WSD method that is designed for short i.e., Alpine huts specific to the region of Trento, should be classified text typically present in structured data, applicable to multiple lan- as lodging facilities, cf.
    [Show full text]
  • Using Prior Knowledge to Guide BERT's Attention in Semantic
    Using Prior Knowledge to Guide BERT’s Attention in Semantic Textual Matching Tasks Tingyu Xia Yue Wang School of Artificial Intelligence, Jilin University School of Information and Library Science Key Laboratory of Symbolic Computation and Knowledge University of North Carolina at Chapel Hill Engineering, Jilin University [email protected] [email protected] Yuan Tian∗ Yi Chang∗ School of Artificial Intelligence, Jilin University School of Artificial Intelligence, Jilin University Key Laboratory of Symbolic Computation and Knowledge International Center of Future Science, Jilin University Engineering, Jilin University Key Laboratory of Symbolic Computation and Knowledge [email protected] Engineering, Jilin University [email protected] ABSTRACT 1 INTRODUCTION We study the problem of incorporating prior knowledge into a deep Measuring semantic similarity between two pieces of text is a fun- Transformer-based model, i.e., Bidirectional Encoder Representa- damental and important task in natural language understanding. tions from Transformers (BERT), to enhance its performance on Early works on this task often leverage knowledge resources such semantic textual matching tasks. By probing and analyzing what as WordNet [28] and UMLS [2] as these resources contain well- BERT has already known when solving this task, we obtain better defined types and relations between words and concepts. Recent understanding of what task-specific knowledge BERT needs the works have shown that deep learning models are more effective most and where it is most needed. The analysis further motivates on this task by learning linguistic knowledge from large-scale text us to take a different approach than most existing works. Instead of data and representing text (words and sentences) as continuous using prior knowledge to create a new training task for fine-tuning trainable embedding vectors [10, 17].
    [Show full text]
  • Latent Semantic Analysis for Text-Based Research
    Behavior Research Methods, Instruments, & Computers 1996, 28 (2), 197-202 ANALYSIS OF SEMANTIC AND CLINICAL DATA Chaired by Matthew S. McGlone, Lafayette College Latent semantic analysis for text-based research PETER W. FOLTZ New Mexico State University, Las Cruces, New Mexico Latent semantic analysis (LSA) is a statistical model of word usage that permits comparisons of se­ mantic similarity between pieces of textual information. This papersummarizes three experiments that illustrate how LSA may be used in text-based research. Two experiments describe methods for ana­ lyzinga subject's essay for determining from what text a subject learned the information and for grad­ ing the quality of information cited in the essay. The third experiment describes using LSAto measure the coherence and comprehensibility of texts. One of the primary goals in text-comprehension re­ A theoretical approach to studying text comprehen­ search is to understand what factors influence a reader's sion has been to develop cognitive models ofthe reader's ability to extract and retain information from textual ma­ representation ofthe text (e.g., Kintsch, 1988; van Dijk terial. The typical approach in text-comprehension re­ & Kintsch, 1983). In such a model, semantic information search is to have subjects read textual material and then from both the text and the reader's summary are repre­ have them produce some form of summary, such as an­ sented as sets ofsemantic components called propositions. swering questions or writing an essay. This summary per­ Typically, each clause in a text is represented by a single mits the experimenter to determine what information the proposition.
    [Show full text]
  • Ying Liu, Xi Yang
    Liu, Y. & Yang, X. (2018). A similar legal case retrieval Liu & Yang system by multiple speech question and answer. In Proceedings of The 18th International Conference on Electronic Business (pp. 72-81). ICEB, Guilin, China, December 2-6. A Similar Legal Case Retrieval System by Multiple Speech Question and Answer (Full paper) Ying Liu, School of Computer Science and Information Engineering, Guangxi Normal University, China, [email protected] Xi Yang*, School of Computer Science and Information Engineering, Guangxi Normal University, China, [email protected] ABSTRACT In real life, on the one hand people often lack legal knowledge and legal awareness; on the other hand lawyers are busy, time- consuming, and expensive. As a result, a series of legal consultation problems cannot be properly handled. Although some legal robots can answer some problems about basic legal knowledge that are matched by keywords, they cannot do similar case retrieval and sentencing prediction according to the criminal facts described in natural language. To overcome the difficulty, we propose a similar case retrieval system based on natural language understanding. The system uses online speech synthesis of IFLYTEK and speech reading and writing technology, integrates natural language semantic processing technology and multiple rounds of question-and-answer dialogue mechanism to realise the legal knowledge question and answer with the memory-based context processing ability, and finally retrieves a case that is most similar to the criminal facts that the user consulted. After trial use, the system has a good level of human-computer interaction and high accuracy of information retrieval, which can largely satisfy people's consulting needs for legal issues.
    [Show full text]
  • Untangling Semantic Similarity: Modeling Lexical Processing Experiments with Distributional Semantic Models
    Untangling Semantic Similarity: Modeling Lexical Processing Experiments with Distributional Semantic Models. Farhan Samir Barend Beekhuizen Suzanne Stevenson Department of Computer Science Department of Language Studies Department of Computer Science University of Toronto University of Toronto, Mississauga University of Toronto ([email protected]) ([email protected]) ([email protected]) Abstract DSMs thought to instantiate one but not the other kind of sim- Distributional semantic models (DSMs) are substantially var- ilarity have been found to explain different priming effects on ied in the types of semantic similarity that they output. Despite an aggregate level (as opposed to an item level). this high variance, the different types of similarity are often The underlying conception of semantic versus associative conflated as a monolithic concept in models of behavioural data. We apply the insight that word2vec’s representations similarity, however, has been disputed (Ettinger & Linzen, can be used for capturing both paradigmatic similarity (sub- 2016; McRae et al., 2012), as has one of the main ways in stitutability) and syntagmatic similarity (co-occurrence) to two which it is operationalized (Gunther¨ et al., 2016). In this pa- sets of experimental findings (semantic priming and the effect of semantic neighbourhood density) that have previously been per, we instead follow another distinction, based on distri- modeled with monolithic conceptions of DSM-based seman- butional properties (e.g. Schutze¨ & Pedersen, 1993), namely, tic similarity. Using paradigmatic and syntagmatic similarity that between syntagmatically related words (words that oc- based on word2vec, we show that for some tasks and types of items the two types of similarity play complementary ex- cur in each other’s near proximity, such as drink–coffee), planatory roles, whereas for others, only syntagmatic similar- and paradigmatically related words (words that can be sub- ity seems to matter.
    [Show full text]
  • Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities Khaled M
    World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering Vol:8, No:12, 2014 Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities Khaled M. Alhawiti business intelligence. The enterprise systems of searching the Abstract—This paper aims to analyze the role of natural knowledge base may be developed based on ontologies or language processing (NLP). The paper will discuss the role in the computing that is meaning-based. The textual information in context of automated data retrieval, automated question answer, and these technologies is indexed and the knowledge base is text structuring. NLP techniques are gaining wider acceptance in real tagged. However, tagging in the current web is not in a proper life applications and industrial concerns. There are various complexities involved in processing the text of natural language that way semantically. Hence enterprise search methods do not could satisfy the need of decision makers. This paper begins with the result in meaningful information retrieval. There is a need of description of the qualities of NLP practices. The paper then focuses effective search methods for extracting the best and relevant on the challenges in natural language processing. The paper also information that could improve the decision making process discusses major techniques of NLP. The last section describes [3]. opportunities and challenges for future research. One of the approaches of NLP is evidence-based NLP. It consists of three integrative iterative processes. The first step Keywords—Data Retrieval, Information retrieval, Natural filters the search results to obtain a set of information that is Language Processing, Text Structuring.
    [Show full text]
  • Esis Titled, “MULTIMODAL LEGAL IN- FORMATION RETRIEVAL” and the Work Presented in It Are My Own
    PhD-FSTC-2018-31 The Faculty of University of Bologna Sciences, Technology and Law School Communication DISSERTATION Defence held on 27/04/2018 in Bologna to obtain the degree of DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN INFORMATIQUE AND DOTTORE DI RICERCA IN Law, Science and Technology by Kolawole John ADEBAYO Born on 31 January 1986 in Oyo (Nigeria). MULTIMODAL LEGAL INFORMATION RETRIEVAL Dissertation Defence Committee Dr. Leon van der Torre, Dissertation Supervisor Professor, Université du Luxembourg, Luxembourg Dr. Guido Boella, Dissertation Supervisor Professor, Università degli Studi di Torino, Italy Dr. Marie-Francine Moens, Chairman Professor, Katholieke Universiteit, Belgium Dr. Henry Prakken, Vice-Chairman Professor, Universiteit Utrecht, Netherlands Dr. Schweighofer Erich, Member Professor, Professor, Universität Wien, Austria Dr. Monica Palmirani, Discussant Professor, Università di Bologna, Italy Dr. Luigi Di Caro, Discussant Professor, Università degli Studi di Torino, Italy iii Declaration of Authorship I, Kolawole John ADEBAYO, declare that this thesis titled, “MULTIMODAL LEGAL IN- FORMATION RETRIEVAL” and the work presented in it are my own. I confirm that: • This work was done wholly or mainly while in candidature for a research degree at this University. • Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. • Where I have consulted the published work of others, this is always clearly at- tributed. • Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. • I have acknowledged all main sources of help.
    [Show full text]
  • Measuring Semantic Similarity of Words Using Concept Networks
    Measuring semantic similarity of words using concept networks Gabor´ Recski Eszter Iklodi´ Research Institute for Linguistics Dept of Automation and Applied Informatics Hungarian Academy of Sciences Budapest U of Technology and Economics H-1068 Budapest, Benczur´ u. 33 H-1117 Budapest, Magyar tudosok´ krt. 2 [email protected] [email protected] Katalin Pajkossy Andras´ Kornai Department of Algebra Institute for Computer Science Budapest U of Technology and Economics Hungarian Academy of Sciences H-1111 Budapest, Egry J. u. 1 H-1111 Budapest, Kende u. 13-17 [email protected] [email protected] Abstract using word embeddings and WordNet. In Sec- tion 3 we briefly introduce the 4lang resources We present a state-of-the-art algorithm and the formalism it uses for encoding the mean- for measuring the semantic similarity of ing of words as directed graphs of concepts, then word pairs using novel combinations of document our efforts to develop novel 4lang- word embeddings, WordNet, and the con- based similarity features. Besides improving the cept dictionary 4lang. We evaluate our performance of existing systems for measuring system on the SimLex-999 benchmark word similarity, the goal of the present project is to data. Our top score of 0.76 is higher than examine the potential of 4lang representations in any published system that we are aware of, representing non-trivial lexical relationships that well beyond the average inter-annotator are beyond the scope of word embeddings and agreement of 0.67, and close to the 0.78 standard linguistic ontologies. average correlation between a human rater Section 4 presents our results and pro- and the average of all other ratings, sug- vides rough error analysis.
    [Show full text]
  • Semantic Similarity Between Sentences
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 01 | Jan -2017 www.irjet.net p-ISSN: 2395-0072 SEMANTIC SIMILARITY BETWEEN SENTENCES PANTULKAR SRAVANTHI1, DR. B. SRINIVASU2 1M.tech Scholar Dept. of Computer Science and Engineering, Stanley College of Engineering and Technology for Women, Telangana- Hyderabad, India 2Associate Professor - Dept. of Computer Science and Engineering, Stanley College of Engineering and Technology for Women, Telangana- Hyderabad, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - The task of measuring sentence similarity is [1].Sentence similarity is one of the core elements of Natural defined as determining how similar the meanings of two Language Processing (NLP) tasks such as Recognizing sentences are. Computing sentence similarity is not a trivial Textual Entailment (RTE)[2] and Paraphrase Recognition[3]. task, due to the variability of natural language - expressions. Given two sentences, the task of measuring sentence Measuring semantic similarity of sentences is closely related to similarity is defined as determining how similar the meaning semantic similarity between words. It makes a relationship of two sentences is. The higher the score, the more similar between a word and the sentence through their meanings. The the meaning of the two sentences. WordNet and similarity intention is to enhance the concepts of semantics over the measures play an important role in sentence level similarity syntactic measures that are able to categorize the pair of than document level[4]. sentences effectively. Semantic similarity plays a vital role in Natural language processing, Informational Retrieval, Text 1.1 Problem Description Mining, Q & A systems, text-related research and application area.
    [Show full text]
  • Topical Sequence Profiling and Cluster Labeling Sequence Flows from Left to Right, Thetopicsfromtopto Withrespecttodesiredtopiclabelproperties
    1 Topical Sequence Profiling Tim Gollub∗, Nedim Lipkay, Eunyee Kohy, Erdan Genc∗, and Benno Stein∗ ∗ Bauhaus-Universität Weimar <first name>.<last name>@uni-weimar.de y Adobe Systems [email protected], [email protected] Abstract—This paper introduces the problem of topical se- the goal of topical sequence profiling is to showcase research quence profiling. Given a sequence of text collections such as topics that peak as “hot topic” in distinct years but show a the annual proceedings of a conference, the topical sequence significant decline throughout the remaining years. We argue profile is the most diverse explicit topic embedding for that text collection sequence that is both representative and minimal. Topic that, in contrast to topics that never peak or that constantly embeddings represent a text collection sequence as numerical belong to the “usual suspects”, especially from these topics topic vectors by storing the relevance of each text collection valuable insights can be expected. for each topic. Topic embeddings are called explicit if human readable labels are provided for the topics. A topic embedding is representative for a sequence, if for each text collection the A. Problem Definition percentage of documents that address at least one of the topics exceeds a predefined threshold. If no topic can be removed from The problem of topical sequence profiling can be stated as the embedding without loosing representativeness, the embedding follows. Given a sequence of text collections D; D = (D1; is minimal. From the set of all minimal representative embed- D2;:::;Dn), where each D 2 D is a set of documents, find dings, the one with the highest mean topic variance is sought the most diverse, explicit topic embedding T∗ for the sequence and termed as the topical sequence profile.
    [Show full text]