Proceedings of the Society for Computation in Linguistics Volume 3 Article 34 2020 What do you mean, BERT? Assessing BERT as a Distributional Semantics Model Timothee Mickus Université de Lorraine, CNRS, ATILF,
[email protected] Denis Paperno Utrecht University,
[email protected] Mathieu Constant Université de Lorraine, CNRS, ATILF,
[email protected] Kees van Deemter Utrecht University,
[email protected] Follow this and additional works at: https://scholarworks.umass.edu/scil Part of the Computational Linguistics Commons Recommended Citation Mickus, Timothee; Paperno, Denis; Constant, Mathieu; and van Deemter, Kees (2020) "What do you mean, BERT? Assessing BERT as a Distributional Semantics Model," Proceedings of the Society for Computation in Linguistics: Vol. 3 , Article 34. DOI: https://doi.org/10.7275/t778-ja71 Available at: https://scholarworks.umass.edu/scil/vol3/iss1/34 This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Proceedings of the Society for Computation in Linguistics by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact
[email protected]. What do you mean, BERT? Assessing BERT as a Distributional Semantics Model Timothee Mickus Denis Paperno Mathieu Constant Kees van Deemter Universite´ de Lorraine Utrecht University Universite´ de Lorraine Utrecht University CNRS, ATILF
[email protected] CNRS, ATILF
[email protected] [email protected] [email protected] Abstract based on BERT. Furthermore, BERT serves both as a strong baseline and as a basis for a fine- Contextualized word embeddings, i.e. vector tuned state-of-the-art word sense disambiguation representations for words in context, are nat- urally seen as an extension of previous non- pipeline (Wang et al., 2019a).