Phylogenetic Clustering of Genes Reveals Shared Evolutionary Trajectories and Putative Gene Functions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Berberine Alters Gut Microbial Function Through Modulation of Bile Acids Patricia G
Wolf et al. BMC Microbiology (2021) 21:24 https://doi.org/10.1186/s12866-020-02020-1 RESEARCH ARTICLE Open Access Berberine alters gut microbial function through modulation of bile acids Patricia G. Wolf1,2,3,4,5, Saravanan Devendran3,5,6, Heidi L. Doden3,5, Lindsey K. Ly3,4,5, Tyler Moore7, Hajime Takei8, Hiroshi Nittono8, Tsuyoshi Murai9, Takao Kurosawa9, George E. Chlipala10, Stefan J. Green10, Genta Kakiyama11, Purna Kashyap12, Vance J. McCracken13, H. Rex Gaskins3,4,5,14,15, Patrick M. Gillevet6 and Jason M. Ridlon3,4,5,15,16* Abstract Background: Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. Results: Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. -
W O 2017/079450 Al 11 May 2017 (11.05.2017) W IPOI PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/079450 Al 11 May 2017 (11.05.2017) W IPOI PCT (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K35/741 (2015.01) A61K 35/744 (2015.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 35/745 (2015.01) A61K35/74 (2015.01) DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, C12N1/20 (2006.01) A61K 9/48 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, A61K 45/06 (2006.01) KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/US2016/060353 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (22) International Filing Date: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 3 November 2016 (03.11.2016) ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated,for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/250,277 3 November 2015 (03.11.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicants: THE BRIGHAM AND WOMEN'S HOS- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, PITAL [US/US]; 75 Francis Street, Boston, Massachusetts SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, 02115 (US). -
Updates on the Sporulation Process in Clostridium Species
Updates on the sporulation process in Clostridium species Talukdar, P. K., Olguín-Araneda, V., Alnoman, M., Paredes-Sabja, D., & Sarker, M. R. (2015). Updates on the sporulation process in Clostridium species. Research in Microbiology, 166(4), 225-235. doi:10.1016/j.resmic.2014.12.001 10.1016/j.resmic.2014.12.001 Elsevier Accepted Manuscript http://cdss.library.oregonstate.edu/sa-termsofuse *Manuscript 1 Review article for publication in special issue: Genetics of toxigenic Clostridia 2 3 Updates on the sporulation process in Clostridium species 4 5 Prabhat K. Talukdar1, 2, Valeria Olguín-Araneda3, Maryam Alnoman1, 2, Daniel Paredes-Sabja1, 3, 6 Mahfuzur R. Sarker1, 2. 7 8 1Department of Biomedical Sciences, College of Veterinary Medicine and 2Department of 9 Microbiology, College of Science, Oregon State University, Corvallis, OR. U.S.A; 3Laboratorio 10 de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de 11 Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile. 12 13 14 Running Title: Clostridium spore formation. 15 16 17 Key Words: Clostridium, spores, sporulation, Spo0A, sigma factors 18 19 20 Corresponding author: Dr. Mahfuzur Sarker, Department of Biomedical Sciences, College of 21 Veterinary Medicine, Oregon State University, 216 Dryden Hall, Corvallis, OR 97331. Tel: 541- 22 737-6918; Fax: 541-737-2730; e-mail: [email protected] 23 1 24 25 Abstract 26 Sporulation is an important strategy for certain bacterial species within the phylum Firmicutes to 27 survive longer periods of time in adverse conditions. All spore-forming bacteria have two phases 28 in their life; the vegetative form, where they can maintain all metabolic activities and replicate to 29 increase numbers, and the spore form, where no metabolic activities exist. -
Staff Advice Report
Staff Advice Report 11 January 2021 Advice to the Decision-making Committee to determine the new organism status of 18 gut bacteria species Application code: APP204098 Application type and sub-type: Statutory determination Applicant: PSI-CRO Date application received: 4 December 2020 Purpose of the Application: Information to support the consideration of the determination of 18 gut bacteria species Executive Summary On 4 December 2020, the Environmental Protection Authority (EPA) formally received an application from PSI-CRO requesting a statutory determination of 18 gut bacteria species, Anaerotruncus colihominis, Blautia obeum (aka Ruminococcus obeum), Blautia wexlerae, Enterocloster aldenensis (aka Clostridium aldenense), Enterocloster bolteae (aka Clostridium bolteae), Clostridium innocuum, Clostridium leptum, Clostridium scindens, Clostridium symbiosum, Eisenbergiella tayi, Emergencia timonensis, Flavonifractor plautii, Holdemania filiformis, Intestinimonas butyriciproducens, Roseburia hominis, ATCC PTA-126855, ATCC PTA-126856, and ATCC PTA-126857. In absence of publicly available data on the gut microbiome from New Zealand, the applicant provided evidence of the presence of these bacteria in human guts from the United States, Europe and Australia. The broad distribution of the species in human guts supports the global distribution of these gut bacteria worldwide. After reviewing the information provided by the applicant and found in scientific literature, EPA staff recommend the Hazardous Substances and New Organisms (HSNO) Decision-making Committee (the Committee) to determine that the 18 bacteria are not new organisms for the purpose of the HSNO Act. Recommendation 1. Based on the information available, the bacteria appear to be globally ubiquitous and commonly identified in environments that are also found in New Zealand (human guts). 2. -
The Mouse Intestinal Bacterial Collection (Mibc) Provides Host-Specific Insight Into Cultured Diversity and Functional Potential of the Gut Microbiota
Downloaded from orbit.dtu.dk on: Oct 02, 2021 The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota Lagkouvardos, Ilias; Pukall, Rüdiger; Abt, Birte; Foesel, Bärbel U.; Meier-Kolthoff, Jan P.; Kumar, Neeraj; Bresciani, Anne Gøther; Martínez, Inés; Just, Sarah; Ziegler, Caroline Total number of authors: 28 Published in: Nature Microbiology Link to article, DOI: 10.1038/nmicrobiol.2016.131 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Lagkouvardos, I., Pukall, R., Abt, B., Foesel, B. U., Meier-Kolthoff, J. P., Kumar, N., Bresciani, A. G., Martínez, I., Just, S., Ziegler, C., Brugiroux, S., Garzetti, D., Wenning, M., Bui, T. P. N., Wang, J., Hugenholtz, F., Plugge, C. M., Peterson, D. A., Hornef, M. W., ... Clavel, T. (2016). The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nature Microbiology, 1(10), [16131]. https://doi.org/10.1038/nmicrobiol.2016.131 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
HHS Public Access Author Manuscript
HHS Public Access Author manuscript Author Manuscript Author ManuscriptScience. Author Manuscript Author manuscript; Author Manuscript available in PMC 2016 January 24. Published in final edited form as: Science. 2015 July 24; 349(6246): 1254766. doi:10.1126/science.1254766. Small Molecules from the Human Microbiota Mohamed S. Donia1 and Michael A. Fischbach2 1Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. 2Department of Bioengineering and Therapeutic Sciences and the California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA. Abstract Developments in the use of genomics to guide natural product discovery and a recent emphasis on understanding the molecular mechanisms of microbiota-host interactions have converged on the discovery of natural products from the human microbiome. Here, we review what is known about small molecules produced by the human microbiota. Numerous molecules representing each of the major metabolite classes have been found that have a variety of biological activities, including immune modulation and antibiosis. We discuss technologies that will affect how microbiota- derived molecules are discovered in the future, and consider the challenges inherent in finding specific molecules that are critical for driving microbe-host and microbe-microbe interactions and their biological relevance. INTRODUCTION Symbiotic relationships – including mutualism, commensalism, and parasitism – are ubiquitous in nature (1). Some of the best known symbioses are between a microorganism and a multicellular host; in these inter-kingdom relationships, the fitness of the microbe-host system (the holobiont) often relies on a diverse set of molecular interactions between the symbiotic partners (2, 3). Examples include food digestion, nitrogen and carbon fixation, oxidation and reduction of inorganic molecules, and the synthesis of essential amino acids and cofactors (2, 4–6). -
Identifying Genomic and Metabolic Features That Can Underlie Early Successional and Opportunistic Lifestyles of Human Gut Symbionts
Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Research Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts Catherine Lozupone,1 Karoline Faust,2,3 Jeroen Raes,2,3 Jeremiah J. Faith,4 Daniel N. Frank,5 Jesse Zaneveld,6 Jeffrey I. Gordon,4 and Rob Knight1,7,8 1Department of Chemistry & Biochemistry and Biofrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA; 2Department of Structural Biology, VIB, 1050 Brussels, Belgium; 3Microbiology Unit (MICR), Department of Applied Biological Sciences (DBIT), Vrije Universiteit Brussel, 1050 Brussels, Belgium; 4Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA; 5Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado 80045, USA; 6Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA; 7Howard Hughes Medical Institute, Boulder, Colorado 80309, USA We lack a deep understanding of genetic and metabolic attributes specializing in microbial consortia for initial and subsequent waves of colonization of our body habitats. Here we show that phylogenetically interspersed bacteria in Clostridium cluster XIVa, an abundant group of bacteria in the adult human gut also known as the Clostridium coccoides or Eubacterium rectale group, contains species that have evolved distribution patterns consistent with either early successional or stable gut communities. The species that specialize to the infant gut are more likely to associate with systemic infections and can reach high abundances in individuals with Inflammatory Bowel Disease (IBD), indicating that a subset of the microbiota that have adapted to pioneer/opportunistic lifestyles may do well in both early development and with disease. -
Expansion of and Reclassification Within the Family Lachnospiraceae
University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses November 2016 Expansion of and reclassification within the family Lachnospiraceae Kelly N. Haas University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Biodiversity Commons, Bioinformatics Commons, Environmental Microbiology and Microbial Ecology Commons, Evolution Commons, Genomics Commons, Microbial Physiology Commons, Organismal Biological Physiology Commons, Other Ecology and Evolutionary Biology Commons, Other Microbiology Commons, and the Systems Biology Commons Recommended Citation Haas, Kelly N., "Expansion of and reclassification within the family Lachnospiraceae" (2016). Doctoral Dissertations. 843. https://doi.org/10.7275/9055799.0 https://scholarworks.umass.edu/dissertations_2/843 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. EXPANSION OF AND RECLASSIFICATION WITHIN THE FAMILY LACHNOSPIRACEAE A dissertation presented by KELLY NICOLE HAAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2016 Microbiology Department © Copyright by Kelly Nicole Haas 2016 -
ENZYMOLOGY and MOLECULAR BIOLOGY of BILE ACID 7Alpha- and 7Beta- DEHYDROXYLATION by the INTESTINAL BACTERIA CLOSTRIDIUM SCINDENS and CLOSTRIDIUM HYLEMONAE
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2008 ENZYMOLOGY AND MOLECULAR BIOLOGY OF BILE ACID 7alpha- AND 7beta- DEHYDROXYLATION BY THE INTESTINAL BACTERIA CLOSTRIDIUM SCINDENS AND CLOSTRIDIUM HYLEMONAE Jason Michael Ridlon Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medicine and Health Sciences Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/736 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © Jason Ridlon 2008 All Rights Reserved ENZYMOLOGY AND MOLECULAR BIOLOGY OF BILE ACID 7α- AND 7β- DEHYDROXYLATION BY THE INTESTINAL BACTERIA CLOSTRIDIUM SCINDENS AND CLOSTRIDIUM HYLEMONAE A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Virginia Commonwealth University By Jason Michael Ridlon B.S., Bridgewater College, 2002 Major Director: Dr. Phillip B. Hylemon Professor of Microbiology and Immunology and Medicine Virginia Commonwealth University Richmond, Virginia May, 2008 i DEDICATION To my loving wife Liz for her constant support and encouragement to succeed at this tremendous undertaking. To my mother and grandmother for all their love and support. ii ACKNOWLEDGEMENTS I would like to express my utmost and sincere gratitude to Dr. Phillip B. Hylemon for his guidance, patience and support before and during this work. I cherish our many wonderful conversations on science, life and current events. I would also like to extend many thanks to the members of my graduate committee, Drs. -
Anaerobic Microbes and Communities in the Context of Soil and the Equine Digestive Tract
University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses April 2014 Anaerobic Microbes and Communities In the Context of Soil and the Equine Digestive Tract Amy Biddle University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Microbiology Commons Recommended Citation Biddle, Amy, "Anaerobic Microbes and Communities In the Context of Soil and the Equine Digestive Tract" (2014). Doctoral Dissertations. 2. https://doi.org/10.7275/3thj-5m20 https://scholarworks.umass.edu/dissertations_2/2 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. ANAEROBIC MICROBES AND COMMUNITIES IN THE CONTEXT OF SOIL AND THE EQUINE DIGESTIVE TRACT A Dissertation Presented By AMY SANDERS BIDDLE Submitted to the Graduate School of the University of Massachusetts, Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY February 2014 Department of Microbiology © Copyright by Amy Sanders Biddle 2014 All Rights Reserved ANAEROBIC MICROBES AND COMMUNITIES IN THE CONTEXT OF SOIL AND THE EQUINE DIGESTIVE TRACT A Dissertation Presented By AMY SANDERS BIDDLE Approved as to style and content by: ________________________________ Jeffrey L. Blanchard, Chair ________________________________ Susan Leschine, Member ________________________________ Samuel P. Hazen, Member ________________________________ Kristen M. DeAngelis, Member ____________________________ John M. Lopes, Department Head Department of Microbiology DEDICATION To all of the horse owners who are anxiously waiting for the vet to arrive tonight. -
The Mouse Intestinal Bacterial Collection (Mibc)
ARTICLES PUBLISHED: 8 AUGUST 2016 | ARTICLE NUMBER: 16131 | DOI: 10.1038/NMICROBIOL.2016.131 OPEN The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota Ilias Lagkouvardos1, Rüdiger Pukall2, Birte Abt2,3,BärbelU.Foesel2,3, Jan P. Meier-Kolthoff2, Neeraj Kumar1, Anne Bresciani4, Inés Martínez5, Sarah Just1, Caroline Ziegler1, Sandrine Brugiroux6, Debora Garzetti6, Mareike Wenning7,ThiP.N.Bui8,JunWang9, Floor Hugenholtz8, Caroline M. Plugge8,DanielA.Peterson10,MathiasW.Hornef11,JohnF.Baines9,12,HaukeSmidt8, Jens Walter5, Karsten Kristiansen13,HenrikB.Nielsen4,DirkHaller1,14,JörgOvermann2,3, Bärbel Stecher3,6 and Thomas Clavel1* Intestinal bacteria influence mammalian physiology, but many types of bacteria are still uncharacterized. Moreover, reference strains of mouse gut bacteria are not easily available, although mouse models are extensively used in medical research. These are major limitations for the investigation of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (miBC), a public repository of bacterial strains and associated genomes from the mouse gut, and studied host-specificity of colonization and sequence-based relevance of the resource. The collection includes several strains representing novel species, genera and even one family. Genomic analyses showed that certain species are specific to the mouse intestine and that a minimal consortium of 18 strains covered 50–75% of the known functional potential of metagenomes. The present work will sustain future research on microbiota–host interactions in health and disease, as it will facilitate targeted colonization and molecular studies. -
Bacterial Metabolism Rescues the Inhibition of Intestinal Drug Absorption by Food and Drug Additives
Bacterial metabolism rescues the inhibition of intestinal drug absorption by food and drug additives Ling Zoua,1, Peter Spanogiannopoulosb,1, Lindsey M. Pieperb, Huan-Chieh Chiena, Wenlong Caic, Natalia Khurid, Joshua Pottele,f, Bianca Voraa, Zhanglin Nig, Eleftheria Tsakalozoug, Wenjun Zhangc,h, Brian K. Shoichete,f, Kathleen M. Giacominia,2, and Peter J. Turnbaughb,h,2 aDepartment of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158; bDepartment of Microbiology and Immunology, G.W. Hooper Research Foundation, University of California, San Francisco, CA 94143; cDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720; dDepartment of Bioengineering, Stanford University, Stanford, CA 94305; eDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158; fQB3 Institute, University of California, San Francisco, CA 94158; gDivision of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993; and hChan Zuckerberg Biohub, San Francisco, CA 94158 Edited by Lora V. Hooper, The University of Texas Southwestern Medical Center, Dallas, TX, and approved May 20, 2020 (received for review November 21, 2019) Food and drug products contain diverse and abundant small- ingredients; however, their impact on drug disposition is poorly molecule additives (excipients) with unclear impacts on human understood. More broadly, many of the excipients used in physiology, drug safety, and response. Here, we evaluate their pharmaceuticals are also widespread and abundant in processed potential impact on intestinal drug absorption. By screening 136 foods and cosmetics and therefore provide a routine source of unique compounds for inhibition of the key intestinal transporter chemical exposures for most individuals in the developed world.