High-Frequency Occurrence of Surfactin Monomethyl Isoforms in the Ferment Broth of a Bacillus Subtilis Strain Revealed by Ion Trap Mass Spectrometry

Total Page:16

File Type:pdf, Size:1020Kb

High-Frequency Occurrence of Surfactin Monomethyl Isoforms in the Ferment Broth of a Bacillus Subtilis Strain Revealed by Ion Trap Mass Spectrometry molecules Article High-Frequency Occurrence of Surfactin Monomethyl Isoforms in the Ferment Broth of a Bacillus subtilis Strain Revealed by Ion Trap Mass Spectrometry Anita Kecskeméti 1, Attila Bartal 1, Bettina Bóka 1,László Kredics 1 ID ,László Manczinger 1, Kadaikunnan Shine 2, Naiyf S. Alharby 2, Jamal M. Khaled 2,Mónika Varga 1, Csaba Vágvölgyi 1,2 and András Szekeres 1,* 1 Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; [email protected] (A.K.); [email protected] (A.B.); [email protected] (B.B.); [email protected] (L.K.); [email protected] (L.M.); [email protected] (M.V.); [email protected] (C.V.) 2 Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] (K.S.); [email protected] (N.S.A.); [email protected] (J.M.K.) * Correspondence: [email protected]; Tel.: +36-62-544-516 Received: 23 July 2018; Accepted: 30 August 2018; Published: 1 September 2018 Abstract: Surfactins are cyclic lipopeptides consisting of a β-hydroxy fatty acid of various chain length and a peptide ring of seven amino acids linked together by a lactone bridge, forming the cyclic structure of the peptide chain. These compounds are produced mainly by Bacillus species and possess numerous biological effects such as antimicrobial (antiviral, antibacterial, and antifungal) activities. A mixture of surfactins extracted from Bacillus subtilis strain SZMC 6179J was examined by HPLC-ESI-IT-MS technique, enhancing their separation to reveal novel lipopeptide varieties with higher masses and to characterize their structures. During the MS2 spectra analyses of their sodiated molecular ions [M + Na]+, a previously rarely encountered group of surfactins was detected and two novel types of the group were discovered containing methyl esterified aspartic acid residue in their fifth amino acid position. The relative amounts of these monomethyl isoforms exceeded 35% of the produced surfactin in total. In the m/z value of 1114, all the detected isoforms possessed aspartic acid 4-methyl ester residue in their fifth amino acid position (C17-[Lxx4, AME5], C18-[AME5]), offering an opportunity to separate a pure fraction of the compound and to study its biological activities in the future. Keywords: Bacillus; cyclic lipopeptides; HPLC-ESI-IT-MS; surfactin 1. Introduction Surfactins are cyclic lipopeptide-type biosurfactants produced mainly by Bacillus subtilis, a Gram-positive bacterium [1]. It consists of a hydrophobic β-hydroxy fatty acid chain of various length (C12–C15) linked to a ring of seven amino acids (Figure1). The cyclic structure is formed by a lactone bridge between the β-hydroxyl functional group of the fatty acid and the C-terminal of the heptapeptide [2]. Because of its potent surface activity properties [2], surfactin exhibits various biological activities such as antiviral, antitumor, and antimicrobial effects [3], which makes this heptapeptide the subject of various environmental, industrial, and therapeutical investigations [4,5]. The length of the fatty acid chain and the amino acid sequence varies, resulting in numerous isoforms of the compound listed and characterized in previous works [2] (Table1). Although most of these variants were reported in the 1990s, a recent study from our group introducing a novel surfactin Molecules 2018, 23, 2224; doi:10.3390/molecules23092224 www.mdpi.com/journal/molecules MoleculesMolecules 20182018, ,2323, ,x 2224 FOR PEER REVIEW 22 of of 12 12 variants were reported in the 1990s, a recent study from our group introducing a novel surfactin moleculemolecule containing containing Val Val in in the the second second amino amino acid acid position position [6] [6 ](Figure (Figure 1)1) proved that there may still bebe surfactin surfactin isoforms isoforms that that are are yet yet to to be be discovered. discovered. Moreover, Moreover, the the incorporations incorporations of esterified of esterified form form of Aspof Asp (Asp (Asp--O-Me,O-Me, aspartic aspartic acid acid 4-methyl 4-methyl est ester—AME)er—AME) and and Glu Glu (Glu (Glu--OO-Me,-Me, glutamic glutamic acid acid 5 5-methyl-methyl esterester—GME)—GME) were were also also reported reported occasionally occasionally [7 [7––9].9]. In In the the present present study, study, a ann HPLC HPLC gradient gradient elution elution methodmethod was was applied applied that that was was capable capable of of separating separating all all lipopeptide lipopeptide components components in in our our sample sample and and to to 2 examineexamine the the separated separated,, previously hidden,hidden, moremore non-polarnon-polar fractions fractions by by MS MS2measurements measurements in in order order to toidentify identify the the various various surfactin surfactin molecules, molecules, with with different different amino amino acid acid sequences sequences and aliphaticand aliphatic acid chainacid chainlengths, lengths, produced produced by B. by subtilis B. subtilisSZMC SZMC 6179J 6179J to the to full the extent. full extent. Figure 1. The structure of the surfactin variant [Val2] described by Bóka et al. [6]. R = C3H7–C5H11. Figure 1. The structure of the surfactin variant [Val2] described by Bóka et al. [6]. R = C3H7–C5H11. Table 1. Natural surfactin peptide sequence variants including the recently found isoforms containing Table 1. Natural surfactin peptide sequence variants including the recently found isoforms containing AMEAME in in the the fifth fifth position. position. Peptide Nomenclature of Surfactin References AA1 AA2 AA3 PeptideAA4 AA5 AA6 AA7 Nomenclature of Surfactin References [Sur] surfactin Glu Leu Leu Val Asp Leu Leu [10] AA1 AA2 AA3 AA4 AA5 AA6 AA7 [Val2] surfactin Glu Val Lxx Val Asp Lxx Lxx [6] [Ala4] surfactin[Sur] surfactin Glu Glu Leu Leu Leu ValAla AspAsp LeuLeu LeuLeu [10] [11] [Leu4] surfactin[Val2] surfactin Glu Glu Leu Val Leu Lxx ValLeu AspAsp LxxLeu LxxLeu [6] [12] [Ile4] surfactin[Ala4] surfactinGlu Glu Leu Leu Leu AlaIle AspAsp LeuLeu LeuLeu [11] [12] [Ile2,4] surfactin[Leu4] surfactin Glu Glu Ile Leu Leu LeuIle AspAsp LeuLeu LeuLeu [12] [13] [Val7] surfactin[Ile4] surfactin Glu Glu Leu Leu Leu IleVal AspAsp LeuLeu LeuVal [12][14,15] [Ile7] surfactin[Ile2,4] surfactinGlu Glu Leu Ile Leu IleVal AspAsp LeuLeu LeuIle [13] [14] [Val2,7] [Val7]surfactin surfactin Glu Glu Val Leu Leu ValVal AspAsp LeuLeu ValVal [14,15][13] [Val2, Ile7][Ile7] surfactin surfactin Glu Glu Val Leu Leu ValVal AspAsp LeuLeu IleIle [14] [16] [Ile2, Val7][Val2,7] surfactin surfactin Glu Glu Ile Val Leu ValVal AspAsp LeuLeu ValVal [13] [16] [Ile2,4,7][Val2, surfactin Ile7] surfactinGlu Glu Ile Val Leu ValIle AspAsp LeuLeu IleIle [16] [13] [GME1,AME5][Ile2, Val7] surfactin surfactin GME Glu Leu Ile Leu ValVal AspAME LeuLeu ValLeu [16] [7] [GME1,Val7][Ile2,4,7] surfactin surfactin GME Glu Leu Ile Leu IleVal AspAsp LeuLeu IleVal [13] [7] [GME1, [GME1,AME5]Ile7] surfactin surfactinGME GME Leu Leu Leu ValVal AMEAsp LeuLeu LeuIle [7] [7] [AME5] [GME1,Val7]surfactin surfactinGlu GME Leu Leu Leu ValVal AspAME LeuLeu ValLeu [7] [8] [AME5,Val7][GME1, surfactin Ile7] surfactinGlu GME Lxx Leu Lxx Leu ValVal AspAME LeuLxx IleVal [7This] study [Lxx4, AME5][AME5] surfactin surfactin Glu Glu Lxx Leu Lxx Leu ValLxx AMEAME LeuLxx LeuLxx [8This] study [AME5,Val7]GME surfactin—glutamic acid Glu 5-methyl Lxx ester, Lxx AME— Valaspartic AME acid 4- Lxxmethyl Valester. This study [Lxx4, AME5] surfactin Glu Lxx Lxx Lxx AME Lxx Lxx This study GME—glutamic acid 5-methyl ester, AME—aspartic acid 4-methyl ester. Molecules 2018, 23, 2224 3 of 12 2. Results and Discussions Molecules 2018, 23, x FOR PEER REVIEW 3 of 12 2.1. Separation of Lipopeptides 2. Results and Discussions The starting point for the separation of lipopeptides was our previous study, where isocratic separations2.1. Separation were applied of Lipopeptides [6] based on the method described by Akpa et al. [17]. Within the isocratic elution of the water/acetonitrile mixture (20:80, v/v), the surfactins with identical molecular weights The starting point for the separation of lipopeptides was our previous study, where isocratic elutedseparations in well-defined were applied time windows[6] based on according the method to described their polarities by Akpa andet al. increased [17]. Within molecular the isocratic masses in theelution following of the order: water/acetonitrilem/z 1016, 15–27mixture min; (20:80,m /v/zv),1030, the surfactins 16–36 min; with 1044 identicalm/z ,molecular 23–44 min; weights 1058 m/z, 31–55eluted min. Thisin well method‐defined allowed time windows the detection according of to surfactinstheir polarities up and to m/z increased1058, molecular but the last masses lipopeptide in (C16-[Val7])the following already order: eluted m/z 1016, near 15–27 to the min; end m/z of 1030, the 16–36 isocratic min; 1044 chromatographic m/z, 23–44 min; run,1058 m suggesting/z, 31–55 the presencemin. of This other method surfactin allowed molecules the detection with of highersurfactins molecular up to m/z weight1058, but [6 the]. The last lipopeptide previously (C16 separated‐ and identified[Val7]) already isoforms eluted represented near to the end three of typesthe isocratic of known chromatographic surfactin variants run, suggesting and a fourth, the presence previously of other surfactin molecules with higher molecular weight [6]. The previously separated and unknown, group, which was characterised by the replacement of the leucine residue by valine in identified isoforms represented three types of known surfactin variants and a fourth, previously the aminounknown, acid group, position which 2. Therefore,was characterised it was by assumed the replacement that the of the prolonged leucine residue separation by valine is able in the to lead to gatheramino mass acid spectrometricposition 2.
Recommended publications
  • Identification of Novel Surfactin Derivatives from NRPS Modification
    Jiang et al. BMC Microbiology (2016) 16:31 DOI 10.1186/s12866-016-0645-3 RESEARCH ARTICLE Open Access Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme Jian Jiang, Ling Gao, Xiaomei Bie*, Zhaoxin Lu, Hongxia Liu, Chong Zhang, Fengxia Lu and Haizhen Zhao Abstract Background: Bacillus subtilis strain PB2-L1 produces the lipopeptide surfactin, a highly potent biosurfactant synthesized by a large multimodular nonribosomal peptide synthetase (NRPS). In the present study, the modules SrfA-A-Leu, SrfA-B-Asp, and SrfA-B-Leu from surfactin NRPS in B. subtilis BP2-L1 were successfully knocked-out using a temperature-sensitive plasmid, pKS2-mediated-based, homologous, recombination method. Results: Three novel surfactin products were produced, individually lacking amino acid Leu-3, Asp-5, or Leu-6. These surfactins were detected, isolated, and characterized by HPLC and LC-FTICR-MS/MS. In comparison with native surfactin, [ΔLeu3]surfactin and [ΔLeu6]surfactin showed evidence of reduced toxicity, while [ΔAsp5]surfactin showed stronger inhibition than native surfactin against B. pumilus and Micrococcus luteus. These results showed that the minimum inhibitory concentration of [ΔLeu6]surfactin for Fusarium moniliforme was 50 μg/mL, such that [ΔLeu6]surfactin could lead to mycelium projection, cell damage, and leakage of nucleic acids and protein. These factors all contributed to stimulating apoptosis in F. moniliforme. Conclusions: The present results revealed that [ΔLeu6]surfactin showed a significant antifungal activity against F. moniliforme and might successfully be employed to control fungal food contamination and improve food safety. Keywords: Surfactin, NRPS, Module deletion, Fusarium moniliforme Background structure peptide chain and possesses a β-hydroxy fatty Fusarium moniliforme mainly contaminates maize, sor- acid chain (typically C13–C16) containing seven amino acids ghum, wheat, cotton, beans, tomatoes, peanuts, bananas, formed by crosslinking [7].
    [Show full text]
  • Surfactin – Novel Solutions for Global Issues
    13 Surfactin – Novel Solutions for Global Issues Gabriela Seydlová, Radomír Čabala and Jaroslava Svobodová Charles University in Prague Czech Republic 1. Introduction The constant demand for new, effective therapeutic agents has triggered intensive research in the field of diverse antimicrobials of natural origin. These compounds are synthesized by all forms of life and have important biomedical and biotechnological properties, and are thus widely considered a potential solution to the growing problem of resistance to conventional antibiotics, fungal infection and life-threatening diseases. Among these molecules, lipopeptides represent a unique class of bioactive secondary metabolites with increasing scientific, therapeutic and biotechnological interest. The principal representative of the anionic lipopeptide family is surfactin, which is produced by bacterium Bacillus subtilis. This most potent known biosurfactant (i.e. surface-active compound of microbial origin), was named surfactin due to its exceptional surface activity. Since its discovery (Arima et al., 1968) and the identification of its molecular structure as a macrolide lipopeptide (Kakinuma et al., 1969) it has been best recognized for its high amhiphilicity and strong tendency for self-aggregation (Ishigami et al., 1995). Due to these characteristics it shows remarkable surface-, interface- and membrane-active properties, resulting in a number of promising biological activities, which are of great relevance in health care and biotechnology. These properties make surfactin a candidate drug for the resolution of a number of global issues in medicine (Banat et al., 2010; Cao et al., 2010), industry (Nitschke & Costa, 2007; Abdel-Mawgoud et al., 2008) and environmental protection (Mulligan, 2009). 2. Structure and physicochemical properties Surfactin (M.W.
    [Show full text]
  • Role of Surfactin from Bacillus Subtilis in Protection Against Antimicrobial Peptides Produced by Bacillus Species
    Role of surfactin from Bacillus subtilis in protection against antimicrobial peptides produced by Bacillus species by Hans André Eyéghé-Bickong BSc. Honours (Biochemistry) February 2011 Dissertation approved for the degree Doctor of Philosophy (Biochemistry) in the Faculty of Science at the University of Stellenbosch Promoter: Prof. Marina Rautenbach Department of Biochemistry University of Stellenbosch ii Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. ……………………………………………. ………28/02/2011..…………… Hans André Eyéghé-Bickong Date Copyright©2011 Stellenbosch University All rights reserved iii Summary Antagonism of antimicrobial action represents an alternative survival strategy for cohabiting soil organisms. Under competitive conditions, our group previously showed that surfactin (Srf) produced by Bacillus subtilis acts antagonistically toward gramicidin S (GS) from a cohabiting bacillus, Aneurinibacillus migulanus, causing the loss the antimicrobial activity of GS. This antagonism appeared to be caused by inactive complex formation. This study aimed to elucidate whether the previously observed antagonism of GS activity by Srf is a general resistance mechanism that also extends to related peptides such as the tyrocidines (Trcs) and linear gramicidins (Grcs) from Bacillus aneurinolyticus. Molecular interaction between the antagonistic peptide pairs was investigated using biophysical analytical methods such as electrospray mass spectrometry (ESMS), circular dichroism (CD), fluorescence spectroscopy (FS) and nuclear magnetic resonance (NMR).
    [Show full text]
  • Selection of Sponge-Associated Bacteria with High Potential for The
    www.nature.com/scientificreports OPEN Selection of sponge‑associated bacteria with high potential for the production of antibacterial compounds Riyanti1,2, Walter Balansa3, Yang Liu1, Abha Sharma1, Sanja Mihajlovic4, Christoph Hartwig4, Benedikt Leis4, Frets Jonas Rieuwpassa3, Frans Gruber Ijong3, Heike Wägele5, Gabriele M. König6 & Till F. Schäberle1,4,7* The potential of sponge‑associated bacteria for the biosynthesis of natural products with antibacterial activity was evaluated. In a preliminary screening 108 of 835 axenic isolates showed antibacterial activity. Active isolates were identifed by 16S rRNA gene sequencing and selection of the most promising strains was done in a championship like approach, which can be done in every lab and feld station without expensive equipment. In a competition assay, strains that inhibited most of the other strains were selected. In a second round, the strongest competitors from each host sponge competed against each other. To rule out that the best competitors selected in that way represent similar strains with the same metabolic profle, BOX PCR experiments were performed, and extracts of these strains were analysed using metabolic fngerprinting. This proved that the strains are diferent and have various metabolic profles, even though belonging to the same genus, i.e. Bacillus. Furthermore, it was shown that co‑culture experiments triggered the production of compounds with antibiotic activity, i.e. surfactins and macrolactin A. Since many members of the genus Bacillus possess the genetic equipment for the biosynthesis of these compounds, a potential synergism was analysed, showing synergistic efects between C14‑surfactin and macrolactin A against methicillin‑resistant Staphylococcus aureus (MRSA). Te oceans house highly dynamic and diverse microbiological habitats with an inherent high potential to discover species that are completely new, unique and highly adapted 1.
    [Show full text]
  • Surfactin – a Review on Biosynthesis, Fermentation, Purification and Applications
    N.S. SHALIGRAM and R.S. SINGHAL: Surfactin – A Review, Food Technol. Biotechnol. 48 (2) 119–134 (2010) 119 ISSN 1330-9862 review (FTB-2226) Surfactin – A Review on Biosynthesis, Fermentation, Purification and Applications Nikhil S. Shaligram and Rekha S. Singhal* Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, IN-400 019 India Received: January 28, 2009 Accepted: January 11, 2010 Summary Surfactin, a bacterial cyclic lipopeptide, is produced by various strains of Bacillus subti- lis and is primarily recognized as one of the most effective biosurfactants. It has the ability to reduce surface tension of water from 72 to 27 mN/m at a concentration as low as 0.005 %. The structure of surfactin consists of seven amino acids bonded to the carboxyl and hydrox- yl groups of a 14-carbon fatty acid. Surfactin possesses a number of biological activities such as the ability to lyse erythrocytes, inhibit clot formation, lyse bacterial spheroplasts and protoplasts, and inhibit cyclic 3',5-monophosphate diesterase. The high cost of produc- tion and low yields have limited its use in various commercial applications. Both sub- merged and solid-state fermentation have been investigated with the mutational approach to improve the productivity. In this review, current state of knowledge on biosynthesis of surfactin, its fermentative production, purification, analytical methods and biomedical appli- cations is presented. Key words: biosurfactant, surfactin, Bacillus subtilis, biosynthesis, fermentation, purification Introduction Surfactin was discovered by Arima et al. (3)from the culture broth of Bacillus subtilis (Fig. 1). It was Surfactants are ampiphilic molecules that partition named thus due to its exceptional surfactant activity (4).
    [Show full text]
  • Safety Data Sheet - Version 5.0 Preparation Date 12/21/2018 Latest Revision Date (If Revised) SDS Expiry Date 12/19/2021
    Safety Data Sheet - Version 5.0 Preparation Date 12/21/2018 Latest Revision Date (If Revised) SDS Expiry Date 12/19/2021 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1 Product Identifier Chemical Name Surfactin Catalogue # S860003 1.2 Relevant Identified Uses of the Substance or Mixture and Uses Advised Against Product Uses To be used only for scientific research and development. Not for use in humans or animals. 1.3 Details of the Supplier of the Safety Data Sheet Company Toronto Research Chemicals 2 Brisbane Road Toronto, ON M3J 2J8 CANADA Telephone +14166659696 FAX +14166654439 Email [email protected] 1.4 Emergency Telephone Number Emergency# +1(416) 665-9696 between 0800-1700 (GMT-5) 2. HAZARDS IDENTIFICATION WHMIS Classification (Canada) WHMIS Symbols (Canada) None Not WHMIS controlled. 2.1/2.2 Classification of the Substance or Mixture and Label Elements GHS Hazards Classification (According to EU Regulation 1272/2008 and US OSHA 1910.1200) Not a hazardous substance by GHS. GHS Hazards Identification (According to EU Regulation 1272/2008 and US OSHA 1910.1200) Signal Word None GHS Hazard Statements None Not a hazardous substance according to GHS. GHS Precautionary Statements 2.3 Unclassified Hazards/Hazards Not Otherwise Classified No data available. 3. COMPOSITION/INFORMATION ON INGREDIENTS Toronto Research Chemicals - S860003 Page 1 This Safety Data Sheet contains 16 sections. All 16 sections must be present for this document to be valid. This Safety Data Sheet contains 16 sections. All 16 sections
    [Show full text]
  • Bacillus Subtilis Spreads by Surfing on Waves of Surfactant
    Bacillus subtilis spreads by surfing on waves of surfactant Thomas E. Angelinia,1, Marcus Roperb,1, Roberto Kolterc, David A. Weitza, and Michael P. Brennera,1 aSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; bDepartment of Mathematics and Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720; and cDepartment of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115 Edited by E. Peter Greenberg, University of Washington School of Medicine, Seattle, WA, and approved August 18, 2009 (received for review May 28, 2009) The bacterium Bacillus subtilis produces the molecule surfactin, B. subtilis pellicles, including both the rate of spreading and a which is known to enhance the spreading of multicellular colonies direct measurement of the decrease in surface tension below the on nutrient substrates by lowering the surface tension of the sur- center of the pellicle. We then present a mathematical model that rounding fluid, and to aid in the formation of aerial structures. quantitatively explains the observed spreading–both the shape of Here we present experiments and a mathematical model that the spreading front and its velocity. The model predicts how quan- demonstrate how the differential accumulation rates induced by tities under the control of individual cells (surfactin-production the geometry of the bacterial film give rise to surfactant waves. rate, and biofilm rheology) control the collective motion of the The spreading flux increases with increasing biofilm viscosity. Com- biofilm. Finally, we rule out individual cell motility as the cause munity associations are known to protect bacterial populations of the spreading by demonstrating that whereas the B.
    [Show full text]
  • Nanoemulsion Stabilized by Safe Surfactin from Bacillus Subtilis As a Multifunctional, Custom-Designed Smart Delivery System
    pharmaceutics Article Nanoemulsion Stabilized by Safe Surfactin from Bacillus subtilis as a Multifunctional, Custom-Designed Smart Delivery System Agnieszka Lewi ´nska 1,* , Marta Dom˙zał-K˛edzia 2, Anna Jaromin 3 and Marcin Łukaszewicz 2,* 1 Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland 2 Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; [email protected] 3 Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; [email protected] * Correspondence: [email protected] (A.L.); [email protected] (M.Ł.); Tel.: +48-71-3757324 (A.L.); +48-71375-6250 (M.Ł.) Received: 16 September 2020; Accepted: 7 October 2020; Published: 10 October 2020 Abstract: The developing field of bio-nanotechnology aims to advance colloidal research via the introduction of multifunctional nanoparticles to augment the dermal effectiveness of active substances. Self-emulsifying drug delivery systems (SEDDS)—isotropic mixtures of oils, surfactants, solvents and co-solvents or surfactants—are attracting interest in the cosmeceutical field. As part of this study, SEDDS systems containing vitamin C or vitamin E and curcumin were developed, whereby the bioavailability of the active compounds increased by enhancing their permeability to deeper layers of the skin. A composition consisting of 50% surfactin from Bacillus subtilis, 30% Transcutol and 20% oil phase was designed to encapsulate the active substances, i.e., vitamin C or vitamin E and curcumin, contained in the oil phase. The developed carriers were characterized by average particle sizes of 69–183 nm.
    [Show full text]
  • Small Cationic Antimicrobial Peptides Delocalize Peripheral Membrane Proteins
    Small cationic antimicrobial peptides delocalize PNAS PLUS peripheral membrane proteins Michaela Wenzela, Alina Iulia Chiriacb, Andreas Ottoc, Dagmar Zweytickd, Caroline Maye, Catherine Schumacherf, Ronald Gustg, H. Bauke Albadah, Maya Penkovah, Ute Krämeri, Ralf Erdmannj, Nils Metzler-Nolteh, Suzana K. Strausk, Erhard Bremerl, Dörte Becherc, Heike Brötz-Oesterheltf, Hans-Georg Sahlb, and Julia Elisabeth Bandowa,1 aBiology of Microorganisms, hBioinorganic Chemistry, and iPlant Physiology, eImmune Proteomics, Medical Proteome Center, and jInstitute of Physiological Chemistry, Ruhr University Bochum, 44801 Bochum, Germany; bInstitute for Medical Microbiology, Immunology, and Parasitology, Pharmaceutical Microbiology Section, University of Bonn, 53113 Bonn, Germany; cDepartment of Microbial Physiology and Molecular Biology, Ernst Moritz Arndt University, 17489 Greifswald, Germany; dBiophysics Division, Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; fInstitute for Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany; gDepartment of Pharmaceutical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria; kDepartment of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1; and lDepartment of Biology, University of Marburg, 35037 Marburg, Germany Edited by Michael Zasloff, Georgetown University Medical Center, Washington, DC, and accepted by the Editorial Board February 27, 2014 (received for review October 22, 2013) Short antimicrobial peptides rich
    [Show full text]
  • Sustainable Surfactin Production by Bacillus Subtilis Using Crude Glycerol from Different Wastes
    molecules Article Sustainable Surfactin Production by Bacillus subtilis Using Crude Glycerol from Different Wastes Tomasz Janek 1,* , Eduardo J. Gudiña 2 , Xymena Połomska 1, Piotr Biniarz 1,3 , Dominika Jama 1, Lígia R. Rodrigues 2 , Waldemar Rymowicz 1 and Zbigniew Lazar 1 1 Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; [email protected] (X.P.); [email protected] (P.B.); [email protected] (D.J.); [email protected] (W.R.); [email protected] (Z.L.) 2 Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; [email protected] (E.J.G.); [email protected] (L.R.R.) 3 Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland * Correspondence: [email protected]; Tel.: +48-71-320-7734 Abstract: Most biosurfactants are obtained using costly culture media and purification processes, which limits their wider industrial use. Sustainability of their production processes can be achieved, in part, by using cheap substrates found among agricultural and food wastes or byproducts. In the present study, crude glycerol, a raw material obtained from several industrial processes, was evaluated as a potential low-cost carbon source to reduce the costs of surfactin production by Bacil- lus subtilis #309. The culture medium containing soap-derived waste glycerol led to the best surfactin production, reaching about 2.8 g/L. To the best of our knowledge, this is the first report describing surfactin production by B. subtilis using stearin and soap wastes as carbon sources.
    [Show full text]
  • Detergent-Like Action of the Antibiotic Peptide Surfactin on Lipid Membranes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal Volume 81 September 2001 1547–1554 1547 Detergent-Like Action of the Antibiotic Peptide Surfactin on Lipid Membranes Heiko Heerklotz and Joachim Seelig Department of Biophysical Chemistry, Biocenter of the University of Basel, CH-4056 Basel, Switzerland ABSTRACT Surfactin is a bacterial lipopeptide with powerful surfactant-like properties. High-sensitivity isothermal titration calorimetry was used to study the self association and membrane partitioning of surfactin. The critical micellar concentration ␮ ⌬ w3m ϭϩ (CMC), was 7.5 M, the heat of micellization was endothermic with HSu 4.0 kcal/mol, and the free energy of ⌬ 0,w3m ϭϪ micellization GSu 9.3 kcal/mol (25°C; 100 mM NaCl; 10 mM TRIS, 1 mM EDTA; pH 8.5). The specific heat capacity ⌬ w3m ⌬ w3m ϭϪ Ϯ ⅐ of micellization was deduced from temperature dependence of HSu as CP 250 10 cal/(mol K). The data can be explained by combining the hydrophobicity of the fatty acyl chain with that of the hydrophobic amino acids. The membrane partition equilibrium was studied using small (30 nm) and large (100 nm) unilamellar POPC vesicles. At 25°C, the partition Ϯ ϫ 4 Ϫ1 ⌬ 0,w3b ϭϪ coefficient, K, was (2.2 0.2) 10 M for large vesicles leading to a free energy of GSu 8.3 kcal/mol. The partition ⌬ w3b ϭ Ϯ enthalpy was again endothermic, with HSu 9 1 kcal/mol. The strong preference of surfactin for micelle formation over membrane insertion explains the high membrane-destabilizing activity of the peptide.
    [Show full text]
  • Supplementary Discussion
    1 Supplementary discussion 2 The intracellular pools of precursors and the flexibility of the NRP machinery drive surfactin 3 variant diversity 4 Surfactin producing strains are always producing the cLP as a mixture of different 5 structural variants. Specific amino acids substitution in the peptide as well as differences in 6 the fatty acid (FA) chain length and branching type represent the main structural variations 7 found in this mixture of surfactins. Two main factors are found to be involved in this diversity. 8 On one hand, the availability of precursors as well as the balance between these latter 9 is an important factor that drive the surfactin structural diversity. Indeed, feeding the bacteria 10 with specific amino acids will result in changes in the ratio between the different variants 11 (peptidic and lipidic) as well as production of new variants that are not produced in normal 12 lab conditions [1,2]. Among the important amino acids for surfactin production, isoleucine, 13 valine and leucine (branched chain amino acids or BCAAs) constitute the major precursors (5 14 out of 7). The key role of BCAAs is even more important since the branched chain fatty acids 15 (BCFAs) tail of surfactin biosynthetic pathway also require these BCAAs as precursors for their 16 biosynthesis. Indeed, Ile, Leu and Val are precursors of odd anteiso-FAs, odd iso-FAs and even 17 iso FAs, respectively [3]. This makes thus from the BCAAs balance the key factor for most part 18 of the building blocks of surfactin. Therefore, deciphering the BCAAs biosynthetic pathways 19 as well as its regulation can bring some clues on what can be involved in the balance changes 20 of surfactin precursors.
    [Show full text]