Appendix: Formal Theories of Parthood
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INTUITION .THE PHILOSOPHY of HENRI BERGSON By
THE RHYTHM OF PHILOSOPHY: INTUITION ·ANI? PHILOSO~IDC METHOD IN .THE PHILOSOPHY OF HENRI BERGSON By CAROLE TABOR FlSHER Bachelor Of Arts Taylor University Upland, Indiana .. 1983 Submitted ~o the Faculty of the Graduate College of the · Oklahoma State University in partial fulfi11ment of the requirements for . the Degree of . Master of Arts May, 1990 Oklahoma State. Univ. Library THE RHY1HM OF PlllLOSOPHY: INTUITION ' AND PfnLoSOPlllC METHOD IN .THE PHILOSOPHY OF HENRI BERGSON Thesis Approved: vt4;;. e ·~lu .. ·~ests AdVIsor /l4.t--OZ. ·~ ,£__ '', 13~6350' ii · ,. PREFACE The writing of this thesis has bee~ a tiring, enjoyable, :Qustrating and challenging experience. M.,Bergson has introduced me to ·a whole new way of doing . philosophy which has put vitality into the process. I have caught a Bergson bug. His vision of a collaboration of philosophers using his intuitional m~thod to correct, each others' work and patiently compile a body of philosophic know: ledge is inspiring. I hope I have done him justice in my description of that vision. If I have succeeded and that vision catches your imagination I hope you Will make the effort to apply it. Please let me know of your effort, your successes and your failures. With the current challenges to rationalist epistemology, I believe the time has come to give Bergson's method a try. My discovery of Bergson is. the culmination of a development of my thought, one that started long before I began my work at Oklahoma State. However, there are some people there who deserv~. special thanks for awakening me from my ' "''' analytic slumber. -
Factorisations of Some Partially Ordered Sets and Small Categories
Factorisations of some partially ordered sets and small categories Tobias Schlemmer Received: date / Accepted: date Abstract Orbits of automorphism groups of partially ordered sets are not necessarily con- gruence classes, i.e. images of an order homomorphism. Based on so-called orbit categories a framework of factorisations and unfoldings is developed that preserves the antisymmetry of the order Relation. Finally some suggestions are given, how the orbit categories can be represented by simple directed and annotated graphs and annotated binary relations. These relations are reflexive, and, in many cases, they can be chosen to be antisymmetric. From these constructions arise different suggestions for fundamental systems of partially ordered sets and reconstruction data which are illustrated by examples from mathematical music theory. Keywords ordered set · factorisation · po-group · small category Mathematics Subject Classification (2010) 06F15 · 18B35 · 00A65 1 Introduction In general, the orbits of automorphism groups of partially ordered sets cannot be considered as equivalence classes of a convenient congruence relation of the corresponding partial or- ders. If the orbits are not convex with respect to the order relation, the factor relation of the partial order is not necessarily a partial order. However, when we consider a partial order as a directed graph, the direction of the arrows is preserved during the factorisation in many cases, while the factor graph of a simple graph is not necessarily simple. Even if the factor relation can be used to anchor unfolding information [1], this structure is usually not visible as a relation. According to the common mathematical usage a fundamental system is a structure that generates another (larger structure) according to some given rules. -
Mereology Then and Now
Logic and Logical Philosophy Volume 24 (2015), 409–427 DOI: 10.12775/LLP.2015.024 Rafał Gruszczyński Achille C. Varzi MEREOLOGY THEN AND NOW Abstract. This paper offers a critical reconstruction of the motivations that led to the development of mereology as we know it today, along with a brief description of some questions that define current research in the field. Keywords: mereology; parthood; formal ontology; foundations of mathe- matics 1. Introduction Understood as a general theory of parts and wholes, mereology has a long history that can be traced back to the early days of philosophy. As a formal theory of the part-whole relation or rather, as a theory of the relations of part to whole and of part to part within a whole it is relatively recent and came to us mainly through the writings of Edmund Husserl and Stanisław Leśniewski. The former were part of a larger project aimed at the development of a general framework for formal ontology; the latter were inspired by a desire to provide a nominalistically acceptable alternative to set theory as a foundation for mathematics. (The name itself, ‘mereology’ after the Greek word ‘µρoς’, ‘part’ was coined by Leśniewski [31].) As it turns out, both sorts of motivation failed to quite live up to expectations. Yet mereology survived as a theory in its own right and continued to flourish, often in unexpected ways. Indeed, it is not an exaggeration to say that today mereology is a central and powerful area of research in philosophy and philosophical logic. It may be helpful, therefore, to take stock and reconsider its origins. -
Section 4.1 Relations
Binary Relations (Donny, Mary) (cousins, brother and sister, or whatever) Section 4.1 Relations - to distinguish certain ordered pairs of objects from other ordered pairs because the components of the distinguished pairs satisfy some relationship that the components of the other pairs do not. 1 2 The Cartesian product of a set S with itself, S x S or S2, is the set e.g. Let S = {1, 2, 4}. of all ordered pairs of elements of S. On the set S x S = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), Let S = {1, 2, 3}; then (2, 4), (4, 1), (4, 2), (4, 4)} S x S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2) , (3, 3)} For relationship of equality, then (1, 1), (2, 2), (3, 3) would be the A binary relation can be defined by: distinguished elements of S x S, that is, the only ordered pairs whose components are equal. x y x = y 1. Describing the relation x y if and only if x = y/2 x y x < y/2 For relationship of one number being less than another, we Thus (1, 2) and (2, 4) satisfy . would choose (1, 2), (1, 3), and (2, 3) as the distinguished ordered pairs of S x S. x y x < y 2. Specifying a subset of S x S {(1, 2), (2, 4)} is the set of ordered pairs satisfying The notation x y indicates that the ordered pair (x, y) satisfies a relation . -
Marx, Process, and the Metaphysics of Production: the Relations of Change
Running head: MARX AND PROCESS 1 Marx, Process, and the Metaphysics of Production: The Relations of Change ---------------------- ------- ABSTRACT: In this essay I offer a reading of Karl Marx which deviates from traditionalapproaches. I should like to explicate the metaphysics of process in Marx‟s philosophy. This work will make explicit a Marxianconcept of change and transformation in the flow of history—as Marx‟s vision of history is adynamic unfolding. On my view, Marx‟s underlying structure which serves to support his metaphysics of process is production. In The German Ideology(1845-1846) Marx writes, “The way men produce their means of subsistence depends first of all on the nature of the actual means of subsistence they find in existence and have to reproduce. This mode of production must not be considered simply as being the reproduction of the physical existence of the individuals. Rather it is a definite form of activity of these individuals, a definite form of expressing their life, a definite mode of life on their part” (Tucker, 1978, p. 150). It is from the departure of real human relations that we see Marx beginning his analyses. I contend that that these relations (human production) have ontological primacy. As I see Marx as a philosopher of change, I contend that the modern process philosopher is better suited to understand the metaphysics of Marx—and therefore the dynamics of production—in pursuit of the revolutionary struggle. MARX AND PROCESS 2 Marx, Process, and the Metaphysics of Production In this essay I will offer a reading of Karl Marx which deviates from more traditional philosophical approaches. -
Relations II
CS 441 Discrete Mathematics for CS Lecture 22 Relations II Milos Hauskrecht [email protected] 5329 Sennott Square CS 441 Discrete mathematics for CS M. Hauskrecht Cartesian product (review) •Let A={a1, a2, ..ak} and B={b1,b2,..bm}. • The Cartesian product A x B is defined by a set of pairs {(a1 b1), (a1, b2), … (a1, bm), …, (ak,bm)}. Example: Let A={a,b,c} and B={1 2 3}. What is AxB? AxB = {(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)} CS 441 Discrete mathematics for CS M. Hauskrecht 1 Binary relation Definition: Let A and B be sets. A binary relation from A to B is a subset of a Cartesian product A x B. Example: Let A={a,b,c} and B={1,2,3}. • R={(a,1),(b,2),(c,2)} is an example of a relation from A to B. CS 441 Discrete mathematics for CS M. Hauskrecht Representing binary relations • We can graphically represent a binary relation R as follows: •if a R b then draw an arrow from a to b. a b Example: • Let A = {0, 1, 2}, B = {u,v} and R = { (0,u), (0,v), (1,v), (2,u) } •Note: R A x B. • Graph: 2 0 u v 1 CS 441 Discrete mathematics for CS M. Hauskrecht 2 Representing binary relations • We can represent a binary relation R by a table showing (marking) the ordered pairs of R. Example: • Let A = {0, 1, 2}, B = {u,v} and R = { (0,u), (0,v), (1,v), (2,u) } • Table: R | u v or R | u v 0 | x x 0 | 1 1 1 | x 1 | 0 1 2 | x 2 | 1 0 CS 441 Discrete mathematics for CS M. -
Chарtеr 2 RELATIONS
Ch=FtAr 2 RELATIONS 2.0 INTRODUCTION Every day we deal with relationships such as those between a business and its telephone number, an employee and his or her work, a person and other person, and so on. Relationships such as that between a program and a variable it uses and that between a computer language and a valid statement in this language often arise in computer science. The relationship between the elements of the sets is represented by a structure, called relation, which is just a subset of the Cartesian product of the sets. Relations are used to solve many problems such as determining which pairs of cities are linked by airline flights in a network or producing a useful way to store information in computer databases. In this chapter, we will study equivalence relation, equivalence class, composition of relations, matrix of relations, and closure of relations. 2.1 RELATION A relation is a set of ordered pairs. Let A and B be two sets. Then a relation from A to B is a subset of A × B. Symbolically, R is a relation from A to B iff R Í A × B. If (x, y) Î R, then we can express it by writing xRy and say that x is related to y with relation R. Thus, (x, y) Î R Û xRy 2.2 RELATION ON A SET A relation R on a set A is the subset of A × A, i.e., R Í A × A. Here both the sets A and B are same. -xample Let A = {2, 3, 4, 5} and B = {2, 4, 6, 10, 12}. -
Relations CIS002-2 Computational Alegrba and Number Theory
Relations CIS002-2 Computational Alegrba and Number Theory David Goodwin [email protected] 11:00, Tuesday 29th November 2011 bg=whiteRelations Equivalence Relations Class Exercises Outline 1 Relations Inverse Relation Composition Reflexive relation 2 Equivalence Symmetric relation Relations Antisymmetric relation Equivalence relation Transitive relation Equivalence classes Partial order 3 Class Exercises bg=whiteRelations Equivalence Relations Class Exercises Outline 1 Relations Inverse Relation Composition Reflexive relation 2 Equivalence Symmetric relation Relations Antisymmetric relation Equivalence relation Transitive relation Equivalence classes Partial order 3 Class Exercises bg=whiteRelations Equivalence Relations Class Exercises Relations A (binary) relation R from a set X to a set Y is a subset of the Cartesian product X × Y . If (x; y 2 R, we write xRy and say that x is related to y. If X = Y , we call R a (binary) relation on X . A function is a special type of relation. A function f from X to Y is a relation from X to Y having the properties: • The domain of f is equal to X . • For each x 2 X , there is exactly one y 2 Y such that (x; y) 2 f bg=whiteRelations Equivalence Relations Class Exercises Relations - example Let X = f2; 3; 4g and Y = f3; 4; 5; 6; 7g If we define a relation R from X to Y by (x; y) 2 R if x j y we obtain R = f(2; 4); (2; 6); (3; 3); (3; 6); (4; 4)g bg=whiteRelations Equivalence Relations Class Exercises Relations - reflexive A relation R on a set X is reflexive if (x; x) 2 X , if (x; y) 2 R for all x 2 X . -
Residuated Relational Systems We Begin by Introducing the Central Notion That Will Be Used Through- out the Paper
RESIDUATED RELATIONAL SYSTEMS S. BONZIO AND I. CHAJDA Abstract. The aim of the present paper is to generalize the con- cept of residuated poset, by replacing the usual partial ordering by a generic binary relation, giving rise to relational systems which are residuated. In particular, we modify the definition of adjoint- ness in such a way that the ordering relation can be harmlessly replaced by a binary relation. By enriching such binary relation with additional properties we get interesting properties of residu- ated relational systems which are analogical to those of residuated posets and lattices. 1. Introduction The study of binary relations traces back to the work of J. Riguet [14], while a first attempt to provide an algebraic theory of relational systems is due to Mal’cev [12]. Relational systems of different kinds have been investigated by different authors for a long time, see for example [4], [3], [8], [9], [10]. Binary relational systems are very im- portant for the whole of mathematics, as relations, and thus relational systems, represent a very general framework appropriate for the de- scription of several problems, which can turn out to be useful both in mathematics and in its applications. For these reasons, it is fundamen- tal to study relational systems from a structural point of view. In order to get deeper results meeting possible applications, we claim that the usual domain of binary relations shall be expanded. More specifically, arXiv:1810.09335v1 [math.LO] 22 Oct 2018 our aim is to study general binary relations on an underlying algebra whose operations interact with them. -
Mathematical Appendix
Appendix A Mathematical Appendix This appendix explains very briefly some of the mathematical terms used in the text. There is no claim of completeness and the presentation is sketchy. It cannot substitute for a text on mathematical methods used in game theory (e.g. Aliprantis and Border 1990). But it can serve as a reminder for the reader who does not have the relevant definitions at hand. A.1 Sets, Relations, and Functions To begin with we review some of the basic definitions of set theory, binary relations, and functions and correspondences. Most of the material in this section is elementary. A.1.1 Sets Intuitively a set is a list of objects, called the elements of the set. In fact, the elements of a set may themselves be sets. The expression x ∈ X means that x is an element of the set X,andx ∈ X means that it is not. Two sets are equal if they have the same elements. The symbol0 / denotes the empty set, the set with no elements. The expression X \ A denotes the elements of X that do not belong to the set A, X \ A = {x ∈ X | x ∈ A},thecomplement of A in (or relative to) X. The notation A ⊆ B or B ⊇ A means that the set A is a subset of the set A or that B is a superset of A,thatis,x ∈ A implies x ∈ B. In particular, this allows for equality, A = B. If this is excluded, we write A ⊂ B or B ⊃ A and refer to A as a proper subset of B or to B as a proper superset of A. -
Functions, Relations, Partial Order Relations Definition: the Cartesian Product of Two Sets a and B (Also Called the Product
Functions, Relations, Partial Order Relations Definition: The Cartesian product of two sets A and B (also called the product set, set direct product, or cross product) is defined to be the set of all pairs (a,b) where a ∈ A and b ∈ B . It is denoted A X B. Example : A ={1, 2), B= { a, b} A X B = { (1, a), (1, b), (2, a), (2, b)} Solve the following: X = {a, c} and Y = {a, b, e, f}. Write down the elements of: (a) X × Y (b) Y × X (c) X 2 (= X × X) (d) What could you say about two sets A and B if A × B = B × A? Definition: A function is a subset of the Cartesian product.A relation is any subset of a Cartesian product. For instance, a subset of , called a "binary relation from to ," is a collection of ordered pairs with first components from and second components from , and, in particular, a subset of is called a "relation on ." For a binary relation , one often writes to mean that is in . If (a, b) ∈ R × R , we write x R y and say that x is in relation with y. Exercise 2: A chess board’s 8 rows are labeled 1 to 8, and its 8 columns a to h. Each square of the board is described by the ordered pair (column letter, row number). (a) A knight is positioned at (d, 3). Write down its possible positions after a single move of the knight. Answer: (b) If R = {1, 2, ..., 8}, C = {a, b, ..., h}, and P = {coordinates of all squares on the chess board}, use set notation to express P in terms of R and C. -
Science and Mind in Contemporary Process Thought
Science and Mind in Contemporary Process Thought Science and Mind in Contemporary Process Thought Edited by Jakub Dziadkowiec and Lukasz Lamza Science and Mind in Contemporary Process Thought Series: European Studies in Process Thought Edited by Jakub Dziadkowiec and Lukasz Lamza This book first published 2019 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2019 by Jakub Dziadkowiec, Lukasz Lamza and contributors All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-3697-1 ISBN (13): 978-1-5275-3697-5 TABLE OF CONTENTS Foreword .................................................................................................. vii Part I: Towards a Science of Process Introduction to Part I .................................................................................. 2 Bogdan Ogrodnik Chapter 1 .................................................................................................... 6 Formal Representation of Space Michael Heather and Nick Rossiter Chapter 2 .................................................................................................. 19 An Inductively Formulated Process Metaphysics Lukasz Lamza Chapter 3 .................................................................................................