Exploitation of Artificial Light at Night by a Diurnal Jumping Spider
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2017 AAS Abstracts
2017 AAS Abstracts The American Arachnological Society 41st Annual Meeting July 24-28, 2017 Quéretaro, Juriquilla Fernando Álvarez Padilla Meeting Abstracts ( * denotes participation in student competition) Abstracts of keynote speakers are listed first in order of presentation, followed by other abstracts in alphabetical order by first author. Underlined indicates presenting author, *indicates presentation in student competition. Only students with an * are in the competition. MAPPING THE VARIATION IN SPIDER BODY COLOURATION FROM AN INSECT PERSPECTIVE Ajuria-Ibarra, H. 1 Tapia-McClung, H. 2 & D. Rao 1 1. INBIOTECA, Universidad Veracruzana, Xalapa, Veracruz, México. 2. Laboratorio Nacional de Informática Avanzada, A.C., Xalapa, Veracruz, México. Colour variation is frequently observed in orb web spiders. Such variation can impact fitness by affecting the way spiders are perceived by relevant observers such as prey (i.e. by resembling flower signals as visual lures) and predators (i.e. by disrupting search image formation). Verrucosa arenata is an orb-weaving spider that presents colour variation in a conspicuous triangular pattern on the dorsal part of the abdomen. This pattern has predominantly white or yellow colouration, but also reflects light in the UV part of the spectrum. We quantified colour variation in V. arenata from images obtained using a full spectrum digital camera. We obtained cone catch quanta and calculated chromatic and achromatic contrasts for the visual systems of Drosophila melanogaster and Apis mellifera. Cluster analyses of the colours of the triangular patch resulted in the formation of six and three statistically different groups in the colour space of D. melanogaster and A. mellifera, respectively. Thus, no continuous colour variation was found. -
Jumping Spiders Make Predatory Detours Requiring Movement Away from Prey
JUMPING SPIDERS MAKE PREDATORY DETOURS REQUIRING MOVEMENT AWAY FROM PREY by M.S. TARSITANO1) and JACKSON, R.R.2,3) (1Sussex Centre for Neuroscience, University of Sussex, Brighton, Falmer, East Sussex, BN19QG, UK; 2Department of Zoology, University of Canterbury, Christchurch, New Zealand) (With2 Figures) (Acc. 26-VII-1994) Summary The terms "reversed-route detours" and "forward-route detours" are introduced to distin- guish between detours that require moving away from a goal and those that do not. We provide the first evidence under controlled laboratory conditions that salticids can perform reversed-route detours. Two species were tested: 1) Portia fimbriata,a web-invading salticid from Queensland, Australia, that normally preys on web-building spiders; 2) Triteplaniceps, an insectivorous cursorial salticid from New Zealand. Although both of these species completed reversed-route detours, Triteplaniceps was much more dependent on prey move- ment than Portia fimbriata. Interspecific differences appear to be related to the different predatory styles of these two salticids. Introduction Salticids, or jumping spiders, have unique, complex eyes and acute vision (LAND, 1985; BLEST, 1985). Considering their sophisticated visual system, it is not surprising that most salticid species are hunting spiders which, instead of building webs to ensnare their prey, rely on vision during predatory sequences in which they stalk, chase and leap on active insects (DREES, 1952; FORSTER, 1982). The salticid visual system consists of a pair of forward-facing principal, or antero-median (AM), eyes and three pairs of secondary eyes - the antero-lateral (AL), postero-medial (PM) and 3) We thank Tracey ROBINSONfor her help in the preparation of the manuscript. -
The Jumping Spiders (Araneae: Salticidae) of the Virginia Peninsula1
Vol. 98, No. 5, November & December 1987 235 THE JUMPING SPIDERS (ARANEAE: SALTICIDAE) OF THE VIRGINIA PENINSULA 1 2 C.L. Stietenroth, N.V. Horner ABSTRACT: Thirty species representing 1 8 genera of Salticidae are recorded from the Virginia Peninsula. Habitat and natural history information for each species is presented. Some salticids on the peninsula occupy diverse habitats while other species appear to confine themselves to more restricted environments. The most abundant salticid was Hentzia palmarum. Metaphi- dippus galathea and Platycryptus undatus were most widely distributed species. Salticids reported in Virginia for the first time are Phidippus princeps, P. otiosus, Thiodina sylvana, Sitticus fasciger and Zygoballus sexpunctatus. A few studies concerning the spider fauna of Virginia have been published. The earliest record of occurrence was by John Banister between 1678 and 1692 (Ewan and Ewan, 1970). More recently, McCaffrey and Hornsburgh published three studies concerning spiders in apple orchards in central Virginia. Their assessment of spider populations in an unsprayed orchard was published in 1 1 977 followed ( 978) by laboratory feeding studies performed to evaluate potential effects of predaceous spiders on insect residents of apple orchards. Later (1980), a comparison was made between the spider populations in abandoned and commercial orchards; 68 species were identified. Dowd and Kok (1981), and McPherson el al. (1982) considered spider and other arthropod predation on the curculionid beetle, Rhynocyllus sp., in a in 1 soybean cropping system Virginia. Holsinger ( 982) reported on the spider cave-fauna in Burnsville Cove. The efficiency of limb-beating for capturing various spider families in apple orchards is discussed by McCaffrey and Parrella(1984). -
Araneae: Salticidae)
Belgian Journal of Entomology 67: 1–27 (2018) ISSN: 2295-0214 www.srbe-kbve.be urn:lsid:zoobank.org:pub:6D151CCF-7DCB-4C97-A220-AC464CD484AB Belgian Journal of Entomology New Species, Combinations, and Records of Jumping Spiders in the Galápagos Islands (Araneae: Salticidae) 1 2 G.B. EDWARDS & L. BAERT 1 Curator Emeritus: Arachnida & Myriapoda, Florida State Collection of Arthropods, FDACS, Division of Plant Industry, P. O. Box 147100, Gainesville, FL 32614-7100 USA (e-mail: [email protected] – corresponding author) 2 O.D. Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium (e-mail: [email protected]) Published: Brussels, March 14, 2018 Citation: EDWARDS G.B. & BAERT L., 2018. - New Species, Combinations, and Records of Jumping Spiders in the Galápagos Islands (Araneae: Salticidae). Belgian Journal of Entomology, 67: 1–27. ISSN: 1374-5514 (Print Edition) ISSN: 2295-0214 (Online Edition) The Belgian Journal of Entomology is published by the Royal Belgian Society of Entomology, a non-profit association established on April 9, 1855. Head office: Vautier street 29, B-1000 Brussels. The publications of the Society are partly sponsored by the University Foundation of Belgium. In compliance with Article 8.6 of the ICZN, printed versions of all papers are deposited in the following libraries: - Royal Library of Belgium, Boulevard de l’Empereur 4, B-1000 Brussels. - Library of the Royal Belgian Institute of Natural Sciences, Vautier street 29, B-1000 Brussels. - American Museum of Natural History Library, Central Park West at 79th street, New York, NY 10024-5192, USA. - Central library of the Museum national d’Histoire naturelle, rue Geoffroy Saint- Hilaire 38, F-75005 Paris, France. -
Common Kansas Spiders
A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas. -
A LIST of the JUMPING SPIDERS of MEXICO. David B. Richman and Bruce Cutler
PECKHAMIA 62.1, 11 October 2008 ISSN 1944-8120 This is a PDF version of PECKHAMIA 2(5): 63-88, December 1988. Pagination of the original document has been retained. 63 A LIST OF THE JUMPING SPIDERS OF MEXICO. David B. Richman and Bruce Cutler The salticids of Mexico are poorly known. Only a few works, such as F. O. Pickard-Cambridge (1901), have dealt with the fauna in any depth and these are considerably out of date. Hoffman (1976) included jumping spiders in her list of the spiders of Mexico, but the list does not contain many species known to occur in Mexico and has some synonyms listed. It is our hope to present a more complete list of Mexican salticids. Without a doubt such a work is preliminary and as more species are examined using modern methods a more complete picture of this varied fauna will emerge. The total of 200 species indicates more a lack of study than a sparse fauna. We would be surprised if the salticid fauna of Chiapas, for example, was not larger than for all of the United States. Unfortunately, much of the tropical forest may disappear before this fauna is fully known. The following list follows the general format of our earlier (1978) work on the salticid fauna of the United States and Canada. We have not prepared a key to genera, at least in part because of the obvious incompleteness of the list. We hope, however, that this list will stimulate further work on the Mexican salticid fauna. Acragas Simon 1900: 37. -
Myrmarachnine Jumping Spiders of the New Subtribe Levieina from Papua
A peer-reviewed open-access journal ZooKeys 842: 85–112 (2019) New myrmarachnine jumping spiders 85 doi: 10.3897/zookeys.842.32970 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Myrmarachnine jumping spiders of the new subtribe Levieina from Papua New Guinea (Araneae, Salticidae, Myrmarachnini) Wayne P. Maddison1, Tamás Szűts2 1 Departments of Zoology and Botany and Beaty Biodiversity Museum, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada 2 Department of Ecology, University of Veterinary Medicine Budapest, Budapest, H1077, Rottenbiller u. 50, Hungary Corresponding author: Wayne P. Maddison (wayne.maddison@ ubc.ca) Academic editor: Jeremy Miller | Received 10 January 2019 | Accepted 12 March 2019 | Published 7 May 2019 http://zoobank.org/D911C055-FF4B-4900-877B-123951761AC1 Citation: Maddison WP, Szűts T (2019) Myrmarachnine jumping spiders of the new subtribe Levieina from Papua New Guinea (Araneae, Salticidae, Myrmarachnini). ZooKeys 842: 85–112. https://doi.org/10.3897/zookeys.842.32970 Abstract A previously unreported radiation of myrmarachnine jumping spiders from New Guinea is described, which, although having few known species, is remarkably diverse in body forms. This clade is the new subtribe Levieina, represented by seven new species in three new genera. Within Leviea gen. n. are three new species, L. herberti sp. n., L. lornae sp. n., and L. francesae sp. n., all of which are unusual among the myrmarachnines in appearing as typical salticids, not antlike. Papuamyr gen. n. superficially resembles Ligonipes Karsch, 1878 or Rhombonotus L. Koch, 1879 as a compact antlike spider, but lacks their laterally- compressed palp and bears an ectal spur on the paturon of the chelicera. -
Ecological Consequences Artificial Night Lighting
Rich Longcore ECOLOGY Advance praise for Ecological Consequences of Artificial Night Lighting E c Ecological Consequences “As a kid, I spent many a night under streetlamps looking for toads and bugs, or o l simply watching the bats. The two dozen experts who wrote this text still do. This o of isis aa definitive,definitive, readable,readable, comprehensivecomprehensive reviewreview ofof howhow artificialartificial nightnight lightinglighting affectsaffects g animals and plants. The reader learns about possible and definite effects of i animals and plants. The reader learns about possible and definite effects of c Artificial Night Lighting photopollution, illustrated with important examples of how to mitigate these effects a on species ranging from sea turtles to moths. Each section is introduced by a l delightful vignette that sends you rushing back to your own nighttime adventures, C be they chasing fireflies or grabbing frogs.” o n —JOHN M. MARZLUFF,, DenmanDenman ProfessorProfessor ofof SustainableSustainable ResourceResource Sciences,Sciences, s College of Forest Resources, University of Washington e q “This book is that rare phenomenon, one that provides us with a unique, relevant, and u seminal contribution to our knowledge, examining the physiological, behavioral, e n reproductive, community,community, and other ecological effectseffects of light pollution. It will c enhance our ability to mitigate this ominous envirenvironmentalonmental alteration thrthroughough mormoree e conscious and effective design of the built environment.” -
Australasian Arachnology 83.Pdf
Australasian Arachnology 83 Page 1 Australasian Arachnology 83 Page 2 THE AUSTRALASIAN ARTICLES ARACHNOLOGICAL SOCIETY The newsletter Australasian Arachnology depends on the contributions of members. www.australasian-arachnology.org Please send articles to the Editor: Acari – Araneae – Amblypygi – Opiliones – Palpigradi – Pseudoscorpiones – Pycnogonida – Michael G. Rix Schizomida – Scorpiones – Uropygi Department of Terrestrial Zoology Western Australian Museum The aim of the society is to promote interest in Locked Bag 49, Welshpool DC, W.A. 6986 the ecology, behaviour and taxonomy of Email: [email protected] arachnids of the Australasian region. Articles should be typed and saved as a MEMBERSHIP Microsoft Word document, with text in Times New Roman 12-point font. Only electronic Membership is open to all who have an interest email (preferred) or posted CD-ROM submiss- in arachnids – amateurs, students and ions will be accepted. professionals – and is managed by our Administrator (note new address ): Previous issues of the newsletter are available at http://www.australasian- Volker W. Framenau arachnology.org/newsletter/issues . Phoenix Environmental Sciences P.O. Box 857 LIBRARY Balcatta, W.A. 6914 Email: [email protected] For those members who do not have access to a scientific library, the society has a large number Membership fees in Australian dollars (per 4 of reference books, scientific journals and paper issues): reprints available, either for loan or as photo- *discount personal institutional copies. For all enquiries concerning publica- Australia $8 $10 $12 tions please contact our Librarian: NZ/Asia $10 $12 $14 Elsewhere $12 $14 $16 Jean-Claude Herremans There is no agency discount. -
1 CHECKLIST of ILLINOIS SPIDERS Over 500 Spider Species Have Been
1 CHECKLIST OF ILLINOIS SPIDERS Over 500 spider species have been reported to occur in Illinois. This checklist includes 558 species, and there may be records in the literature that have eluded the author’s attention. This checklist of Illinois species has been compiled from sources cited below. The initials in parentheses that follow each species name and authorship in the list denote the paper or other source in which the species was reported. Locality data, dates of collection, and other information about each species can be obtained by referring to the indicated sources. (AAS) American Arachnological Society Spider Species List for North America, published on the web site of the American Arachnological Society: http://americanarachnology.org/AAS_information.html (B&N) Beatty, J. A. and J. M. Nelson. 1979. Additions to the Checklist of Illinois Spiders. The Great Lakes Entomologist 12:49-56. (JB) Beatty, J. A. 2002. The Spiders of Illinois and Indiana, their Geolographical Affinities, and an Annotated Checklist. Proc. Ind. Acad. Sci. 1:77-94. (BC) Cutler, B. 1987. A Revision of the American Species of the Antlike Jumping Spider Genus Synageles (Araneae: Salticidae). J. Arachnol.15:321-348. (G&P) Gertsch, W. J. And N. I. Platnick. 1980. A Revision of the American Spiders of the Family Atypidae (Araneae, Mygalomorphae). Amer. Mus. Novitates 2704:1-39. (BK) Kaston, B. J. 1955. Check List of Illinois Spiders. Trans. Ill. State Acad. Sci. 47: 165- 172. (SK) Kendeigh, S. C. 1979. Invertebrate Populations of the Deciduous Forest Fluctuations and Relations to Weather. Illinois Biol. Monog. 50:1-107. -
Directions in Conservation Biology Author(S): Graeme Caughley Source: Journal of Animal Ecology, Vol
Directions in Conservation Biology Author(s): Graeme Caughley Source: Journal of Animal Ecology, Vol. 63, No. 2 (Apr., 1994), pp. 215-244 Published by: British Ecological Society Stable URL: http://www.jstor.org/stable/5542 Accessed: 12-02-2017 00:32 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/5542?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms British Ecological Society is collaborating with JSTOR to digitize, preserve and extend access to Journal of Animal Ecology This content downloaded from 134.197.56.15 on Sun, 12 Feb 2017 00:32:59 UTC All use subject to http://about.jstor.org/terms Journal of Animal REVIEW Ecology 1994, 63, 215-244 Directions in conservation biology GRAEME CAUGHLEY CSIRO Division of Wildlife and Ecology, Box 84, Lyneham, Canberra, ACT 2602, Australia Summary 1. Conservation biology has two threads: the small-population paradigm which deals with the effect of smallness on the persistence of a population, and the declining- population paradigm which deals with the cause of smallness and its cure. -
Araneae (Spider) Photos
Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison.