Helpful Identification Guide to the Flowers in the Bee Feed Mix and the Pollinators You Might See on Them
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hylaeus Strenuus (Hymenoptera: Colletidae), a New Alien Bee on O'ahu
Records of the Hawaii Biological Survey for 2009 –2010. Edited by Neal L. Evenhuis & Lucius G. Eldredge. Bishop Museum Occasional Papers 109: 23 –24 (2011) Hylaeus strenuus (Hymenoptera : Colletidae) , a new alien bee on O‘ahu kARl N. M AGNACCA (University of Hawai‘i Hilo, Department of Biology, 200 W. kawili Street, Hilo, Hawaii 96720, USA; email: [email protected] ), WAlTeR T. N AGAMiNe (Plant Pest Control Branch, Hawaii Department of Agriculture, 1428 S. king Street, Honolulu, Hawai‘i 96814, USA; email: [email protected] ) & HOlGeR H. D ATHe (Senckenberg Deutsches entomologisches institut, eberswalder Straße 90, 15374 Müncheberg, Germany; email: [email protected] ) Hymenoptera : Colletidae Hylaeus strenuus (Cameron) New state record The first specimens of this species, one male and two females, were collected at Magic island, Ala Moana Beach Park, in early 2007 by Patrick Aldrich. These were sent to Roy Snelling at the los Angeles County Museum and tentatively identified as a member of the African subgenus Deranchylaeus . Unfortunately, with Mr. Snelling’s sudden passing last year, the specimens were lost, and with no additional ones available, it was uncertain whether the species was established. Recently, WTN rediscovered this species at several sites along the southeast coast between Ala Moana Beach Park and koko Crater, in company with the introduced car - penter bee Ceratina smaragdula . Reevaluation of it by one of us (HHD) identified it as Hylaeus strenuus (Cameron, 1897), which is described from Barrackpore, West Bengal, india. virtually nothing is known about it in its home range, possibly due in part to the poor original description—the type is a male, not a female as described, and does not match the text very well. -
A Preliminary Detective Survey of Hymenopteran Insects at Jazan Lake Dam Region, Southwest of Saudi Arabia
Saudi Journal of Biological Sciences 28 (2021) 2342–2351 Contents lists available at ScienceDirect Saudi Journal of Biological Sciences journal homepage: www.sciencedirect.com Original article A preliminary detective survey of hymenopteran insects at Jazan Lake Dam Region, Southwest of Saudi Arabia Hanan Abo El-Kassem Bosly 1 Biology Department - Faculty of Science - Jazan University, Saudi Arabia article info abstract Article history: A preliminary detective survey for the hymenopteran insect fauna of Jazan Lake dam region, Southwest Received 16 November 2020 Saudi Arabia, was carried out for one year from January 2018 to January 2019 using mainly sweep nets Revised 6 January 2021 and Malaise traps. The survey revealed the presence of three hymenopteran Superfamilies (Apoidea, Accepted 12 January 2021 Vespoidea and Evanioidea) representing 15 species belonging to 10 genera of 6 families (Apidae, Available online 28 January 2021 Crabronidae, Sphecidae, Vespidae, Mutillidae, and Evaniidae). The largest number of species has belonged to the family Crabronidae is represented by 6 species under 2 genera. While the family Apidae, is repre- Keywords: sented by 2 species under 2 genera. Family Vespidae is represented by 2 species of one genus. While, the Survey rest of the families Sphecidae, Mutillida, and Evaniidae each is represented by only one species and one Insect fauna Hymenoptera genus each. Eleven species are predators, two species are pollinators and two species are parasitics. Note Jazan for each family was provided, and species was provided with synonyms and general and taxonomic Saudi Arabia remarks and their worldwide geographic distribution and information about their economic importance are also included. -
Basin Bulletin Volume 9, Issue 1 Winter/Spring 2015
Upper Columbia Basin Network National Park Service U.S. Department of Interior Inventory and Monitoring Pacific West Region Basin Bulletin Volume 9, Issue 1 Winter/Spring 2015 In This Edition Cover story: Prescribed fire at What does Data We have a new staff member!, Big Hole National Battlefield, Management entail?, pg. 6 pg. 7 pg. 5 Read about all involved in Data Get to know Kirk Sherrill, our Why is fire necessary? Read about the Management in our “Making Sense recently arrived Data Manager. prescribed burn conducted last fall at of the I&M non-sense” section. Big Hole. PLUS! • The NABat Team receives an award from the US Forest Service, pg. 3 • We’ll be visiting another set of parks this summer. See our field season schedule for 2015 on pg. 4 • Check out what we learned after our data management review, on pg. 7 • Wasps that collect pollen? Learn about them in our “Featured Creature” section on pg. 8 Upper Columbia Basin Network National Park Service U.S. Department of Inventory and Monitoring Program Interior The National Park Service has imple- mented natural resource inventory and monitoring on a servicewide basis to ensure all park units possess the resource information needed for effec- tive, science-based managerial deci- sion-making, and resource protection. Upper Columbia Basin Network 105 East 2nd Street Suite 5 Moscow, ID 83843 Program Manager Gordon Dicus (208) 885-3684 [email protected] Ecologist Tom Rodhouse (541) 312-6425 [email protected] Aquatic Biologist Eric Starkey (208) 885-3010 [email protected] Data -
Carpenter Bees
E-252-W Household and Structural Department of Entomology CARPENTER BEES Timothy J. Gibb, Extension Entomologist Large, black bees hovering around and drilling holes into Holes are created by the female carpenter bee when homes, out-buildings, wooden furniture and decks during May it selects an appropriate site and begins to chew. Tunnel and June are carpenter bees. They resemble, and are often entrances are approximately ½ inch in diameter, just large mistaken for bumble bees but the most apparent difference is enough for the bee to enter. that the carpenter bee has a black, shiny abdomen, compared to the hairy and often yellowish abdomen of the bumble bee. Tunnels usually consist of an entrance hole that penetrates into the wood ½ to 1 inch across the grain of the wood and Behavior then turns at a right angle to follow the wood grain for 6 – 8 inches. After tunneling is completed the bee will create indi- Behaviorally, carpenter bees also are quite unique. They vidual cells using bits of sawdust and frass along the length are most often noticed as they bore into wood and create of the tunnel. Each cell is provisioned with a pollen ball into tunnels for egg laying and for protection during the winter. which she will lay an individual egg before sealing it off. As Most commonly carpenter bees select bare, unpainted and the eggs hatch in mid summer, the larvae feed on the pol- weathered softwoods including redwood, cedar, cypress and Beginning of hole that will eventually become nearly per- Carpenter bee boring into wood. -
Carpenter Bees Xylocopa Species; Family: Anthophoridae; Subfamily: Xylocopinae
INSECT DIAGNOSTIC LABORATORY IDL Cornell University, Dept. of Entomology, 2144 Comstock Hall, Ithaca NY 14853-2601 Carpenter Bees Xylocopa species; Family: Anthophoridae; Subfamily: Xylocopinae Carpenter Bee Wood damage: tunnel (with cells for larvae). Photo from www.forestryimages.org USDA Forest Service, Wood Products Insect Lab Archives, USDA Forest Station. Injury Carpenter bees bore into wood to make a home for the young. In preferred sites, bees can drill a large number of holes. A common species in the Northeast, Xylocopa virginica, drills holes 1/2 inch in diameter. Often the same nesting sites are used year after year, and the same tunnels are reused. The damage is primarily to fascia boards. Nail holes, exposed saw cuts, and unpainted wood are attractive nesting sites to these insects. Porches, garages, shed ceilings and trim, railings, roof overhangs and outdoor wooden furniture, are all common nesting sites. Continued borings may weaken some wooden structures, and the yellow "sawdust and pollen" waste materials may stain cars, clothing, or furniture. Behavior The males are territorial, and in the spring they often guard the potential nest sites. They discourage intruders by hovering or darting at any moving thing that ventures into the nesting area. This can create a "human annoyance" factor, and it is one that often startles and concerns the homeowner. However, male carpenter bees do not sting. The female carpenter bee, like many other bees, can sting -- but it is uncommon for her to do so. Description Carpenter bees of the genus Xylocopa are large black and yellow insects about one inch long that closely resemble bumblebees. -
Contribution to the Bionomics of the Pollen Wasp Quartinia Canariensis
JHR 50: 1–24Contribution (2016) to the bionomics of the pollen wasp Quartinia canariensis Blüthgen... 1 doi: 10.3897/JHR.50.6870 RESEARCH ARTICLE http://jhr.pensoft.net Contribution to the bionomics of the pollen wasp Quartinia canariensis Blüthgen, 1958 (Hymenoptera, Vespidae, Masarinae) in Fuerteventura (Canary Islands, Spain) Volker Mauss1, Andreas Müller2 1 Staatliches Museum für Naturkunde, Abt. Entomologie, Rosenstein 1, D-70191 Stuttgart, Germany 2 ETH Zürich, Institute of Agricultural Sciences, Biocommunication and Entomology, Schmelzbergstraße 9/LFO, CH- 8092 Zürich, Switzerland Corresponding author: Volker Mauss ([email protected]) Academic editor: Jack Neff | Received 12 April 2016 | Accepted 4 June 2016 | Published 27 June 2016 http://zoobank.org/BE03CE00-9AF9-4A1D-8737-DA7529469730 Citation: Mauss V, Müller A (2016) Contribution to the bionomics of the pollen wasp Quartinia canariensis Blüthgen, 1958 (Hymenoptera, Vespidae, Masarinae) in Fuerteventura (Canary Islands, Spain). Journal of Hymenoptera Research 50: 1–24. doi: 10.3897/JHR.50.6870 Abstract Quartinia canariensis was recorded from three semidesertic sand habitats in Fuerteventura. All localities were sparsely covered by halophytic vegetation and characterized by large patches of flowering plants of Frankenia laevis (Frankeniaceae). Males and females were exclusively observed to visit flowers of Frankenia laevis. During flower visits the imagines often switched between nectar and pollen uptake. Pollen was consumed directly from the anthers or pollen uptake was indirect with pollen grains gathering on the frons being brushed towards the mouthparts with the fore legs. During nectar uptake the wasps protruded their long proboscis into the nectariferous pockets between the claws of the petals of the Frankenia flow- ers. -
Evolution of the Suctorial Proboscis in Pollen Wasps (Masarinae, Vespidae)
Arthropod Structure & Development 31 (2002) 103–120 www.elsevier.com/locate/asd Evolution of the suctorial proboscis in pollen wasps (Masarinae, Vespidae) Harald W. Krenna,*, Volker Maussb, John Planta aInstitut fu¨r Zoologie, Universita¨t Wien, Althanstraße 14, A-1090, Vienna, Austria bStaatliches Museum fu¨r Naturkunde, Abt. Entomologie, Rosenstein 1, D-70191 Stuttgart, Germany Received 7 May 2002; accepted 17 July 2002 Abstract The morphology and functional anatomy of the mouthparts of pollen wasps (Masarinae, Hymenoptera) are examined by dissection, light microscopy and scanning electron microscopy, supplemented by field observations of flower visiting behavior. This paper focuses on the evolution of the long suctorial proboscis in pollen wasps, which is formed by the glossa, in context with nectar feeding from narrow and deep corolla of flowers. Morphological innovations are described for flower visiting insects, in particular for Masarinae, that are crucial for the production of a long proboscis such as the formation of a closed, air-tight food tube, specializations in the apical intake region, modification of the basal articulation of the glossa, and novel means of retraction, extension and storage of the elongated parts. A cladistic analysis provides a framework to reconstruct the general pathways of proboscis evolution in pollen wasps. The elongation of the proboscis in context with nectar and pollen feeding is discussed for aculeate Hymenoptera. q 2002 Elsevier Science Ltd. All rights reserved. Keywords: Mouthparts; Flower visiting; Functional anatomy; Morphological innovation; Evolution; Cladistics; Hymenoptera 1. Introduction Some have very long proboscides; however, in contrast to bees, the proboscis is formed only by the glossa and, in Evolution of elongate suctorial mouthparts have some species, it is looped back into the prementum when in occurred separately in several lineages of Hymenoptera in repose (Bradley, 1922; Schremmer, 1961; Richards, 1962; association with uptake of floral nectar. -
Molecular Ecology and Social Evolution of the Eastern Carpenter Bee
Molecular ecology and social evolution of the eastern carpenter bee, Xylocopa virginica Jessica L. Vickruck, B.Sc., M.Sc. Department of Biological Sciences Submitted in partial fulfillment of the requirements for the degree of PhD Faculty of Mathematics and Science, Brock University St. Catharines, Ontario © 2017 Abstract Bees are extremely valuable models in both ecology and evolutionary biology. Their link to agriculture and sensitivity to climate change make them an excellent group to examine how anthropogenic disturbance can affect how genes flow through populations. In addition, many bees demonstrate behavioural flexibility, making certain species excellent models with which to study the evolution of social groups. This thesis studies the molecular ecology and social evolution of one such bee, the eastern carpenter bee, Xylocopa virginica. As a generalist native pollinator that nests almost exclusively in milled lumber, anthropogenic disturbance and climate change have the power to drastically alter how genes flow through eastern carpenter bee populations. In addition, X. virginica is facultatively social and is an excellent organism to examine how species evolve from solitary to group living. Across their range of eastern North America, X. virginica appears to be structured into three main subpopulations: a northern group, a western group and a core group. Population genetic analyses suggest that the northern and potentially the western group represent recent range expansions. Climate data also suggest that summer and winter temperatures describe a significant amount of the genetic differentiation seen across their range. Taken together, this suggests that climate warming may have allowed eastern carpenter bees to expand their range northward. Despite nesting predominantly in disturbed areas, eastern carpenter bees have adapted to newly available habitat and appear to be thriving. -
Hymenoptera: Colletidae): Emerging Patterns from the Southern End of the World Eduardo A
Journal of Biogeography (J. Biogeogr.) (2011) ORIGINAL Biogeography and diversification of ARTICLE colletid bees (Hymenoptera: Colletidae): emerging patterns from the southern end of the world Eduardo A. B. Almeida1,2*, Marcio R. Pie3, Sea´n G. Brady4 and Bryan N. Danforth2 1Departamento de Biologia, Faculdade de ABSTRACT Filosofia, Cieˆncias e Letras, Universidade de Aim The evolutionary history of bees is presumed to extend back in time to the Sa˜o Paulo, Ribeira˜o Preto, SP 14040-901, Brazil, 2Department of Entomology, Comstock Early Cretaceous. Among all major clades of bees, Colletidae has been a prime Hall, Cornell University, Ithaca, NY 14853, example of an ancient group whose Gondwanan origin probably precedes the USA, 3Departamento de Zoologia, complete break-up of Africa, Antarctica, Australia and South America, because Universidade Federal do Parana´, Curitiba, PR modern lineages of this family occur primarily in southern continents. In this paper, 81531-990, Brazil, 4Department of we aim to study the temporal and spatial diversification of colletid bees to better Entomology, National Museum of Natural understand the processes that have resulted in the present southern disjunctions. History, Smithsonian Institution, Washington, Location Southern continents. DC 20560, USA Methods We assembled a dataset comprising four nuclear genes of a broad sample of Colletidae. We used Bayesian inference analyses to estimate the phylogenetic tree topology and divergence times. Biogeographical relationships were investigated using event-based analytical methods: a Bayesian approach to dispersal–vicariance analysis, a likelihood-based dispersal–extinction– cladogenesis model and a Bayesian model. We also used lineage through time analyses to explore the tempo of radiations of Colletidae and their context in the biogeographical history of these bees. -
Genomes of the Hymenoptera Michael G
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2-2018 Genomes of the Hymenoptera Michael G. Branstetter U.S. Department of Agriculture Anna K. Childers U.S. Department of Agriculture Diana Cox-Foster U.S. Department of Agriculture Keith R. Hopper U.S. Department of Agriculture Karen M. Kapheim Utah State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Behavior and Ethology Commons, Entomology Commons, and the Genetics and Genomics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genomes of the Hymenoptera Abstract Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes. -
Updated Checklist of Vespidae (Hymenoptera: Vespoidea) in Iran
J Insect Biodivers Syst 06(1): 27–86 ISSN: 2423-8112 JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Monograph http://jibs.modares.ac.ir http://zoobank.org/References/084E3072-A417-4949-9826-FB78E91A3F61 Updated Checklist of Vespidae (Hymenoptera: Vespoidea) in Iran Zahra Rahmani1, Ehsan Rakhshani1* & James Michael Carpenter2 1 Department of Plant Protection, College of Agriculture, University of Zabol, P.O. Box 98615-538, I.R. Iran. 2 Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA. ABSTRACT. 231 species of the family Vespidae (Hymenoptera, Vespoidea) of Iran, in 55 genera belonging to 4 subfamilies Eumeninae (45 genera, 184 species), Masarinae (5 genera, 24 species), Polistinae (2 genera, 17 species) and Vespinae (3 genera, 6 species) are listed. An overall assessment of the distribution pattern of the vespid species in Iran indicates a complex fauna of different biogeographic regions. 111 species are found in both Eastern and Western Palaearctic regions, while 67 species were found only in the Eastern Palaearctic region. Few species (14 species – 6.1%) of various genera are known as elements of central and western Asian area and their area of distribution is not known in Europe (West Palaearctic) and in the Far East. The species that were found both in the Oriental and Afrotropical Regions comprises 11.7 and 15.6% the Iranian vespid fauna, respectively. Many species (48, 20.8%) are exclusively recorded from Iran and as yet there is no record of Received: these species from other countries. The highest percentage of the vespid 01 January, 2020 species are recorded from Sistan-o Baluchestan (42 species, 18.2%), Alborz (42 Accepted: species, 18.2%), Fars (39 species, 16.9%) and Tehran provinces (38 Species 17 January, 2020 16.5%), representing the fauna of the Southeastern, North- and South Central Published: of the country. -
Journal of Hymenoptera Research
c 3 Journal of Hymenoptera Research . .IV 6«** Volume 15, Number 2 October 2006 ISSN #1070-9428 CONTENTS BELOKOBYLSKIJ, S. A. and K. MAETO. A new species of the genus Parachremylus Granger (Hymenoptera: Braconidae), a parasitoid of Conopomorpha lychee pests (Lepidoptera: Gracillariidae) in Thailand 181 GIBSON, G. A. P., M. W. GATES, and G. D. BUNTIN. Parasitoids (Hymenoptera: Chalcidoidea) of the cabbage seedpod weevil (Coleoptera: Curculionidae) in Georgia, USA 187 V. Forest GILES, and J. S. ASCHER. A survey of the bees of the Black Rock Preserve, New York (Hymenoptera: Apoidea) 208 GUMOVSKY, A. V. The biology and morphology of Entedon sylvestris (Hymenoptera: Eulophidae), a larval endoparasitoid of Ceutorhynchus sisymbrii (Coleoptera: Curculionidae) 232 of KULA, R. R., G. ZOLNEROWICH, and C. J. FERGUSON. Phylogenetic analysis Chaenusa sensu lato (Hymenoptera: Braconidae) using mitochondrial NADH 1 dehydrogenase gene sequences 251 QUINTERO A., D. and R. A. CAMBRA T The genus Allotilla Schuster (Hymenoptera: Mutilli- dae): phylogenetic analysis of its relationships, first description of the female and new distribution records 270 RIZZO, M. C. and B. MASSA. Parasitism and sex ratio of the bedeguar gall wasp Diplolqjis 277 rosae (L.) (Hymenoptera: Cynipidae) in Sicily (Italy) VILHELMSEN, L. and L. KROGMANN. Skeletal anatomy of the mesosoma of Palaeomymar anomalum (Blood & Kryger, 1922) (Hymenoptera: Mymarommatidae) 290 WHARTON, R. A. The species of Stenmulopius Fischer (Hymenoptera: Braconidae, Opiinae) and the braconid sternaulus 316 (Continued on back cover) INTERNATIONAL SOCIETY OF HYMENOPTERISTS Organized 1982; Incorporated 1991 OFFICERS FOR 2006 Michael E. Schauff, President James Woolley, President-Elect Michael W. Gates, Secretary Justin O. Schmidt, Treasurer Gavin R.