Aero Engine Intercooling Conceptual Design and Experimental Validation of an Aero Engine Intercooler
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DEUTZ Pose Also Implies Compliance with the Con- Original Parts Is Prescribed
Operation Manual 914 Safety guidelines / Accident prevention ● Please read and observe the information given in this Operation Manual. This will ● Unauthorized engine modifications will in- enable you to avoid accidents, preserve the validate any liability claims against the manu- manufacturer’s warranty and maintain the facturer for resultant damage. engine in peak operating condition. Manipulations of the injection and regulating system may also influence the performance ● This engine has been built exclusively for of the engine, and its emissions. Adherence the application specified in the scope of to legislation on pollution cannot be guaran- supply, as described by the equipment manu- teed under such conditions. facturer and is to be used only for the intended purpose. Any use exceeding that ● Do not change, convert or adjust the cooling scope is considered to be contrary to the air intake area to the blower. intended purpose. The manufacturer will The manufacturer shall not be held respon- not assume responsibility for any damage sible for any damage which results from resulting therefrom. The risks involved are such work. to be borne solely by the user. ● When carrying out maintenance/repair op- ● Use in accordance with the intended pur- erations on the engine, the use of DEUTZ pose also implies compliance with the con- original parts is prescribed. These are spe- ditions laid down by the manufacturer for cially designed for your engine and guaran- operation, maintenance and servicing. The tee perfect operation. engine should only be operated by person- Non-compliance results in the expiry of the nel trained in its use and the hazards in- warranty! volved. -
High Pressure Ratio Intercooled Turboprop Study
E AMEICA SOCIEY O MECAICA EGIEES 92-GT-405 4 E. 4 S., ew Yok, .Y. 00 h St hll nt b rpnbl fr ttnt r pnn dvnd In ppr r n d n t tn f th St r f t vn r Stn, r prntd In t pbltn. n rnt nl f th ppr pblhd n n ASME rnl. pr r vlbl fr ASME fr fftn nth ftr th tn. rntd n USA Copyright © 1992 by ASME ig essue aio Iecooe uoo Suy C. OGES Downloaded from http://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT1992/78941/V002T02A028/2401669/v002t02a028-92-gt-405.pdf by guest on 23 September 2021 Sundstrand Power Systems San Diego, CA ASAC NOMENCLATURE High altitude long endurance unmanned aircraft impose KFT Altitude Thousands Feet unique contraints on candidate engine propulsion systems and HP Horsepower types. Piston, rotary and gas turbine engines have been proposed for such special applications. Of prime importance is the HIPIT High Pressure Intercooled Turbine requirement for maximum thermal efficiency (minimum specific Mn Flight Mach Number fuel consumption) with minimum waste heat rejection. Engine weight, although secondary to fuel economy, must be evaluated Mls Inducer Mach Number when comparing various engine candidates. Weight can be Specific Speed (Dimensionless) minimized by either high degrees of turbocharging with the Ns piston and rotary engines, or by the high power density Exponent capabilities of the gas turbine. pps Airflow The design characteristics and features of a conceptual high SFC Specific Fuel Consumption pressure ratio intercooled turboprop are discussed. The intended application would be for long endurance aircraft flying TIT Turbine Inlet Temperature °F at an altitude of 60,000 ft.(18,300 m). -
Technical Info
ENGINE (4G6) – GENERAL 1-1 SECTION 1 ENGINE CONTENTS Engine (4G6)............................................1-1 Fuel System.............................................1-7 General information................................1-1 1. Fuel tank ........................................................1-8 1. Major specifications .......................................1-1 Control System.......................................1-9 2. Engine Performance Curve ...........................1-2 1. Fuel injection control ....................................1-11 Base Engine ............................................1-2 2. Idle speed control.........................................1-11 1. Timing belt cover............................................1-2 3. Ignition timing and distribution 2. Piston.............................................................1-3 control..........................................................1-12 3. Valve spring ...................................................1-3 4. Other controls ..............................................1-12 4. Delivery pipe ..................................................1-4 5. Diagnosis system.........................................1-12 Cooling Equipment.................................1-5 Emission Control System ....................1-13 Intake and Exhaust Equipment .............1-5 Mount .....................................................1-14 1. Air intake system............................................1-5 Engine (4G6) General information The 4G63-T/C engine of the Lancer Evolution-VIII -
AC 23.909-1- Installation of Turbochargers in Small Airplanes
0 Advisory U.S. Department ( of Transportation Federal Aviation Circular Administration Subject: INSTALLATION OF TURBOCHARGERS Date: 2/3/86 AC No: 23. 909- 1 IN SMALL AIRPLANES WITH Initiated by: ACE- 100 Change: RECIPROCATING ENG INES 1. PURPOSE. This advisory circular (AC) provides information and gu idance concerning an acceptable means, but not the only means , of showing comp I iance with Part 23 of the Federal Aviation Regulations (FAR) , applicable to approval procedures and installation of turbochargers in smal I a irplanes. Accordingly, this material is neither mandatory nor regulatory in nature and does not constitute a regulation . 2. RELATED FAR SECTIONS . Section 23 .909 and applicable sections of Part 33 of the FAR (Part 3 of the Civ i I Air Regulations (CAR) does not have a corresponding requirement). 3. BACKGROUND . ( a. Exhaust gas- driven turbochargers are avai I able for use with reciprocat ing engines to: (1) Increase takeoff and maximum continuous power avai I able at sea leve l and a ltitude (turbosupercharged - boosted) . (2) Maintain maximum continuous or cruise powers above sea level altitude (turbonormal ized) . (3) Provtde a source of a ir to pressurize the cabin . NOTE : The word turbocharger wi I I be used throughout this AC to include both turbosupercharged boosted and tur bonormal ized engines . b. Section 23 .909 contains requirements for approval of turbochargers on smal I airp lanes. Th is regulation refers to des ign standards required in Part 33 of the FAR. Part 3 of the CAR does not speciflcal ly cover the approva l requirements for the insta l lation of a turbocharged engine in an airplane . -
Intercooler Pipe Upgrage Kit (Oem Replacement) 2011 - 2016 6.7L Ford | 122011
INTERCOOLER PIPE UPGRAGE KIT (OEM REPLACEMENT) 2011 - 2016 6.7L FORD | 122011 INSTALLATION GUIDE HS-MOTORSPORTS.COMHS-MOTORSPORTS.COM 1 INTERCOOLER PIPE UPGRADE KIT 6.7L FORD TROUBLESHOOTING Please read and understand all installation instructions before proceeding with the installation. If you have questions during the installation of this product, please contact H&S Motorsports support at [email protected] or (855)623-4450. INCLUDED PARTS 1 - HSM Billet Aluminum Throttle Coupler 1 - 5-Ply Stainless-Reinforced Hose Replacement 2 - Stainless T-bolt Clamps STEP 1 Disconnect the vehicle batteries. Disconnect the intake air temperature sensor connector and clip from the back side of the factory intercooler pipe. Disconnect the clip holding intake air temperature sensor wiring to the fan shroud. 2 2011-2016 6.7L FORD INTERCOOLER PIPE UPGRADE (OEM REPL.) INTERCOOLER PIPE UPGRADE KIT STEP 2 6.7L FORD Remove the bolt holding the power steering reservoir to the fan shroud. Pull the power steering reservoir up to disconnect it from the fan shroud and just let the reservoir swing free to temporarily provide easier access to the lower intercooler pipe connection point (on intercooler). Loosen the lower factory t-bolt clamp (at intercooler). STEP 3 With a pick tool or something similar, carefully remove the metal locking clip from the factory plastic throttle body coupler. Be careful not to damage the ring as it will be re-used later. With everything disconnected, carefully remove the entire cold-side factory intercooler pipe assembly from the vehicle. HS-MOTORSPORTS.COM 3 STEP 4 Twist carefully (1/4 turn counter-clockwise) to unlock and remove the intake air temperature sensor from the factory plastic throttle body coupler. -
Engine Cooling Systems
Emergency Diesel Generator Engine Cooling Systems 6.0 ENGINE COOLING SYSTEMS If this heat is not removed, engine internal temperatures would soon reach a point of This chapter identifies the major component damage and engine failure. All components of the diesel engine cooling commercial diesel engines use some form systems and explains how each system is of cooling system to absorb this heat and necessary for reliable operation of the transfer it to a heat absorbing medium engine. outside of the engine. Learning Objectives Many modern engines are equipped with turbocharging systems to provide enough As a result of this lesson, you will be able to: air to allow the burning of the fuel required to produce the required power. The 1. State the purpose of a diesel engine turbocharging system adds heat to the jacket water cooling system. combustion air. In order to ensure that sufficient pounds of air are provided for the 2. Identify the major components of a combustion of the fuel, it is necessary to typical diesel engine jacket water cool the combustion air before it goes into cooling system and describe the the engine cylinders (to maintain the air operation of each. density). This is done by means of a radiator-like heat exchanger called the air 3. State the purpose and describe the intercooler, or aftercooler, and mounted in operation of the jacket water keepwarm the piping between the turbocharger and circulation system as is commonly compressor outlet and the engine air used on nuclear application diesel manifold. This radiator removes excess engines. heat from the combustion air. -
MEP Testimony
CH2M HILL 2485 Natomas Park Drive Suite 600 Sacramento, CA 95833 Tel 916-920-0300 Fax 916-920-8463 December 20, 2010 DOCKET 382914 09-AFC-3 Mr. Craig Hoffman Project Manager DATE DEC 20 2010 California Energy Commission RECD. DEC 20 2010 1516 Ninth Street Sacramento, CA 95814-5512 Subject: Mariposa Energy Project (09-AFC-03) Applicant’s Testimony Dear Mr. Hoffman: Attached please find 1 hard copy and 1 electronic copy on CD-ROM of the Mariposa Energy Project Applicant’s Testimony. If you have any questions about this matter, please contact me at (916) 286-0348. Sincerely, CH2M HILL Doug Urry AFC Project Manager Attachment cc: C. Curry, Mariposa Energy, LLC. B. Buchynsky, Mariposa Energy, LLC. Mariposa Energy Project (09-AFC-03) Applicant’s Testimony Submitted to California Energy Commission Submitted by Mariposa Energy, LLC With Assistance from 2485 Natomas Park Drive Suite 600 Sacramento, CA 95833 December 2010 Contents Section Page Project Description ........................................................................................................................ 1 Electrical Transmission ................................................................................................................. 9 Air Quality and Greenhouse Gas Emissions ........................................................................... 13 Biological Resources .................................................................................................................... 25 Cultural Resources ..................................................................................................................... -
Thermodynamic Analysis of Double-Stage Compression Transcritical CO2 Refrigeration Cycles with an Expander
Entropy 2015, 17, 2544-2555; doi:10.3390/e17042544 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Thermodynamic Analysis of Double-Stage Compression Transcritical CO2 Refrigeration Cycles with an Expander Zhenying Zhang *, Lirui Tong and Xingguo Wang Institute of Architecture and Civil Engineering, North China University of Science and Technology, Tangshan 063009, China; E-Mails: [email protected] (L.T.); [email protected] (X.W.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-315-259-7073. Academic Editor: Kevin H. Knuth Received: 17 March 2015 / Accepted: 15 April 2015 / Published: 22 April 2015 Abstract: Four different double-compression CO2 transcritical refrigeration cycles are studied: double-compression external intercooler cycle (DCEI), double-compression external intercooler cycle with an expander (DCEIE), double-compression flash intercooler cycle (DCFI), double-compression flash intercooler cycle with an expander (DCFIE). The results showed that the optimum gas cooler pressure and optimum intermediate pressure of the flash intercooler cycles are lower than that of the external intercooler cycle. The use of an expander in the DCEI cycle leads to a decrease of the optimum gas cooler pressure and little variation of the optimum intermediate pressure. However, the replacement of the throttle valve with an expander in the DCFI cycle results in little variation of the optimal gas cooler pressure and an increase of the optimum intermediate pressure. The DCFI cycle outperforms the DCEI cycle under all the chosen operating conditions. The DCEIE cycle outperforms the DCFIE cycle when the evaporating temperature exceeds 0 °C or the gas cooler outlet temperature surpasses 35 °C. -
Air Compressor Piston Trouble Shooting Guide
Air Compressor Piston Trouble Shooting Guide www.IndustrialAirCompressor.biz TROUBLE PROBABLE CAUSE CORRECTIVE ACTION Motor Will Not Run. Power not on Turn power on (Failure to start) Blown main fuses (size 175% of motor nameplate) Replace fuses Blown control fuses (size per nec article 450-3) Replace fuses 1 Breaker tripped Reset or replace breaker Safety device tripped Reset safety devices Motor starter overloads tripped Reset or replace overloads Faulty motor starter coil Replace starter coil Pressure switch incorrectly set Adjust pressure switch Pressure switch defective Replace pressure switch Start switch contacts defective Replace start switch Auxiliary contacts defective Replace Auxiliary Loose electrical wire Tighten electrical wires Wire broken or off terminal Replace wire or reconnect Thermal overload inside motor tripped Reset or replace motor Low voltage Must be 10 % of nameplate Motor defective Replace motor Wiring incorrect Correct wiring MCGUIRE AIR COMPRESSORS 1-888-229-9999 1 Air Compressor Piston Trouble Shooting Guide www.IndustrialAirCompressor.biz TROUBLE PROBABLE CAUSE CORRECTIVE ACTION Starter Trips Repeatedly Low voltage (must be within 10% of nameplate Check voltage @ disconnect Excessive current Wrong heater size (check heater amps) Replace heaters elements draw (To determine Wrong overload setting (check motor amps) Adjust overload setting maximum amperage allowed, multiply the Loose electrical connection Tighten all wire connections FLA on the motor nameplate by the Wire size too small -
EXECUTIVE ORDER D-418-22 Roushcharger Kit Vehicle Code
State of California AIR RESOURCES BOARD EXECUTIVE ORDER D-418-22 Relating to Exemptions Under Section 27156 of the California Vehicle Code Roush Industries Roushcharger Kit Pursuant to the authority vested in the Air Resources Board by Section 27156 of the Vehicle Code; and Pursuant to the authority vested in the undersigned by Section 39515 and Section 39516 of the Health and Safety Code and Executive Order G-02-003; IT IS ORDERED AND RESOLVED: That the installation of the Roushcharger Kit, : manufactured by Roush Industries of 777 Republic Drive, Allen Park, Michigan 48101, and marketed by Roush Industries, has been found not to reduce the effectiveness of the applicable vehicle pollution control systems and, therefore, is exempt from the prohibitions of Section 27156 of the Vehicle Code for the 2011 to 2014 model year Ford 5.0L Mustang and the 2011 to 2013 model year Ford F-150 with either a 5.0L: or a 6.2L engine.. The Roushcharger Kit for the Ford Mustang (part number 421388) includes an Eaton TVS2300 roots type axial flow supercharger assembly, intercooler, air cleaner lid with hydrocarbon paper, intake manifold, high flow fuel injectors, recalibrated stock mass air flow sensor, and a new fuel calibration modified to operate with the supercharger. The Roush Industries Roushcharger Kit utilizes an 85 mm diameter pulley. Maximum boost produced by the supercharger would be 10.0 pounds per square inch. The stock air filter lower housing, crankshaft pulley, and radiator thermostat are retained. The Roushcharger Kit for the Ford F-150 (part numbers 421246, 421244, 421435 or 421432) includes an Eaton TVS2300 roots type axial flow supercharger assembly, intercooler, open element air filter, intake manifold, high flow fuel injectors, recalibrated stock mass air flow sensor, and a new fuel calibration modified to operate with the supercharger. -
2015 5.0L Mustang Phase 1 Install.Indb
2015-2017 5.0L Mustang Phase 1 ROUSHcharger Kit Installation Instructions P/N: 421823 (R1315-P1CAL) EO D-418-27 39555 Schoolcraft Rd, Plymouth MI, 48170 | 800.59.ROUSH 2015-2017 5.0L Mustang Phase 1 ROUSHcharger Kit 2015-2017 5.0L Mustang Phase 1 ROUSHcharger Kit Installation Instructions P/N: 421823 (R1315-P1CAL) EO D-418-27 Application: 2015-2017 Ford Mustang GT with 5.0L 4-Valve Engine Important Notes: • Before installing your Mustang ROUSHcharger Kit, please read the installation manual and verify that all items are present. If you are missing hardware or have any questions, please contact ROUSH Performance at 1-(800) 59-ROUSH. • Premium fuel (91 octane or higher) is required to prevent “spark-knock” or detonation under certain operating conditions. • The use of fuel additives (i.e. octane boosters) is not recommended. There is a possibility that these chemicals can damage your engine and cause drivability issues with your vehicle. • Operating your engine without the Roush PCM recalibration will result in engine damage or failure and will void your warranty. • Not recommended for vehicles equipped with adaptive cruise control option. 1315-P1CALIM-BA 07202018 1 800.59.ROUSH 2015-2017 5.0L Mustang Phase 1 ROUSHcharger Kit Table of Contents Packing List for 421823 (R1315-P1CAL) ROUSHcharger Kit ..............................................................................3 Equipment and Supplies Required .......................................................................................................................6 Glossary of -
In This Issue
SEPTEMBER 2020 VOL 60 NO. 3 In this Issue... 52 AMRGT 2021 54 As the Turbine Turns... ASME 56 The Effect of Heat Transfer Gas Turbine Segment on Turbine Performance 11757 Katy Frwy, Suite 380 Houston, Texas 77079 58 Awards Information go.asme.org/igti ASME (AMRGT) ADVANCED MANUFACTURING AND REPAIR FOR GAS TURBINES Symposium By Douglas Nagy, Liburdi Turbine Services EVENT.ASME.ORG/AMRGT FALL 2021 Presented by ASME’s Gas Turbine and exciting processing techniques, of- without publication format expressly Segment (GTS) and International Gas ten combining computer-aided design/ to allow the rapid and timely transfer of Turbine Institute (IGTI) Division, the manufacturing principles, results in new information that is accessible to authors popular Advanced Manufacturing and and more efficient ways to address com- from all types of businesses. Keynote Repair for Gas Turbine (AMRGT) two- ponent design and manufacture. and educational seminars are includ- day symposium will return for 2021. Coming out of the COVID-19 ed for all participants. Special Panel This specialist event brings to- Pandemic, many companies have risen sessions encourage lively discussion of gether engineers, designers, researchers, to the challenge to re-tool for pandemic ground-breaking topics. Submit an ab- production engineers and business lead- support. Organizers expect an unprec- stract at event.asme.org/AMRGT. ers from companies that design, man- edented pent-up demand for jet engine ufacture, repair, and own gas turbines. and gas turbine maintenance as the Furthermore, AMRGT also appeals to economy spools-up again. Upon return Significance to the Community individuals and companies that design to the new-normal factory floors will AMRGT Supports and execute advanced manufacturing place even stronger emphasis on de- Gas turbine and jet-engine industry has processes and equipment.