9, in Regulating the Mammalian Circadian Clock
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uncorrected Author Proof Boller Et Al
Journal of Parkinson’s Disease xx (2020) x–xx 1 DOI 10.3233/JPD-202323 IOS Press 1 Review 2 Neuropathological and Biomarker Findings 3 in Parkinson’s Disease and Alzheimer’s 4 Disease: From Protein Aggregates to 5 Synaptic Dysfunction a,b,∗ c,d,e,∗ 6 Yaroslau Compta and Tamas Revesz a 7 Parkinson’s disease & Movement Disorders Unit, Neurology Service, Hospital Cl´ınic / IDIBAPS / CIBERNED, 8 Barcelona, Catalonia, Spain b 9 Institut de Neuroci`encies, Maextu’s excellence center, University of Barcelona, Barcelona, Catalonia, Spain c 10 Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, 11 UCL Queen Square Institute of Neurology, University College London, UK d 12 Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK 13 eDepartment of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College 14 London, UK Accepted 9 November 2020 15 Abstract. 16 There is mounting evidence that Parkinson’s disease (PD) and Alzheimer’s disease (AD) share neuropathological hallmarks, 17 while similar types of biomarkers are being applied to both. In this review we aimed to explore similarities and differences 18 between PD and AD at both the neuropathology and the biomarker levels, specifically focusing on protein aggregates 19 and synapse dysfunction. Thus, amyloid- peptide (A) and tau lesions of the Alzheimer-type are common in PD and 20 ␣-synuclein Lewy-type aggregates are frequent findings in AD. Modern neuropathological techniques adding to routine 21 immunohistochemistry might take further our knowledge of these diseases beyond protein aggregates and down to their 22 presynaptic and postsynaptic terminals, with potential mechanistic and even future therapeutic implications. -
Overview and Perspective on RTK Heterointeractions Michael D
Review Cite This: Chem. Rev. 2019, 119, 5881−5921 pubs.acs.org/CR The RTK Interactome: Overview and Perspective on RTK Heterointeractions Michael D. Paul and Kalina Hristova* Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States ABSTRACT: Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. 19 Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. -
A Molecular Dynamics Simulation Study for Variant Drug Responses Due to FMS-Like Tyrosine Kinase 3 Cite This: RSC Adv.,2017,7, 29871 G697R Mutation†
RSC Advances View Article Online PAPER View Journal | View Issue A molecular dynamics simulation study for variant drug responses due to FMS-like tyrosine kinase 3 Cite this: RSC Adv.,2017,7, 29871 G697R mutation† Chien-Cheng Lee,a Yu-Chung Chuang,b Yu-Lin Liub and Chia-Ning Yang *b FMS-like tyrosine kinase 3 (FLT3) is an attractive target for acute myeloid leukemia. Recent studies have suggested that the application of small-molecule kinase inhibitors is a promising treatment strategy for patients with primary activating mutations of FLT3; however, the development of secondary mutations, including those of A627T, N676D, F691I, and G697R, that confer acquired resistance to kinase inhibitors has become a severe problem. In this study, we conducted a series of molecular dynamics simulations on PKC412- and sorafenib-bound FLT3 kinases and different apo forms of the FLT3 kinase to explain the minor and severe G697R mutation-induced resistance to sorafenib and PKC412, respectively. Structural analysis on our simulation results revealed that the type II kinase inhibitor sorafenib (IC50 ¼ 9 nM) Creative Commons Attribution 3.0 Unported Licence. assesses its binding site through either the adenine pocket entrance or the back pocket entrance, whereas the type I kinase inhibitor PKC412 (IC50 ¼ 35 nM) intercalates to its binding site from the front pocket entrance. The G697 residue is located at the end of the FLT3 kinase hinge segment and is close to the front and adenine pockets. In G697R mutation where the substituted R697 residue affects both the front and adenine pocket entrances in different manners, sorafenib may approach its binding site Received 11th April 2017 through the back pocket entrance, whereas PKC412 is blocked by the FLT3 kinase. -
Marine Drugs
marine drugs Article Neuroprotective Effect of Carotenoid-Rich Enteromorpha prolifera Extract via TrkB/Akt Pathway against Oxidative Stress in Hippocampal Neuronal Cells Seung Yeon Baek and Mee Ree Kim * Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-42-821-6837; Fax: +82-42-821-8887 Received: 27 June 2020; Accepted: 17 July 2020; Published: 19 July 2020 Abstract: In this study, we found that E. prolifera extract (EAEP) exhibits neuroprotective effects in oxidative stress-induced neuronal cells. EAEP improved cell viability as well as attenuated the formation of intracellular reactive oxygen species (ROS) and apoptotic bodies in glutamate-treated hippocampal neuronal cells (HT-22). Furthermore, EAEP improved the expression of brain-derived neurotrophic factor (BDNF) and antioxidant enzymes such as heme oxygenase-1 (HO-1), NAD(P)H quinine oxidoreductase-1 (NQO-1), and glutamate–cysteine ligase catalytic subunit (GCLC) via the tropomyosin-related kinase receptor B/ protein kinase B (TrkB/Akt) signaling pathway. In contrast, the pre-incubation of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, ameliorated the neuroprotective effects of EAEP in oxidative stress-induced neuronal cells. These results suggest that EAEP protects neuronal cells against oxidative stress-induced apoptosis by upregulating the expression of BDNF and antioxidant enzymes via the activation of the TrkB/Akt pathway. In conclusion, such an effect of EAEP, which is rich in carotenoid-derived compounds, may justify its application as a food supplement in the prevention and treatment of neurodegenerative disorders. Keywords: Enteromorpha prolifera; oxidative stress; apoptosis; BDNF; TrkB/Akt pathway 1. -
Limited Diagnostic Utility of Chromogranin a Measurements in Workup of Neuroendocrine Tumors
diagnostics Article Limited Diagnostic Utility of Chromogranin A Measurements in Workup of Neuroendocrine Tumors Jonas Baekdal 1,2,*, Jesper Krogh 1,2, Marianne Klose 1,2, Pernille Holmager 1,2, Seppo W. Langer 1,3, Peter Oturai 1,4,5, Andreas Kjaer 1,4,5 , Birgitte Federspiel 1,6, Linda Hilsted 1,7, Jens F. Rehfeld 1,7, Ulrich Knigge 1,2,8 and Mikkel Andreassen 1,2 1 ENETS Neuroendocrine Tumor Centre of Excellence, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; [email protected] (J.K.); [email protected] (M.K.); [email protected] (P.H.); [email protected] (S.W.L.); [email protected] (P.O.); [email protected] (A.K.); [email protected] (B.F.); [email protected] (L.H.); [email protected] (J.F.R.); [email protected] (U.K.); [email protected] (M.A.) 2 Department of Endocrinology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark 3 Department of Oncology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark 4 Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Copenhagen University Hospital, 2100 Copenhagen, Denmark 5 Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark 6 Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark 7 Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark 8 Department of Surgery and Transplantation, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark * Correspondence: [email protected]; Tel.: +45-6013-4687 Received: 11 October 2020; Accepted: 28 October 2020; Published: 29 October 2020 Abstract: Background: Plasma chromogranin A (CgA) is related to tumor burden and recommended in the follow-up of patients diagnosed with neuroendocrine tumors (NETs). -
Short-Term Rapamycin Persistently Improves Cardiac Function After Cessation of Treatment in Aged Male and Female Mice
Short-term rapamycin persistently improves cardiac function after cessation of treatment in aged male and female mice. Ellen Quarles A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: Peter Rabinovitch, Chair Michael MacCoss David Marcinek Program Authorized to Offer Degree: Pathology © Copyright 2017 Ellen Quarles University of Washington Abstract Short-term rapamycin persistently improves cardiac function after cessation of treatment in aged male and female mice. Ellen Quarles Chair of the Supervisory Committee: Peter Rabinovitch, Professor and Vice Chair of Research Department of Pathology Cardiac aging is an intrinsic process that results in impaired cardiac function and dysregulation of cellular and molecular quality control mechanisms. These effects are evident in the decline of diastolic function, increase in left ventricular hypertrophy, metabolic substrate shifts, and alterations to the cardiac proteome. This thesis covers the quality control mechanisms that are associated with cardiac aging, results from an anti-aging intervention in aged mice, and a review of mitochondrial dysfunction in the heart. Chapter one is a review of the quality control mechanisms in aging myocardium. Chapter two consists of the results of several mouse experiments that compare the cardiac function, proteomes, and metabolomes of aged and young controls, along with rapamycin treated aged mice. The novelty of this study comes from the inclusion of a group of animals treated only transiently with the drug, then followed for eight weeks post-drug-removal. This persistence cohort may hold clues to deriving long-lasting benefits of rapamycin with only transient treatment. -
The Role of Neurotrophin Receptors in Female Germ-Cell Survival in Mouse and Human Norah Spears1,*, Michael D
Research article 5481 The role of neurotrophin receptors in female germ-cell survival in mouse and human Norah Spears1,*, Michael D. Molinek1, Lynne L. L. Robinson2, Norma Fulton2, Helen Cameron1, Kohji Shimoda1, Evelyn E. Telfer3, Richard A. Anderson2 and David J. Price1 1Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK 2Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, The University of Edinburgh Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SA, UK 3Institute of Cellular and Molecular Biology, University of Edinburgh, Darwin Building, Kings Buildings, Edinburgh, UK *Author for correspondence (e-mail: [email protected]) Accepted 4 July 2003 Development 130, 5481-5491 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00707 Summary During mammalian ovary formation, the production of follicle formation in the mouse. In situ hybridisation ovarian follicles is accompanied by an enormous loss of showed that TrkB was expressed primarily in the germ cells germ cells. It is not known how this loss is regulated. We before and after follicle formation. Mouse neonatal and have investigated the role of the Trk tyrosine kinase fetal ovaries and human fetal ovaries were cultured in the receptors, primarily TrkB, in this process. The ovaries of presence of K252a, a potent inhibitor of all Trk receptors. TrkB–/– and TrkC–/– mice with a mixed (129Sv × C57BL/6) In mice, K252a inhibited the survival of germ cells in newly genetic background were examined shortly after birth. formed (primordial) follicles. This effect was rescued by the Around 50% of TrkB–/– mice had grossly abnormal ovaries addition of basic fibroblast growth factor (bFGF) to the that contained greatly reduced numbers of follicles. -
Chemical Biology of Natural Indolocarbazole Products: 30 Years Since the Discovery of Staurosporine
The Journal of Antibiotics (2009) 62, 17–26 & 2009 Japan Antibiotics Research Association All rights reserved 0021-8820/09 $32.00 www.nature.com/ja REVIEW ARTICLE Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine Hirofumi Nakano and Satoshi O¯ mura Staurosporine was discovered at the Kitasato Institute in 1977 while screening for microbial alkaloids using chemical detection methods. It was during the same era that protein kinase C was discovered and oncogene v-src was shown to have protein kinase activity. Staurosporine was first isolated from a culture of Actinomyces that originated in a soil sample collected in Mizusawa City, Japan. Thereafter, indolocarbazole compounds have been isolated from a variety of organisms. The biosynthesis of staurosporine and related indolocarbazoles was finally elucidated during the past decade through genetic and biochemical studies. Subsequently, several novel indolocarbazoles have been produced using combinatorial biosynthesis. In 1986, 9 years since its discovery, staurosporine and related indolocarbazoles were shown to be nanomolar inhibitors of protein kinases. They can thus be viewed as forerunners of today’s crop of novel anticancer drugs. The finding led many pharmaceutical companies to search for selective protein kinase inhibitors by screening natural products and through chemical synthesis. In the 1990s, imatinib, a Bcr-Abl tyrosine kinase inhibitor, was synthesized and, following human clinical trials for chronic myelogenous leukemia, it was approved for use in the USA in 2001. In 1992, mammalian topoisomerases were shown to be targets for indolocarbazoles. This opened up new possibilities in that indolocarbazole compounds could selectively interact with ATP- binding sites of not only protein kinases but also other proteins that had slight differences in ATP-binding sites. -
Α-Tocopherol at Nanomolar Concentration Protects PC12 Cells from Hydrogen Peroxide-Induced Death and Modulates Protein Kinase Activities
Int. J. Mol. Sci. 2012, 13, 11543-11568; doi:10.3390/ijms130911543 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article α-Tocopherol at Nanomolar Concentration Protects PC12 Cells from Hydrogen Peroxide-Induced Death and Modulates Protein Kinase Activities Irina O. Zakharova, Tatyana V. Sokolova, Liubov V. Bayunova, Yulia A. Vlasova, Maria P. Rychkova and Natalia F. Avrova * Department of Comparative Neurochemistry, Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia; E-Mails: [email protected] (I.O.Z.); [email protected] (T.V.S.); [email protected] (L.V.B.); [email protected] (Y.A.V.); [email protected] (M.P.R.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +7-812-552-7901; Fax: +7-812-552-3012. Received: 9 July 2012; in revised form: 23 August 2012 / Accepted: 4 September 2012 / Published: 14 September 2012 Abstract: The aim of this work was to compare protective and anti-apoptotic effects of α-tocopherol at nanomolar and micromolar concentrations against 0.2 mM H2O2-induced toxicity in the PC12 neuronal cell line and to reveal protein kinases that contribute to α-tocopherol protective action. The protection by 100 nM α-tocopherol against H2O2-induced PC12 cell death was pronounced if the time of pre-incubation with α-tocopherol was 3–18 h. For the first time, the protective effect of α-tocopherol was shown to depend on its concentration in the nanomolar range (1 nM < 10 nM < 100 nM), if the pre-incubation time was 18 h. -
Trkb Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders
Int. J. Mol. Sci. 2013, 14, 10122-10142; doi:10.3390/ijms140510122 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review TrkB Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders Vivek K. Gupta 1,*, Yuyi You 1, Veer Bala Gupta 2, Alexander Klistorner 1,3 and Stuart L. Graham 1,3 1 Australian School of Advanced Medicine, Macquarie University, F10A, 2 Technology Place, North Ryde, Sydney, NSW 2109, Australia; E-Mails: [email protected] (Y.Y.); [email protected] (A.K.); [email protected] (S.L.G.) 2 Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; E-Mail: [email protected] 3 Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-98-123-537; Fax: +61-2-98-123-600. Received: 27 March 2013; in revised form: 27 April 2013 / Accepted: 28 April 2013 / Published: 13 May 2013 Abstract: The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4 (NT4). TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions. -
Identification of VGF Nerve Growth Factor Inducible-Producing Cells In
Int. J. Med. Sci. 2020, Vol. 17 480 Ivyspring International Publisher International Journal of Medical Sciences 2020; 17(4): 480-489. doi: 10.7150/ijms.39101 Research Paper Identification of VGF nerve growth factor inducible-producing cells in human spinal cords and expression change in patients with amyotrophic lateral sclerosis Yasuhiro Noda1, Miruto Tanaka1, Shinsuke Nakamura1, Junko Ito2, Akiyoshi Kakita2, Hideaki Hara1, and Masamitsu Shimazawa1 1. Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan. 2. Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan. Corresponding author: Dr. Masamitsu Shimazawa, Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan. E-mail: [email protected], Telephone and Fax: +81-58-230-8126 © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.08.06; Accepted: 2019.12.23; Published: 2020.02.04 Abstract Amyotrophic lateral sclerosis (ALS) is a serious disease characterized by the degeneration of motor neurons resulting in muscle weakness and paralysis. The neuroendocrine polypeptide VGF is localized in the central nervous system and peripheral endocrine neurons and is cleaved into several polypeptides with multiple functions. Previous studies revealed that VGF was decreased in the cerebrospinal fluid of ALS model mice and sporadic ALS patients. However, it is unknown which cells supply VGF in the spinal cord and a detailed localization is lacking. -
The Chromogranin A-Derived Peptides Catestatin and Vasostatin in Dogs
Höglund et al. Acta Vet Scand (2020) 62:43 https://doi.org/10.1186/s13028-020-00541-3 Acta Veterinaria Scandinavica RESEARCH Open Access The chromogranin A-derived peptides catestatin and vasostatin in dogs with myxomatous mitral valve disease Katja Höglund1* , Jens Häggström2 , Odd Viking Höglund2 , Mats Stridsberg3 , Anna Tidholm2,4 and Ingrid Ljungvall2 Abstract Background: The protein chromogranin A (CgA) is stored and co-released with catecholamines from the stimulated adrenal glands. Increased plasma concentrations of CgA have been shown in people with heart disease. The aim of the study was to investigate whether plasma concentrations of the CgA-derived biologically active peptides catesta- tin and vasostatin were associated with the severity of myxomatous mitral valve disease (MMVD) in dogs and to assess potential associations between these blood variables and dog characteristics, echocardiographic variables, heart rate (HR), blood pressure (BP) and plasma N-terminal-proBNP (NT-proBNP) concentration. Sixty-seven privately owned dogs with or without MMVD were included. The dogs underwent physical examination, blood pressure measurement, blood sample collection, and echocardiographic examination. Plasma concentrations of catestatin and vasostatin were analyzed using radioimmunoassay. Results: Catestatin concentration decreased with increasing left atrial and ventricular size (R 2 0.09, P 0.019), and increased with increasing systolic and diastolic blood pressures (R2 0.08, P 0.038). Regression≤ analyses≤ showed no signifcant associations for vasostatin. No diferences in plasma concentrations≤ ≤ of catestatin or vasostatin were found between the disease severity groups used in the study. Conclusions: In the present dog population, the catestatin concentration showed weak negative associations with left atrial and ventricular sizes, both of which are known to increase with increasing severity of MMVD.