Lunar and Planetary Science XLVIII (2017) 1296.pdf CONTEXT OF UNUSUAL RED ORGANIC-RICH AREAS ON CERES AND GEOLOGIC CONSTRAINTS FOR THEIR ORIGIN. C. M. Pieters1, A. Nathues2, G. Thangiam2, H. Hoffman2, C. De Sanctis3, E. Ammannito3,4, H. Hiesinger5, J. H. Pasckert5, D. P. O’Brien6, J. C. Castillo-Rogez7, O. Ruesch8, L. A. McFadden8, F. Tosi3, F. Zam- bon3, C. A. Raymond7, C. T. Russell4, 1Brown Univ., DEEPS, Providence, RI 02912 (
[email protected]), 2Max Planck Institute for Solar System Research, Goettingen, Germany, 3Istituto di Astrofisica e Planetologia Spazi- ali, Istituto Nazionale di Astrofisica (INAF), Rome, Italy, 4University of California, Los Angeles, CA, USA, 5West- fälische Wilhelms-Universität Münster, Germany, 6Planetary Science Institute, Tucson, AZ, USA, 7Jet Propulsion Laboratory, California Inst. of Technology, Pasadena, CA, USA, 8Goddard Space Flight Center, Greenbelt, MD, USA. Introduction: Ceres is the largest and most massive crater floor is slightly terraced and contains several asteroid in the solar system and is rightfully termed a large slumps of wall material, but most of the floor is dwarf planet exhibiting a complex evolution. The Dawn relatively smooth. Either optical property, the presence team has spent over a year evaluating the character of of 3.4 µm absorption or the notable red visible contin- its dark surface [1] and has documented the pervasive uum, can be used to map the spatial extent of these un- presence of Mg-serpentine, ammoniated clays, and usual ROR materials and compared to background opaques [2, 3] with notable unusual deposits of bright Ceres materials (Fig. 2). Since the FC instrument ac- carbonates within Occator crater [4].