Modular Forms, the Ramanujan Conjecture and the Jacquet-Langlands Correspondence

Total Page:16

File Type:pdf, Size:1020Kb

Modular Forms, the Ramanujan Conjecture and the Jacquet-Langlands Correspondence Appendix: Modular forms, the Ramanujan conjecture and the Jacquet-Langlands correspondence Jonathan D. Rogawski1) The theory developed in Chapter 7 relies on a fundamental result (Theorem 7 .1.1) asserting that the space L2(f\50(3) x PGLz(Op)) decomposes as a direct sum of tempered, irreducible representations (see definition below). Here 50(3) is the compact Lie group of 3 x 3 orthogonal matrices of determinant one, and r is a discrete group defined by a definite quaternion algebra D over 0 which is split at p. The embedding of r in 50(3) X PGLz(Op) is defined by identifying 50(3) and PGLz(Op) with the groups of real and p-adic points of the projective group D*/0*. Although this temperedness result can be viewed as a combinatorial state­ ment about the action of the Heckeoperators on the Bruhat-Tits tree associated to PGLz(Op). it is not possible at present to prove it directly. Instead, it is deduced as a corollary of two other results. The first is the Ramanujan-Petersson conjec­ ture for holomorphic modular forms, proved by P. Deligne [D]. The second is the Jacquet-Langlands correspondence for cuspidal representations of GL(2) and multiplicative groups of quaternion algebras [JL]. The proofs of these two results involve essentially disjoint sets of techniques. Deligne's theorem is proved using the Riemann hypothesis for varieties over finite fields (also proved by Deligne) and thus relies on characteristic p algebraic geometry. By contrast, the Jacquet­ Langlands Theorem is analytic in nature. The main tool in its proof is the Seiberg trace formula. Furthermore, Deligne's Theorem is conveniently expressed in the classicallanguage of modular forms, while the Jacquet-Langlands correspondence requires the language of infinite-dimensional representation theory. The purpose of this appendix is to explain the Statements of the Deligne's Theorem and the Jacquet-Langlands correspondence, briefly outline their proofs, and explain how they combine to yield Theorem 7.1.1. The standard references [AA], [Co], [D3], [G] should be consulted for further details and related topics. I would like to thank Victor Tan for carefully reading the manuscript and suggesting several corrections. 1) Partially supported by a grant from the NSF. 136 APPENDIX A.O Preliminaries In this section, we fix notation and review some basic facts. See [CF] for a general treatment of adeles and ideles and [GPPS], [G] for a discussion of adele groups. Throughout this appendix, p will denote a prime of 0 (the infinite prime p = oo is allowed). If p is finite, Op is the field of p-adic numbers and ~P is the ring of p-adic integers. For p = oo, 0 00 = R The absolute value on Op will be denoted by I lp· Let G denote the group GL(2) of invertible 2 x 2 matrices, and define the subgroups: The decomposition B = MN holds. The center of G is the group of scalar matrices Z={(~ ~)}· We shall use algebraic group notation. Thus, if H is one of the above groups and R is any ring, then H(R) is the group of R-valued points of H, i.e., the group of elements of H with entries from R. We will write Hp for H(Op)· For all p, Gp is a locally compact group under the topology inherited from the natural coordinate topology on the set of 2 x 2 matrices. For p = oo, G00 is a Lie group. For p < oo, Gp is totally disconnected, in the sense that there exists a basis for the open neighborhoods of the identity consisting of subgroups. Such a basis is given by the set of congruence subgroups 1 + pn M2 (~p) for n 2: 1. Let Kp be the following standardmaximal compact subgroup of Gp. If p < oo, Kp = GL(~p). For p = oo, let r(O) = ( co~ (} sin (} ) - smO cos(} and set Koo = {r(O) : (} E [0, 21r)}. The lwasawa decomposition holds for all p. As explained in Chapter 6, the adele ring A of 0 is the restricted direct product of the fields Op: A ~ { (ap) E I} o, 'a, E z, fo,.Wnost aU primes p < oo} . A.o PRELIMINARIES 137 Let At be the ring of finite adeles, defined as a restricted direct product as above but without the infinite factor R When convenient, we also identify At with the subring of elements (ap) E A suchthat a00 = 0. For any adele a, we write at for the finite part of a, i.e., the tuple obtained by dropping a00 • We view 0 as a subring of A relative to the diagonal embedding. Thus x E 0 is identified with the adele (x, x, ... ) .Let :z = l~7L/N = rr 1Lp. N p<oo The ring A has the stru<:.._ture of a locally compact topological ring for the topology relative to which ~ x 7L with its product topology is an open subring (cf. 6.1). The image of 0 in A is a discrete subgroup since 0 n ( -1, 1) x Z = { 0}. Furthermore, there is a surjective homomorphism of Z onto 7LjN with kemel NZ, and for all integers N we have the following decomposition (referred to as the Strong Approximation Theorem): A = 0 + (~ X NZ). It follows that 0\A = N7L\(~ x NZ) for all N and also that 0\A is compact. The idele group 0 is the group of invertible elements in A: I~ { (ap) EI} o; 'ap Ez; fo' alm"'t all prime' p < oo}. The group Ot of finite ideles is the group of invertible elements in At. Note that Z* = Tir<oo 7LP. The idele group is a locally compact group for the topology relative to which ~* x Z* with its product topology is an open subgroup. The image of 0* in 0 is a discrete subgroup since 0* n ~+ x Z* = { 1}. Here ~+ is the multiplicative group of positive real numbers and 0* is identified with its image under the diagonal embedding. For X E 0, the absolute value is defined as the product of the local absolute values: lxl = rr lxlr· p The product is actually finite since ixlr = 1 for almost all p. Let 01 be the group of ideles x such that lxl = 1. The product formula asserts that 0* is contained in 01. It follows from the unique factorization into primes that 0 decomposes as a direct product 0 = 0* ( ~~ X Z*) . (1.1) 138 APPENDIX In fact, for ~y idele x, define the rational number a = sgn(xoo) flp<oo lxpl· Then ax E lffi'f_ x ll.*. The adele group G(A) is the group of invertible 2 x 2 matrices with entries from Al: G(A) ~ { g ~ (&,) E l} G(Op): gp E G(Zp) fm almoot all p}. This is a locally compact group for the topology relative to which G(lffi) x flp<oo G(ll.p) with its product topology is an open subgroup. A Hecke character w is a continuous character of 0 which is trivial on Q*. Let Wp and Wf denote the restrictions of w to Q~ and lt, respectively. By (1.1), we may view w as a continuous character of lffi'f_ x Z*. For all s E C, x ___, lxl 5 is a Hecke character which is trivial on Z*. On the other hand, if w' is a Dirichlet character, i.e., a character of (7l./N)*, then w' defines a Hecke character w which is trivial on lffi'f_ via the homomorphism «reduction modulo N»: Z* ___, (7l./N)*. Observe that with this definition, if (p,N) =I, then wp(p) = w'(p)-1. lndeed, 1 = w((p,p,p, .. .)) = wp(p)w((p,p, ... , l,p, ... ) = wp(p)w'(p), where a = (p,p, ... ,l,p, ... ) is the idele suchthat ap = 1 and ap = p for all primes C =f=. p. Every Hecke character w decomposes uniquely as a product 5 w0 ( x) lx 1 , where wo is defined by a Dirichlet character. Note that Z (Al) is iso­ morphic to 0. We may therefore regard any Hecke character as a character of Z(O)\Z(A). A.I REPRESENTATION THEORY AND MODULAR FORMS 139 A.l Representation theory and modular forms A unitary representation of a topological group His a pair (1r, V), where Visa Hilbert space and 1r is a homomorphism from H to the group U(H) suchthat the map Hxv-v (h, v)- 1r(h)v is continuous. Sometimes, we write V1r for the space V, and at other time, we drop V from the notation and notate only the homomorphism 1r. If H is a unimodular locally compact group and H' is a closed unimodular subgroup of H, then there exists an H-invariant measure on the quotient space H'\H and we may define the Hilbert space L 2 (H'\H). The group H acts unitarily on L2 (H'\H) by right translation p: (p(h)<!J)(x) = <jJ(xh). In the theory of automorphic forms, we are interested in the representation of G(A) on L2(G(O)\G(A)). However, the quotient Z(O)\Z(A) is noncompact, and it is more convenient to consider a slightly different Hilbert space. Fix a unitary character w : Z(O)\Z(A) - C* and Iet L2(w) be the Hilbert space of functions </J on G(O)\G(A) such that <jJ(zg) = w(z)</J(g) and r I<P(g)l2 dg < 00 jG(Q)Z(A)\G(A) where dg is a G(A)-invariant measure on G(O)Z(A)\G(A).
Recommended publications
  • Identities Between Hecke Eigenforms Have Been Studied by Many Authors
    Identities between Hecke Eigenforms D. Bao February 20, 2018 Abstract In this paper, we study solutions to h = af 2 + bfg + g2, where f,g,h are Hecke newforms with respect to Γ1(N) of weight k > 2 and a, b = 0. We show that the number of solutions is finite for 6 all N. Assuming Maeda’s conjecture, we prove that the Petersson inner product f 2, g is nonzero, where f and g are any nonzero cusp h i eigenforms for SL2(Z) of weight k and 2k, respectively. As a corollary, we obtain that, assuming Maeda’s conjecture, identities between cusp 2 n eigenforms for SL2(Z) of the form X + i=1 αiYi = 0 all are forced by dimension considerations. We also give a proof using polynomial P identities between eigenforms that the j-function is algebraic on zeros of Eisenstein series of weight 12k. 1 Introduction arXiv:1701.03189v1 [math.NT] 11 Jan 2017 Fourier coefficients of Hecke eigenforms often encode important arithmetic information. Given an identity between eigenforms, one obtains nontrivial relations between their Fourier coefficients and may in further obtain solu- tions to certain related problems in number theory. For instance, let τ(n) be the nth Fourier coefficient of the weight 12 cusp form ∆ for SL2(Z) given by ∞ ∞ ∆= q (1 qn)24 = τ(n)qn − n=1 n=1 Y X 1 11 and define the weight 11 divisor sum function σ11(n) = d n d . Then the Ramanujan congruence | P τ(n) σ (n) mod691 ≡ 11 can be deduced easily from the identity 1008 756 E E2 = × ∆, 12 − 6 691 where E6 (respectively E12) is the Eisenstein series of weight 6 (respectively 12) for SL2(Z).
    [Show full text]
  • Congruences Between Modular Forms
    CONGRUENCES BETWEEN MODULAR FORMS FRANK CALEGARI Contents 1. Basics 1 1.1. Introduction 1 1.2. What is a modular form? 4 1.3. The q-expansion priniciple 14 1.4. Hecke operators 14 1.5. The Frobenius morphism 18 1.6. The Hasse invariant 18 1.7. The Cartier operator on curves 19 1.8. Lifting the Hasse invariant 20 2. p-adic modular forms 20 2.1. p-adic modular forms: The Serre approach 20 2.2. The ordinary projection 24 2.3. Why p-adic modular forms are not good enough 25 3. The canonical subgroup 26 3.1. Canonical subgroups for general p 28 3.2. The curves Xrig[r] 29 3.3. The reason everything works 31 3.4. Overconvergent p-adic modular forms 33 3.5. Compact operators and spectral expansions 33 3.6. Classical Forms 35 3.7. The characteristic power series 36 3.8. The Spectral conjecture 36 3.9. The invariant pairing 38 3.10. A special case of the spectral conjecture 39 3.11. Some heuristics 40 4. Examples 41 4.1. An example: N = 1 and p = 2; the Watson approach 41 4.2. An example: N = 1 and p = 2; the Coleman approach 42 4.3. An example: the coefficients of c(n) modulo powers of p 43 4.4. An example: convergence slower than O(pn) 44 4.5. Forms of half integral weight 45 4.6. An example: congruences for p(n) modulo powers of p 45 4.7. An example: congruences for the partition function modulo powers of 5 47 4.8.
    [Show full text]
  • 25 Modular Forms and L-Series
    18.783 Elliptic Curves Spring 2015 Lecture #25 05/12/2015 25 Modular forms and L-series As we will show in the next lecture, Fermat's Last Theorem is a direct consequence of the following theorem [11, 12]. Theorem 25.1 (Taylor-Wiles). Every semistable elliptic curve E=Q is modular. In fact, as a result of subsequent work [3], we now have the stronger result, proving what was previously known as the modularity conjecture (or Taniyama-Shimura-Weil conjecture). Theorem 25.2 (Breuil-Conrad-Diamond-Taylor). Every elliptic curve E=Q is modular. Our goal in this lecture is to explain what it means for an elliptic curve over Q to be modular (we will also define the term semistable). This requires us to delve briefly into the theory of modular forms. Our goal in doing so is simply to understand the definitions and the terminology; we will omit all but the most straight-forward proofs. 25.1 Modular forms Definition 25.3. A holomorphic function f : H ! C is a weak modular form of weight k for a congruence subgroup Γ if f(γτ) = (cτ + d)kf(τ) a b for all γ = c d 2 Γ. The j-function j(τ) is a weak modular form of weight 0 for SL2(Z), and j(Nτ) is a weak modular form of weight 0 for Γ0(N). For an example of a weak modular form of positive weight, recall the Eisenstein series X0 1 X0 1 G (τ) := G ([1; τ]) := = ; k k !k (m + nτ)k !2[1,τ] m;n2Z 1 which, for k ≥ 3, is a weak modular form of weight k for SL2(Z).
    [Show full text]
  • Algebra & Number Theory Vol. 4 (2010), No. 6
    Algebra & Number Theory Volume 4 2010 No. 6 mathematical sciences publishers Algebra & Number Theory www.jant.org EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Andrei Okounkov Princeton University, USA John H. Coates University of Cambridge, UK Raman Parimala Emory University, USA J-L. Colliot-Thel´ ene` CNRS, Universite´ Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hel´ ene` Esnault Universitat¨ Duisburg-Essen, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universitat,¨ Germany Michael Singer North Carolina State University, USA Edward Frenkel University of California, Berkeley, USA Ronald Solomon Ohio State University, USA Andrew Granville Universite´ de Montreal,´ Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Kansas, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale
    [Show full text]
  • The Role of the Ramanujan Conjecture in Analytic Number Theory
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 50, Number 2, April 2013, Pages 267–320 S 0273-0979(2013)01404-6 Article electronically published on January 14, 2013 THE ROLE OF THE RAMANUJAN CONJECTURE IN ANALYTIC NUMBER THEORY VALENTIN BLOMER AND FARRELL BRUMLEY Dedicated to the 125th birthday of Srinivasa Ramanujan Abstract. We discuss progress towards the Ramanujan conjecture for the group GLn and its relation to various other topics in analytic number theory. Contents 1. Introduction 267 2. Background on Maaß forms 270 3. The Ramanujan conjecture for Maaß forms 276 4. The Ramanujan conjecture for GLn 283 5. Numerical improvements towards the Ramanujan conjecture and applications 290 6. L-functions 294 7. Techniques over Q 298 8. Techniques over number fields 302 9. Perspectives 305 J.-P. Serre’s 1981 letter to J.-M. Deshouillers 307 Acknowledgments 313 About the authors 313 References 313 1. Introduction In a remarkable article [111], published in 1916, Ramanujan considered the func- tion ∞ ∞ Δ(z)=(2π)12e2πiz (1 − e2πinz)24 =(2π)12 τ(n)e2πinz, n=1 n=1 where z ∈ H = {z ∈ C |z>0} is in the upper half-plane. The right hand side is understood as a definition for the arithmetic function τ(n) that nowadays bears Received by the editors June 8, 2012. 2010 Mathematics Subject Classification. Primary 11F70. Key words and phrases. Ramanujan conjecture, L-functions, number fields, non-vanishing, functoriality. The first author was supported by the Volkswagen Foundation and a Starting Grant of the European Research Council. The second author is partially supported by the ANR grant ArShiFo ANR-BLANC-114-2010 and by the Advanced Research Grant 228304 from the European Research Council.
    [Show full text]
  • Modular Forms and Affine Lie Algebras
    Modular Forms Theta functions Comparison with the Weyl denominator Modular Forms and Affine Lie Algebras Daniel Bump F TF i 2πi=3 e SF Modular Forms Theta functions Comparison with the Weyl denominator The plan of this course This course will cover the representation theory of a class of Lie algebras called affine Lie algebras. But they are a special case of a more general class of infinite-dimensional Lie algebras called Kac-Moody Lie algebras. Both classes were discovered in the 1970’s, independently by Victor Kac and Robert Moody. Kac at least was motivated by mathematical physics. Most of the material we will cover is in Kac’ book Infinite-dimensional Lie algebras which you should be able to access on-line through the Stanford libraries. In this class we will develop general Kac-Moody theory before specializing to the affine case. Our goal in this first part will be Kac’ generalization of the Weyl character formula to certain infinite-dimensional representations of infinite-dimensional Lie algebras. Modular Forms Theta functions Comparison with the Weyl denominator Affine Lie algebras and modular forms The Kac-Moody theory includes finite-dimensional simple Lie algebras, and many infinite-dimensional classes. The best understood Kac-Moody Lie algebras are the affine Lie algebras and after we have developed the Kac-Moody theory in general we will specialize to the affine case. We will see that the characters of affine Lie algebras are modular forms. We will not reach this topic until later in the course so in today’s introductory lecture we will talk a little about modular forms, without giving complete proofs, to show where we are headed.
    [Show full text]
  • Modular Dedekind Symbols Associated to Fuchsian Groups and Higher-Order Eisenstein Series
    Modular Dedekind symbols associated to Fuchsian groups and higher-order Eisenstein series Jay Jorgenson,∗ Cormac O’Sullivan†and Lejla Smajlovi´c May 20, 2018 Abstract Let E(z,s) be the non-holomorphic Eisenstein series for the modular group SL(2, Z). The classical Kro- necker limit formula shows that the second term in the Laurent expansion at s = 1 of E(z,s) is essentially the logarithm of the Dedekind eta function. This eta function is a weight 1/2 modular form and Dedekind expressedits multiplier system in terms of Dedekind sums. Building on work of Goldstein, we extend these results from the modular group to more general Fuchsian groups Γ. The analogue of the eta function has a multiplier system that may be expressed in terms of a map S : Γ → R which we call a modular Dedekind symbol. We obtain detailed properties of these symbols by means of the limit formula. Twisting the usual Eisenstein series with powers of additive homomorphisms from Γ to C produces higher-order Eisenstein series. These series share many of the properties of E(z,s) though they have a more complicated automorphy condition. They satisfy a Kronecker limit formula and produce higher- order Dedekind symbols S∗ :Γ → R. As an application of our general results, we prove that higher-order Dedekind symbols associated to genus one congruence groups Γ0(N) are rational. 1 Introduction 1.1 Kronecker limit functions and Dedekind sums Write elements of the upper half plane H as z = x + iy with y > 0. The non-holomorphic Eisenstein series E (s,z), associated to the full modular group SL(2, Z), may be given as ∞ 1 ys E (z,s) := .
    [Show full text]
  • Modular Forms and L-Functions
    MODULAR FORMS AND L-FUNCTIONS A Thesis by TEKIN KARADAĞ Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Chair of Committee, Mathhew P Young Committee Members, Mohamad Riad Masri Daren B. H. Cline Head of Department, Emil Straube August 2016 Major Subject: Mathematics Copyright 2016 Tekin Karadağ ABSTRACT In this thesis, our main aims are expressing some strong relations between modular forms, Hecke operators, and L-functions. We start with background information for mod- ular forms and give some information about the linear space of modular forms. Next, we introduce Hecke operators and their properties. Also we find a basis of Hecke eigenforms. Then, we explain how to construct L-functions from modular forms. Finally, we give a nice functional equation for completed L-function. ii Dedicated to my nieces Ahsen Yıldırım, Hüma Yıldırım, Meryem Özkale and my nephew Ömer Özkale. iii ACKNOWLEDGMENTS I would like to express my sincere gratitude to my supervisor Matthew P. Young for his excellent guidance, valuable suggestions, encouragement and patience. I would also like to thank Mohamad Riad Masri and Daren B. H. Cline for a careful reading of this thesis. I would like to thank to our Associate Head for Graduate Programs Peter Howard who always finds solutions to graduate students’ problems. I am so grateful to my mother, my father, my sisters for increasing my motivation whenever I need. I would like to thank to my friends Ahmed Sehy Youssef, Alisettar Huseynli, and Veysel Kaşdaş who are always with me whenever I experience difficulties.
    [Show full text]
  • 18.785 Notes
    Contents 1 Introduction 4 1.1 What is an automorphic form? . 4 1.2 A rough definition of automorphic forms on Lie groups . 5 1.3 Specializing to G = SL(2; R)....................... 5 1.4 Goals for the course . 7 1.5 Recommended Reading . 7 2 Automorphic forms from elliptic functions 8 2.1 Elliptic Functions . 8 2.2 Constructing elliptic functions . 9 2.3 Examples of Automorphic Forms: Eisenstein Series . 14 2.4 The Fourier expansion of G2k ...................... 17 2.5 The j-function and elliptic curves . 19 3 The geometry of the upper half plane 19 3.1 The topological space ΓnH ........................ 20 3.2 Discrete subgroups of SL(2; R) ..................... 22 3.3 Arithmetic subgroups of SL(2; Q).................... 23 3.4 Linear fractional transformations . 24 3.5 Example: the structure of SL(2; Z)................... 27 3.6 Fundamental domains . 28 3.7 ΓnH∗ as a topological space . 31 3.8 ΓnH∗ as a Riemann surface . 34 3.9 A few basics about compact Riemann surfaces . 35 3.10 The genus of X(Γ) . 37 4 Automorphic Forms for Fuchsian Groups 40 4.1 A general definition of classical automorphic forms . 40 4.2 Dimensions of spaces of modular forms . 42 4.3 The Riemann-Roch theorem . 43 4.4 Proof of dimension formulas . 44 4.5 Modular forms as sections of line bundles . 46 4.6 Poincar´eSeries . 48 4.7 Fourier coefficients of Poincar´eseries . 50 4.8 The Hilbert space of cusp forms . 54 4.9 Basic estimates for Kloosterman sums . 56 4.10 The size of Fourier coefficients for general cusp forms .
    [Show full text]
  • 1 Second Facts About Spaces of Modular Forms
    April 30, 2:00 pm 1 Second Facts About Spaces of Modular Forms We have repeatedly used facts about the dimensions of the space of modular forms, mostly to give specific examples of and relations between modular forms of a given weight. We now prove these results in this section. Recall that a modular form f of weight 0 is a holomorphic function that is invari- ant under the action of SL(2, Z) and whose domain can be extended to include the point at infinity. Hence, we may regard f as a holomorphic function on the compact Riemann surface G\H∗, where H∗ = H ∪ {∞}. If you haven’t had a course in com- plex analysis, you shouldn’t worry too much about this statement. We’re really just saying that our fundamental domain can be understood as a compact manifold with complex structure. So locally, we look like C and there are compatibility conditions on overlapping local maps. By the maximum modulus principle from complex analysis (see section 3.4 of Ahlfors for example), any such holomorphic function must be constant. We can use this fact, together with the fact that given f1, f2 ∈ M2k, then f1/f2 is a meromorphic function invariant under G (i.e. a weakly modular function of weight 0). Usually, one proves facts about the dimensions of spaces of modular forms using foundational algebraic geometry (the Riemann-Roch theorem, in particular) or the Selberg trace formula (an even more technical result relating differential geometry to harmonic analysis in a beautiful way). These apply to spaces of modular forms for other groups, but as we’re only going to say a few words about such spaces, we won’t delve into either, but rather prove a much simpler result in the spirit of the Riemann-Roch theorem.
    [Show full text]
  • Modular Forms and Hecke Operators
    MODULAR FORMS AND HECKE OPERATORS SAMANDA (YUTING) HU Abstract. This paper focuses on discussing Hecke operators in the theory of modular forms and its relation to Hecke rings which occur in representation theory. We will first introduce the basic definitions and properties of modular forms and Hecke operators. In particular, we will show that the space of cusp forms of an arbitrary weight with respect to a specific congruence subgroup is an inner product space and discuss that the space has an orthogonal basis of simultaneous eigenvectors for the Hecke operators. We will then shift the focus to Hecke rings and do relevant computations regarding the Hecke ring of GL2(Qp). Contents 1. Introduction 1 2. Modular Form and Congruence Subgroup 2 + 3. Action of GL2 (Q) on H 3 4. Hecke Operators 4 4.1. Double Coset Operator 4 4.2. hdi and Tp operator 6 4.3. Petersson Inner Product and Adjoints of Hecke Operators 11 5. Another Interpretation of Hecke Algebra 13 5.1. Hecke Ring 14 5.2. Satake Isomorphism 20 Acknowledgement 23 References 23 1. Introduction Modular forms are functions on the complex upper half plane that satisfy cer- tain transformation conditions and holomorphy conditions. The theory of modular forms is a significant branch of modern number theory { for instance, the Modu- larity Theorem suggests that all rational elliptic curves arise from modular forms with some restrictions. This theorem was essential to the proof of Fermat's Last Theorem by Richard Taylor and Andrew Wiles. In this paper, we aim to discuss Hecke operators in the theory of modular forms.
    [Show full text]
  • Gross–Zagier Reading Seminar: Modular Forms and Hecke Operators Lecture 4 • Charlotte Chan • September 30, 2014
    Gross{Zagier reading seminar: Modular Forms and Hecke Operators Lecture 4 • Charlotte Chan • September 30, 2014 1. Introduction Our goal is to give an introduction to modular forms and to discuss the role of Hecke operators in the theory. We will focus on the parts of the theory that we will need in studying [GZ86]. For more details, one can refer to [DI95]. Recall the following topics from Jeff's talks: • The Atkin-Lehner involution Wk is an involution on the modular curve Y0(N) = h=Γ0(N) and permute the cusps. • Eisenstein series... • A Heegner point is a point in the modular curve Y0(N) = h=Γ0(N) corresponding to N-isogenous elliptic curves E; E0 with CM by the same order O. In this talk, we will begin by introducing modular forms. We will then define the Hecke algebra1 together with its action on the following objects: the space of weight-k modular forms with respect to Γ0(N) and (divisors of) the modular curve Y0(N). The moduli space interpretation of Y0(N) allows us then interpret the latter action as a modular correspondence|the mth Hecke operator T (m) will take a pair (E; C) consisting of an elliptic curve E and a cyclic order-N subgroup C ⊂ E to the average over pairs (E=D; C + D=D) where D ⊂ E is a cyclic order-m subgroup with C \ D = ?: In particular, we will see that T (m) acts on the set of divisors of Y0(N) supported on the Heegner points. Remark. Later on this semester, we will need to prove that for a Heegner point c, the power series X n hc; Tnci q n≥1 is a modular form.
    [Show full text]