Our Most Puzzling Geophysical Problems. the Dates As Well As the Places of Obser- Vation Were Selected with the Above Goal in Mind

Total Page:16

File Type:pdf, Size:1020Kb

Our Most Puzzling Geophysical Problems. the Dates As Well As the Places of Obser- Vation Were Selected with the Above Goal in Mind 926 GEOPHYSICS: J. KAPLAN PROC. N. A. S. veloped; but, both radiosondes and magnetic recorders were not available for use in many countries in the much increased numbers needed. This serious situation was relieved, only shortly before the Year began, by a generous grant from the Rocke- feller Foundation, which thereby greatly helped the whole enterprise. Many of the recorders have continued to be used on expeditions and at new permanent observa- tories since Polar Year II ended. In the coming Geophysical Year there will be further kinds and new means of observations, such as cosmic rays, geodetic observations of the moon, and rockets and rockoons (balloon-launched rockets) for exploring the upper atmosphere and the solar rays. The observations made during a Polar or Geophysical Year, however, when com- pleted, important though they are, only open a new phase of the enterprise-their analysis and discussion. After Polar Year II ended, another Rockefeller grant was made for these purposes and to set up a central library of archives and provide a bibliography of the whole undertaking. After La Cour's death in 1942, Fleming became the leader in these further organizing stages, which he brought to a formal conclusion at the end of 1950, with the co-operation of Laursen, of Denmark. The bibliography provides an impressive indication of the extent of the observations and the results of their analysis. But that harvest was not and still is not fully reaped; and even from Polar Year I there are useful gleanings yet to come. Let us bear these things in mind while we hear of the more widely branching plans prepared for the coming International Geophysical Year. * President, IUGG and President, ICSU Comit6 Sp6cial Ann6e G6ophysique Internationale. Present address: New York University, New York, New York. THE SCIENTIFIC PROGRAM OF THE INTERNATIONAL GEOPHYSICAL YEAR BY JOSEPH KAPLAN* UNIVERSITY OF CALIFORNIA AT LOS ANGELES The scientific program of the International Geophysical Year has several impor- tant general characteristicswhich willbedescribed before attentionis called to specific projects. With careful planning, thorough review, and international co-operation, it is hoped that significant advances will be made toward the solutions of some of our most puzzling geophysical problems. The dates as well as the places of obser- vation were selected with the above goal in mind. Because the sun is the key to many important geophysical processes, especially those related to weather and tele- communications, the period of observations was selected to coincide with the in- creased probability, as we approach the sunspot maximum, of occurrence of solar flares and other solar disturbances. The selection of the places of observations was also made with the sun and its increasing activity during this period as one of the determining factors. In addition to electromagnetic radiation, the sun emits high-speed particles, whose kinematics are intimately related to the earth's magnetic field. The incidence of solar electro- magnetic radiation on the earth also depends-on time and place. Consequently, Downloaded by guest on September 24, 2021 VOL. 40, 1954 GEOPHYSICS: J. KAPLAN 927 carefully planned world-wide observations are essential, and this is well illustrated by the north-south pole-to-pole chain of stations which is the principal feature of the proposed program in meteorology. Another important general characteristic of the program is the effort to achieve maximum results from a minimum program. Specific goals are set-for example, in the ionospheric program, which is based on our desire to understand ionospheric storms, the absorption of waves, and the motions in the upper atmosphere. Whenever man examines his physical environment carefully and systematically, the effect on the basic sciences of physics, chemistry, and mathematics is generally very significant. The way in which astronomy has so strongly guided the develop- ment of physics is perhaps the most striking example of this. In geophysics one example is the airglow, in which hitherto unobserved radiations due to OH were discovered relatively recently. The attempts to explain their origins led to a care- ful re-examination of the validity of some of the most fundamental problems in chemical kinetics of gaseous processes. The atmosphere, the solid earth, and the oceans are vast laboratories in which nature is constantly carrying on its remarkable experiments. Eleven fields of activity comprise the program: meteorology, latitude and longi- tude determinations, geomagnetism, gravity measurements, ionospheric physics, aurora and airglow, solar activity, cosmic rays, glaciology, oceanography, and rocket exploration of the upper atmosphere. These fields have close relationships: each is characterized by need for synoptic or epochal data, and the value of such data is enhanced markedly by obtaining it simultaneously in all the fields, per- mitting studies of the correlation of various geophysical events. A brief review of some of the fields in the program will suggest the nature of the problems to be stud- ied and of the method of approach. Glaciology. Glacier studies have given clear indications that we are now in a cycle of warming which began about 1900. This is no academic effect: if the in- dicated warming continues for another twenty-five to fifty years, the ice will melt out of the Arctic Ocean in the summer, making it navigable. Slow changes of climate have already begun to show a change of storm paths and redistribution of rainfall, rendering some areas previously well watered more arid and, in turn, bring- ing water to arid regions. The objectives of the United States glaciological efforts in the International Geophysical Year program will be twofold: (1) to extend the studies of glaciers on a world-wide basis in conjunction with similar efforts of other countries and (2) to co-ordinate the existing observations of glaciers with the varied world-wide efforts in other fields of geophysics in order to establish quantitative and qualitative indi- cations of long-term climatic variations affecting the world as a whole. The plan includes (a) assembly of all available data on the variation of glaciers, (b) analysis of the data obtained to determine the extent to which glacier variations are caused by climatic change, (c) study of the hydrological economy of specific glaciers with respect to meteorological factors, and (d) studies to establish, correlate, and trace climatic trends of the past and to improve future predictions by combining these findings with those of solar and atmospheric physics. Oceanography. As in the other fields of geophysics, the study of oceanography requires the conduct of many experiments and the taking of many measurements if Downloaded by guest on September 24, 2021 928 GEOPHYSICS: J. KAPLAN PROC. N. A. S. major problems are to be solved. These problems have to do with the nature of oceanic currents, temperature, composition and levels, and total water content. A major problem is the study of the annual cycle in sea level and the global water budget of the oceans. Although all available tide-gauge and temperature data have been studied, the problem remains unsolved because a minimum of twenty years of tide observations at a station is required to give a meaningful average, so that values in one area can be compared with values in another area taken at a different time. As much or more could be learned by synchronous measurements during one specific year. Simultaneous measurements of fluctuations in sea level are probably the most effective and the least expensive means of studying the "weather" of the oceans-i.e., the fluctuations in ocean currents with time. To be of value these observations must extend over vast ocean areas. In low latitudes the recorded seasonal changes in sea level are about what can be inferred from observed changes in temperature of the superficial layers, indicating a change in specific volume rather than in mass. In high latitudes there is also a change in mass. If these changes are associated with changes in currents, the currents at mid-latitude may be essentially confined to superficial layers, whereas at high latitudes they may extend to the very bottom and are there- fore not measurable by present standard techniques. Moreover, recorded sea level is lower by about half a foot in the Northern Hemisphere in northern spring and in the Southern Hemisphere in southern spring than in the respective fall seasons. From present data it cannot be determined whether this involves flow of water across the Equator or between the fringes of the ocean basins (where nearly all tide stations are located) and the central portions (where observations are inadequate). Such problems in oceanography are analogous to those in the meteorological program involving measurements of air flow across a meridian and across the Equa- tor. Similarly, the solution requires synchronous global measurements, which in- clude (a) observations and reduction of data from existing tide stations, (b) tem- porary tide gauges or surge recorders at some forty stations, with emphasis on is- lands and the Southern Hemisphere, particularly the antarctic, and (c) weekly temperature readings to depths of about 1,000 feet off shore from as many tide- gauge stations as possible. In addition to these tide and surge observations, a major study will be undertaken of the subantarctic oceans. The structure and dynamics of currents and other oceanic phenomena of this region, which are little known but are of great importance in several fields of geophysics, will be explored intensively. Geomagnetism.-Geomagnetism has various important relations and implications cutting across almost all areas of study in the physics of the atmosphere. In addi- tion to its own specific uses in surveying, navigation (including missile guidance), and exploration for minerals and petroleum, geomagnetism has broad and basic implications in the study of the ionosphere, radio-wave propagation, aurora, and cosmic rays, as well as in other fields of science.
Recommended publications
  • Observation of the Airglow from the ISS by the IMAP Mission *Y
    2013/3/13(ANGWIN workshop, Tachikawa) Observation of the airglow from the ISS by the IMAP mission *Y. Akiya [1], A. Saito [1], T. Sakanoi [2], Y. Hozumi [1], A. Yamazaki [3], Y. Otsuka [4] [1] Graduation School of Science, Kyoto University , [2] PPARC, Tohoku University, [3] ISAS/JAXA, [4] STE Laboratory, Nagoya University ----- Outline ----- Introduction of the IMAP mission Visible and near-infrared spectrographic imager Samples of airglow observation by VISI Summary “ISS-IMAP” mission Ionosphere, Mesosphere, Upper atmosphere and Plasmasphere Imagers of the ISS-IMAP mapping mission from the mission International Space Station (ISS) Observational imagers were installed on the Exposure Facility of Japanese Experimental Module: August 9th, 2012. Initial checkout: August and September, 2012 Nominal observations: October, 2012 - [Pictures: Courtesy of JAXA/NASA] [this issue]. According to characteristics of airglow emissions, wavelength range from 630 to 762 nm. Typical total intensity of such as intensity, emission height, background continuum, etc., we airglow is 100 1000 R as listed in Table 1, and 10 % variation of selected the airglow emissions which will be measured with VISI, the total intensity must be detected in order to investigate the and determined the requirements for instrumental design. The airglow variation pattern. In addition, short exposure cycle less targets and requirements are summarized in Table 1. than several seconds is necessary to measure small-scale airglow Table 1. Scientific Targets of VISI signatures (see Table 1) considering the orbital speed of ISS (~8 km/s). Airglow Required Region Scientific Typical A sectional view of VISI and its specifications are given in (waele- spatial (height) target intensity Figure 4 and Table 2, respectively.
    [Show full text]
  • Hubble Space Telescope Primer for Cycle 25
    January 2017 Hubble Space Telescope Primer for Cycle 25 An Introduction to the HST for Phase I Proposers 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration How to Get Started For information about submitting a HST observing proposal, please begin at the Cycle 25 Announcement webpage at: http://www.stsci.edu/hst/proposing/docs/cycle25announce Procedures for submitting a Phase I proposal are available at: http://apst.stsci.edu/apt/external/help/roadmap1.html Technical documentation about the instruments are available in their respective handbooks, available at: http://www.stsci.edu/hst/HST_overview/documents Where to Get Help Contact the STScI Help Desk by sending a message to [email protected]. Voice mail may be left by calling 1-800-544-8125 (within the US only) or 410-338-1082. The HST Primer for Cycle 25 was edited by Susan Rose, Senior Technical Editor and contributions from many others at STScI, in particular John Debes, Ronald Downes, Linda Dressel, Andrew Fox, Norman Grogin, Katie Kaleida, Matt Lallo, Cristina Oliveira, Charles Proffitt, Tony Roman, Paule Sonnentrucker, Denise Taylor and Leonardo Ubeda. Send comments or corrections to: Hubble Space Telescope Division Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] CHAPTER 1: Introduction In this chapter... 1.1 About this Document / 7 1.2 What’s New This Cycle / 7 1.3 Resources, Documentation and Tools / 8 1.4 STScI Help Desk / 12 1.1 About this Document The Hubble Space Telescope Primer for Cycle 25 is a companion document to the HST Call for Proposals1.
    [Show full text]
  • [OI] 5577 in the Airglow and the Aurora
    Journal of Resea rch of the National Bureau of Sta ndards- D. Radio Propagation Vol. 63D, No.1, July-August 1959 Origin of [OlJ 5577 in the Airglow and the Aurora Franklin E. Roach, James W. McCaulley, and Edward Marovich (January 30, 1959) The distribution of 5577 zenith intensities at stations in the subauroral zone iB found to be unimodal with no discontinuity at the visual threshold. This is interpreted as evi­ dence that 5577 airglow and 5577 aurora may have a common origin. 1. Introduction origin hypothesis, their critical characteristic being the lack of any discontinuity. It i cu tomary to refer to [01] 5577 as airglow if In figure 2, a replot of the histogram of St. Amand it is invisible and as aurora if it is visible. Thus, and Ashburn is shown with a regroupillg of the data the physiological visual threshold (at approximately to correspond to class intervals of 50 R rather than the 10 R that they used. They put an approxi­ 1,000 myleighs 1 for extended objects) has been assumed to have a physical significance in the upper mately normal curve through the plot on the basis atmosphere with different mechanisms operative of which they were able to state that an intensity above and below the threshold. The purpose of correspondulg to a just visible aurora should occur this paper is to inquil'e into the existence of a only "once or twice in geologic time." Because physical criterion to distinguish between 5577 auroras do occur occasionally, though rarely, in southern California, the implication is that an aurora airglow and 5577 aurora.
    [Show full text]
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • REMOTE SENSING of SEISMIC ACTIVITY on VENUS USING a SMALL SPACECRAFT: INITIAL MODELING RESULTS, A. Komjathy1, A. Didion1, B. Sutin1, B
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 1731.pdf REMOTE SENSING OF SEISMIC ACTIVITY ON VENUS USING A SMALL SPACECRAFT: INITIAL MODELING RESULTS, A. Komjathy1, A. Didion1, B. Sutin1, B. Nakazono1, A. Karp1, M. Wallace1, G. Lan- toine1, S. Krishnamoorthy1, M. Rud1, J. Cutts, J. Makela2, M. Grawe2, P. Lognonné3, B. Kenda3, M. Drilleau3 and Jörn Helbert4 1Jet Propulsion Laboratory, California Institute of Technology, USA 2University of Illinois at Urbana-Champaign, USA 3Institut de Physique du Globe-Paris Sorbonne, France 4Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Germany Introduction: The planetary evolution and struc- other at 4.3 µm (visible on the dayside). The signifi- ture of Venus remain uncertain more than half a centu- cant advantage of observing nightglow on Venus is ry after the first visit by a robotic spacecraft. To under- that it is much brighter on Venus than on Earth [2] and stand how Venus evolved it is necessary to detect the that airglow lifetime (~4,000 sec) is significantly long- signs of seismic activity. Due to the adverse surface er than the period of seismic waves (10-30 sec). This conditions on Venus, with extremely high temperature makes it very attractive for directly detecting surface and pressure, it is infeasible with current technology, waves on Venus. This is in sharp contrast with Earth even using flagship missions, to place seismometers on where the lifetime of airglow is about one order of the surface for an extended period of time. Due to dy- magnitude smaller (~110 sec) than, e.g., the tsunami namic coupling between the solid planet and the at- waves we routinely observe on Earth with 630 nm air- mosphere, the waves generated by quakes propagate glow instruments [4].
    [Show full text]
  • Nighttime Photochemical Model and Night Airglow on Venus
    Planetary and Space Science 85 (2013) 78–88 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Nighttime photochemical model and night airglow on Venus Vladimir A. Krasnopolsky n a Department of Physics, Catholic University of America, Washington, DC 20064, USA b Moscow Institute of Physics and Technology, Dolgoprudnyy 141700 Russia article info abstract Article history: The photochemical model for the Venus nighttime atmosphere and night airglow (Krasnopolsky, 2010, Received 23 December 2012 Icarus 207, 17–27) has been revised to account for the SPICAV detection of the nighttime ozone layer and Received in revised form more detailed spectroscopy and morphology of the OH nightglow. Nighttime chemistry on Venus is 28 April 2013 induced by fluxes of O, N, H, and Cl with mean hemispheric values of 3 Â 1012,1.2Â 109,1010, and Accepted 31 May 2013 − − 1010 cm 2 s 1, respectively. These fluxes are proportional to column abundances of these species in the Available online 18 June 2013 daytime atmosphere above 90 km, and this favors their validity. The model includes 86 reactions of 29 Keywords: species. The calculated abundances of Cl2, ClO, and ClNO3 exceed a ppb level at 80–90 km, and Venus perspectives of their detection are briefly discussed. Properties of the ozone layer in the model agree Photochemistry with those observed by SPICAV. An alternative model without the flux of Cl agrees with the observed O Night airglow 3 peak altitude and density but predicts an increase of ozone to 4 Â 108 cm−3 at 80 km.
    [Show full text]
  • A Physically-Based Night Sky Model Henrik Wann Jensen1 Fredo´ Durand2 Michael M
    To appear in the SIGGRAPH conference proceedings A Physically-Based Night Sky Model Henrik Wann Jensen1 Fredo´ Durand2 Michael M. Stark3 Simon Premozeˇ 3 Julie Dorsey2 Peter Shirley3 1Stanford University 2Massachusetts Institute of Technology 3University of Utah Abstract 1 Introduction This paper presents a physically-based model of the night sky for In this paper, we present a physically-based model of the night sky realistic image synthesis. We model both the direct appearance for image synthesis, and demonstrate it in the context of a Monte of the night sky and the illumination coming from the Moon, the Carlo ray tracer. Our model includes the appearance and illumi- stars, the zodiacal light, and the atmosphere. To accurately predict nation of all significant sources of natural light in the night sky, the appearance of night scenes we use physically-based astronomi- except for rare or unpredictable phenomena such as aurora, comets, cal data, both for position and radiometry. The Moon is simulated and novas. as a geometric model illuminated by the Sun, using recently mea- The ability to render accurately the appearance of and illumi- sured elevation and albedo maps, as well as a specialized BRDF. nation from the night sky has a wide range of existing and poten- For visible stars, we include the position, magnitude, and temper- tial applications, including film, planetarium shows, drive and flight ature of the star, while for the Milky Way and other nebulae we simulators, and games. In addition, the night sky as a natural phe- use a processed photograph. Zodiacal light due to scattering in the nomenon of substantial visual interest is worthy of study simply for dust covering the solar system, galactic light, and airglow due to its intrinsic beauty.
    [Show full text]
  • Optical Radiation from the Atmosphere
    Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-1976 Optical Radiation from the Atmosphere Doran J. Baker Utah State University William R. Pendleton Jr. Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/sdl_pubs Recommended Citation Baker, Doran J. and Pendleton, William R. Jr., "Optical Radiation from the Atmosphere" (1976). Space Dynamics Lab Publications. Paper 2. https://digitalcommons.usu.edu/sdl_pubs/2 This Article is brought to you for free and open access by the Space Dynamics Lab at DigitalCommons@USU. It has been accepted for inclusion in Space Dynamics Lab Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. cÌ E1 Baker, Doran J., and William R. Pendleton Jr. 1976. “Optical Radiation from the Atmosphere.” Proceedings of SPIE 0091: 50–62. doi:10.1117/12.955071. OPTICAL RADIATION FROM THE ATMOSPHERE Doran J. Baker and William R. Pendleton,Pendleton, Jr.Jr. Electro-Electro-Dynamics Dynamics Laboratories,Laboratories, UtahUtah StateState University Logan, Utah 84322 ABSTRACT The -interfaceinterface region which lies between the meteorological atmosphere of the Earth and "outer" space is a source ofof abundantabundant opticaloptical radiation.radiation. The purpose of thisthis paper isis toto provide the optical instrumentation engineer with a generalized understanding and a summary reference of naturally-naturally -occurring occurring aerospace radiation phenomena.phenomena. The colors of thethe radiationradiation extend over the full optical spectrum fromfrom ultravioletultraviolet throughthrough thethe infrared.infrared. The emissions, observed during both day and night times,times , areare richrich inin lineline andand bandband spectra.spectra. The parameter­parameter- ization of atmosphericatmospheric light by frequency (or photonphoton energy)energy) andand byby spectral radiance is discussed.
    [Show full text]
  • Modern Astronomical Optics 1
    Modern Astronomical Optics 1. Fundamental of Astronomical Imaging Systems OUTLINE: A few key fundamental concepts used in this course: Light detection: Photon noise Diffraction: Diffraction by an aperture, diffraction limit Spatial sampling Earth's atmosphere: every ground-based telescope's first optical element Effects for imaging (transmission, emission, distortion and scattering) and quick overview of impact on optical design of telescopes and instruments Geometrical optics: Pupil and focal plane, Lagrange invariant Astronomical measurements & important characteristics of astronomical imaging systems: Collecting area and throughput (sensitivity) flux units in astronomy Angular resolution Field of View (FOV) Time domain astronomy Spectral resolution Polarimetric measurement Astrometry Light detection: Photon noise Poisson noise Photon detection of a source of constant flux F. Mean # of photon in a unit dt = F dt. Probability to detect a photon in a unit of time is independent of when last photon was detected→ photon arrival times follows Poisson distribution Probability of detecting n photon given expected number of detection x (= F dt): f(n,x) = xne-x/(n!) x = mean value of f = variance of f Signal to noise ration (SNR) and measurement uncertainties SNR is a measure of how good a detection is, and can be converted into probability of detection, degree of confidence Signal = # of photon detected Noise (std deviation) = Poisson noise + additional instrumental noises (+ noise(s) due to unknown nature of object observed) Simplest case (often
    [Show full text]
  • Introducing the Bortle Dark-Sky Scale
    observer’s log Introducing the Bortle Dark-Sky Scale Excellent? Typical? Urban? Use this nine-step scale to rate the sky conditions at any observing site. By John E. Bortle ow dark is your sky? A Limiting Magnitude Isn’t Enough precise answer to this ques- Amateur astronomers usually judge their tion is useful for comparing skies by noting the magnitude of the observing sites and, more im- faintest star visible to the naked eye. Hportant, for determining whether a site is However, naked-eye limiting magnitude dark enough to let you push your eyes, is a poor criterion. It depends too much telescope, or camera to their theoretical on a person’s visual acuity (sharpness of limits. Likewise, you need accurate crite- eyesight), as well as on the time and ef- ria for judging sky conditions when doc- fort expended to see the faintest possible umenting unusual or borderline obser- stars. One person’s “5.5-magnitude sky” vations, such as an extremely long comet is another’s “6.3-magnitude sky.” More- tail, a faint aurora, or subtle features in over, deep-sky observers need to assess the galaxies. visibility of both stellar and nonstellar ob- On Internet bulletin boards and news- jects. A modest amount of light pollution groups I see many postings from begin- degrades diffuse objects such as comets, ners (and sometimes more experienced nebulae, and galaxies far more than stars. observers) wondering how to evaluate To help observers judge the true dark- the quality of their skies. Unfortunately, ness of a site, I have created a nine-level most of today’s stargazers have never scale.
    [Show full text]
  • Special Issue Editorial: Atmospheric Airglow—Recent Advances in Observations, Experimentations, and Modeling
    atmosphere Editorial Special Issue Editorial: Atmospheric Airglow—Recent Advances in Observations, Experimentations, and Modeling Tai-Yin Huang Department of Physics, Penn State Lehigh Valley, Center Valley, PA 18034, USA; [email protected] Airglow observations, experimentations, and theoretical studies have significantly advanced our understanding of airglow in recent decades. This Special Issue is a collec- tion of recent studies to showcase the latest results from studies in airglow observations, experimentations, and numerical modeling in the Mesosphere and Lower Thermosphere (MLT) and F regions of the terrestrial atmosphere. There are three main themes in this Special Issue. The first theme is focused on the use of satellite measurements to study the variabilities observed in the airglow emissions. The second theme is focused on ground- based observations of airglow to characterize gravity waves. The third theme is focused on airglow modeling. The recent (NASA) Global-scale Observations of the Limb and Disk (GOLD) mission provides a unique new view of the daytime thermosphere. Immel et al. [1] studied the daily variability in the UV airglow (OI and N2 in the 133–168-nm range) observed by the GOLD mission to characterize the behavior of these constituents of the thermosphere. Their results indicate that oxygen densities in the altitude range of 150–200 km vary independently from the variations in nitrogen. Yue et al. [2] performed a preliminary comparison between airglow-based Atmospheric Gravity Wave (AGW) observations from two space-borne Citation: Huang, T.-Y. Special Issue sensors, the Visible/Infrared Imaging Radiometer Suite/Day-Night Band (VIIRS/DNB) Editorial: Atmospheric Airglow— and the Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere/Visible and near- Recent Advances in Observations, Infrared Spectral Imager (IMAP/VISI).
    [Show full text]
  • Three-Dimensional Tomographic Reconstruction of Mesospheric Airglow Structures Using Two-Station Ground-Based Image Measurements
    Three-dimensional tomographic reconstruction of mesospheric airglow structures using two-station ground-based image measurements Vern P. Hart,1,* Timothy E. Doyle,2 Michael J. Taylor,1,4 Brent L. Carruth,3 Pierre-Dominique Pautet,4 and Yucheng Zhao4 1Department of Physics, Utah State University, 4415 Old Main Hill, Logan, Utah 84322, USA 2Department of Physics, Utah Valley University, 800 West University Parkway, MS 179, Orem, Utah 84058, USA 3Department of Electrical and Computer Engineering, Utah State University, 4120 Old Main Hill, Logan, Utah 84322, USA 4Center for Atmospheric and Space Sciences, Utah State University, 4405 Old Main Hill, Logan, Utah 84322, USA *Corresponding author: [email protected] Received 15 June 2011; revised 4 November 2011; accepted 14 December 2011; posted 16 December 2011 (Doc. ID 149292); published 29 February 2012 A new methodology is presented to create two-dimensional (2D) and three-dimensional (3D) tomographic reconstructions of mesospheric airglow layer structure using two-station all-sky image measurements. A fanning technique is presented that produces a series of cross-sectional 2D reconstructions, which are combined to create a 3D mapping of the airglow volume. The imaging configuration is discussed and the inherent challenges of using limited-angle data in tomographic reconstructions have been analyzed using artificially generated imaging objects. An iterative reconstruction method, the partially constrained al- gebraic reconstruction technique (PCART), was used in conjunction with a priori information of the air- glow emission profile to constrain the height of the imaged region, thereby reducing the indeterminacy of the inverse problem. Synthetic projection data were acquired from the imaging objects and the forward problem to validate the tomographic method and to demonstrate the ability of this technique to accu- rately reconstruct information using only two ground-based sites.
    [Show full text]