Opisthobranchia-Sacoglossa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SENCKENBERG First Observations of Attempted Nudibranch Predation By
Mar Biodiv (2012) 42281-283 DOI 10.1007/S12526-011-0097-9 SENCKENBERG SHORT COMMUNICATION First observations of attempted nudibranch predation by sea anemones Sancia E. T. van der Meij • Bastian T. Reijnen Received: 18 April 2011 /Revised: 1 June2011 /Accepted: 6 June2011 /Published online:24 June2011 © The Author(s) 2011. This article is published with open access at Springerlink.com Abstract On two separate occasions during fieldwork in Material and methods Sempoma (eastern Sabah, Malaysia), sea anemones of the family Edwardsiidae were observed attempting to The observations were made dining fieldwork on coral feed on the nudibranch speciesNembrotha lineolata and reefs in the Sempoma district (eastern Sabah, Malaysia), Phyllidia ocellata. These are the first in situ observations as part of the Sempoma Marine Ecological Expedition in of nudibranch predation by sea anemones. This new December 2010 (SMEE2010). The reported observations record is compared with known information on sea slug were made on Creach Reef (04°18'58.8"N, 118°36T7.3" predators. E) and Pasalat Reef (04°30'47.8"N, 118°44'07.8"E), at approximately 10 m depth for both observations. The Keywords Actiniaria • Coral reef • Nudibranchia • nudibranch identifications were checked against Gosliner Polyceridae • Phylidiidae et al. (2008), whereas the identification of the sea anemone was done by A. Crowtheri No material was collected. Photos were taken with a Canon 400D with a Introduction Sigma 50-mm macro lens. Several organisms are known to prey on sea slugs (Gastropoda: Opisthobranchia), including fish, crabs, Results worms and sea spiders (e.g. Trowbridge 1994; Rogers et al. -
Life Cycle and Early Development of the Thecosomatous Pteropod Limacina Retroversa in the Gulf of Maine, Including the Effect of Elevated CO2 Levels
Life cycle and early development of the thecosomatous pteropod Limacina retroversa in the Gulf of Maine, including the effect of elevated CO2 levels Ali A. Thabetab, Amy E. Maasac*, Gareth L. Lawsona and Ann M. Tarranta a. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 b. Zoology Dept., Faculty of Science, Al-Azhar University in Assiut, Assiut, Egypt. c. Bermuda Institute of Ocean Sciences, St. George’s GE01, Bermuda *Corresponding Author, equal contribution with lead author Email: [email protected] Phone: 441-297-1880 x131 Keywords: mollusc, ocean acidification, calcification, mortality, developmental delay Abstract Thecosome pteropods are pelagic molluscs with aragonitic shells. They are considered to be especially vulnerable among plankton to ocean acidification (OA), but to recognize changes due to anthropogenic forcing a baseline understanding of their life history is needed. In the present study, adult Limacina retroversa were collected on five cruises from multiple sites in the Gulf of Maine (between 42° 22.1’–42° 0.0’ N and 69° 42.6’–70° 15.4’ W; water depths of ca. 45–260 m) from October 2013−November 2014. They were maintained in the laboratory under continuous light at 8° C. There was evidence of year-round reproduction and an individual life span in the laboratory of 6 months. Eggs laid in captivity were observed throughout development. Hatching occurred after 3 days, the veliger stage was reached after 6−7 days, and metamorphosis to the juvenile stage was after ~ 1 month. Reproductive individuals were first observed after 3 months. Calcein staining of embryos revealed calcium storage beginning in the late gastrula stage. -
Frontiers in Zoology Biomed Central
Frontiers in Zoology BioMed Central Research Open Access Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life Katharina Händeler*1, Yvonne P Grzymbowski1, Patrick J Krug2 and Heike Wägele1 Address: 1Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany and 2Department of Biological Sciences, California State University, Los Angeles, California, 90032-8201, USA Email: Katharina Händeler* - [email protected]; Yvonne P Grzymbowski - [email protected]; Patrick J Krug - [email protected]; Heike Wägele - [email protected] * Corresponding author Published: 1 December 2009 Received: 26 June 2009 Accepted: 1 December 2009 Frontiers in Zoology 2009, 6:28 doi:10.1186/1742-9994-6-28 This article is available from: http://www.frontiersinzoology.com/content/6/1/28 © 2009 Händeler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Among metazoans, retention of functional diet-derived chloroplasts (kleptoplasty) is known only from the sea slug taxon Sacoglossa (Gastropoda: Opisthobranchia). Intracellular maintenance of plastids in the slug's digestive epithelium has long attracted interest given its implications for understanding the evolution of endosymbiosis. However, photosynthetic ability varies widely among sacoglossans; some species have no plastid retention while others survive for months solely on photosynthesis. We present a molecular phylogenetic hypothesis for the Sacoglossa and a survey of kleptoplasty from representatives of all major clades. We sought to quantify variation in photosynthetic ability among lineages, identify phylogenetic origins of plastid retention, and assess whether kleptoplasty was a key character in the radiation of the Sacoglossa. -
Argiris 1 Color Change in Dolabrifera Dolabrifera (Sea Hare)
Argiris 1 Color change in Dolabrifera dolabrifera (sea hare) in response to substrate change Jennay Argiris Department of Molecular, Cellular and Developmental Biology University of California, Santa Barbara EAP Tropical Biology and Conservation Program, Fall 2017 15 December 2017 ABSTRACT Dolabrifera dolabrifera is an Opisthobranch (sea slug) known for its cryptic coloration. This coloration is an important defense mechanism, but D. dolabrifera have never been studied to see if they change colors to increase their cryptic nature. After photographing 12 D. dolabrifera on different substrates, the color of the slugs and their substrate were determined. These colors were then depicted as hue values. Each D. dolabrifera was photographed three times, in different tide pools and over time. Every D. dolabrifera was graphed with the hue value found for the slug, substrate and reference for the three photographs taken. After analyzing the graphs, I found a correlation between the slug and substrate hue in eight out of the twelve trials. D. dolabrifera changes its color based on its substrate. RESUMEN Dolabrifera dolabrifera es una Opisthobranch (babosa del mar) conocido por su coloración críptica. Esta coloración es un mecanismo de defensa importante, pero nunca se ha estudiado para ver si los D. dolabrifera cambian de color para aumentar su naturaleza críptica. Después de fotografiar 12 D. dolabrifera en diferentes charcas de mareas a través del tiempo, se determine el color de las babosas y su sustrato. Estos colores fueron luego representados como valores de tono. Cada D. dolabrifera fue fotografiada tres veces, en diferentes charcos de mareas y con el tiempo. Cada D. -
(5 Classes) Polyplacophora – Many Plates on a Foot Cephalopoda – Head Foot Gastropoda – Stomach Scaphopoda – Tusk Shell Bivalvia – Hatchet Foot
Policemen Phylum Censor Gals in Scant Mollusca Bikinis! (5 Classes) Polyplacophora – Many plates on a foot Cephalopoda – Head foot Gastropoda – Stomach Scaphopoda – Tusk shell Bivalvia – Hatchet foot foot Typical questions for Mollusca •How many of these specimens posses a radula? •Which ones are filter feeders? •Which have undergone torsion? Detorsion? •Name the main function of the mantle? •Name a class used for currency •Which specimens have lungs? (Just have think of which live on land vs. in water……) •Name the oldest part of a univalve shell? Bivalve? Answers…maybe • Gastropods, Cephalopoda, Mono-, A- & Polyplacophora • Bivalvia (Scaphopoda….have a captacula) • Gastropods Opisthobranchia (sea hares & sea slugs) and the land slugs of the Pulmonata • Mantle secretes the shell • Scaphopoda • Pulmonata – their name gives this away • Apex for Univalve, Umbo for bivalve but often the terms are used interchangeably Anus Gills in Mantle mantle cavity Radula Head in mouth Chitons radula, 8 plates Class Polyplacophora Tentacles (2) & arms are all derived from the gastropod foot Class Cephalopoda - Octopuses, Squid, Nautilus, Cuttlefish…beak, pen, ink sac, chromatophores, jet propulsion……….dissection. Subclass Prosobranchia Aquatic –marine. Generally having thick Apex pointed shells, spines, & many have opercula. Gastropoda WORDS TO KNOW: snails, conchs, torsion, coiling, radula, operculum & egg sac Subclass Pulmonata Aquatic – freshwater. Shells are thin, rounded, with no spines, ridges or opercula. Subclass Pulmonata Slug Detorsion… If something looks strange, chances are…. …….it is Subclass Opisthobranchia something from Class Gastropoda Nudibranch (…or your roommate!) Class Gastropoda Sinistral Dextral ‘POP’ Subclass Prosobranchia - Aquatic snails (“shells”) -Have gills Subclass Opisthobranchia - Marine - Have gills - Nudibranchs / Sea slugs / Sea hares - Mantle cavity & shell reduced or absent Subclass Pulmonata - Terrestrial Slugs and terrestrial snails - Have lungs Class Scaphopoda - “tusk shells” Wampum Indian currency. -
Gastropoda: Opisthobranchia)
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 1977 A MONOGRAPHIC STUDY OF THE NEW ENGLAND CORYPHELLIDAE (GASTROPODA: OPISTHOBRANCHIA) ALAN MITCHELL KUZIRIAN Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation KUZIRIAN, ALAN MITCHELL, "A MONOGRAPHIC STUDY OF THE NEW ENGLAND CORYPHELLIDAE (GASTROPODA: OPISTHOBRANCHIA)" (1977). Doctoral Dissertations. 1169. https://scholars.unh.edu/dissertation/1169 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Integrative Systematics of the Genus Limacia in the Eastern Pacific
Mar Biodiv DOI 10.1007/s12526-017-0676-5 ORIGINAL PAPER Integrative systematics of the genus Limacia O. F. Müller, 1781 (Gastropoda, Heterobranchia, Nudibranchia, Polyceridae) in the Eastern Pacific Roberto A. Uribe1 & Fabiola Sepúlveda2 & Jeffrey H. R. Goddard3 & Ángel Valdés4 Received: 6 December 2016 /Revised: 22 February 2017 /Accepted: 27 February 2017 # Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017 Abstract Morphological examination and molecular analy- from Baja California to Panama. Species delimitation analyses ses of specimens of the genus Limacia collected in the based on molecular data and unique morphological traits from Eastern Pacific Ocean indicate that four species of Limacia the dorsum, radula, and reproductive systems are useful in occur in the region. Limacia cockerelli,previouslyconsidered distinguishing these species to range from Alaska to Baja California, is common only in the northern part of its former range. An undescribed Keywords Mollusca . New species . Molecular taxonomy . pseudocryptic species, previously included as L. cockerelli, Pseudocryptic species occurs from Northern California to the Baja California Peninsula and is the most common species of Limacia in Southern California and Northern Mexico. Another new spe- Introduction cies similar to L. cockerelli is described from Antofagasta, Chile and constitutes the first record of the genus Limacia in Molecular markers have become a powerful tool in tax- the Southeastern Pacific Ocean. These two new species are onomy, systematics and phylogeny, allowing researchers formally described herein. Finally, Limacia janssi is a genet- to assess whether morphological variations correspond to ically and morphologically distinct tropical species ranging different species or merely represent intra-specific pheno- typic expression due to environmental variation (Hebert Communicated by V. -
THE VEL1CER Page 129
Vol. 14; No. 1 THE VEL1CER Page 129 Table 1 CHARACTERS OF THE SUBFAMILIES OF THE TURRIDAE Radular teeth Earliest api Columellar Parietal Position of Subfamily Central Lateral Marginal Operculum cal whorls folds callus sinus Pseudomelatominae Large None Solid Present Smooth None None Shoulder Clavinae Vestigial Broad, Solid Present Smooth or None Present Shoulder comblike carinate Turrinae Large, None Solid, Present Smooth None None Periphery vestigial, wishbone or absent Turriculinae Large, None Solid, Present Smooth None None Shoulder vestigial, wishbone or absent or duplex Crassispirinae Rarely None Solid, Present Smooth or None Present Shoulder present duplex weakly carinate Strictispirinae None None Solid Present Smooth None Present Shoulder Zonulispirinae None None Hollow, Present Smooth None Present Shoulder mostly barbed Borsoniinae None None Hollow, Either Smooth Either None Shoulder rarely present present barbed or absent or absent Mitrolumninae None None Hollow, None Smooth Present None Suture, , no barbs shallow Clathurellinae None None Hollow, None Usually None Present Shoulder no barbs carinate Mangeliinae None None Hollow, None Smooth, sub- None Either Shoulder rarely carinate, or present barbed cancellate or absent Daphnellinae None None Hollow, None Usually None Either Suture no barbs diagonally present reticulate or absent Daphnelline radulae are illustrated in Figures 136 to Discussion: Truncadaphne resembles Pseudodaphnella 142. Boettger, 1895, zndKermia Oliver, 1915, in having simi lar clathrate sculpture and parietal callus bordering the sinus, but differs from both in having a diagonally cancel- Truncadaphne McLean, gen. nov. late, rather than axially ribbed protoconch. Truncadaphne is monotypic. The type species was de Type Species: "Philbertia" stonei Hertlein & Strong, scribed as a Pleistocene fossil from San Salvador Island, 1939. -
Plasticity and Artificial Selection for Developmental Mode in a 2 Poecilogonous Sea Slug
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.981324; this version posted March 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: Plasticity and Artificial Selection for Developmental Mode in a 2 Poecilogonous Sea Slug 3 4 Keywords: lecithotrophy, planktotrophy, plasticity, sacoglossan, larvae, salinity 5 word count: 6422 6 submission type: Article 7 8 Author: Serena A. Caplins 9 Affiliations: Department of Evolution and Ecology, Center for Population Biology, University 10 of California, Davis, Davis, California 95616 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.981324; this version posted March 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Caplins, SA GXE and selection for lecithotrophy 11 Abstract 12 Developmental mode describes the means by which larvae are provisioned with the nutrients they need 13 to proceed through development and typically results in a trade-off between offspring size and number. 14 The sacoglossan sea slug Alderia willowi exhibits intraspecific variation for developmental mode (= 15 poecilogony) that is environmentally modulated with populations producing more yolk-feeding 16 (lecithotrophic) larvae during the summer, and more planktonic feeding (planktotrophic) larvae in the 17 winter. -
Alderia Modesta Class: Gastropoda, Opisthobranchia Order: Sacoglossa a Sacoglossan Sea Slug Family: Limapontiidae
Phylum: Mollusca Class: Gastropoda, Opisthobranchia Alderia modesta Order: Sacoglossa A sacoglossan sea slug Family: Limapontiidae Description Size: To 8 mm long; Coos Bay specimens to While sacoglossans superficially resemble 5 mm. the more well-known nudibranchs, they lack a Color: Greenish to yellowish-tan, black circlet of gills, solid rhinophores, and oral markings, base ivory. tentacles. One exception, Stiliger Body: Metamorphic, adult is an oblong, flat- fuscovittatus, has solid rhinophores; it is tiny bottomed form without tentacles or tail (Figs. (3 mm), transparent white with reddish brown 1, 2) (Evans 1953). patterns, and lives in Polysiphonia, a red alga. Rhinophores: Reduced, rolled and not solid In the family Limapontiidae there are two (Fig. 1); (Kozloff calls these cephalic additional species: projections 'dorsolateral tentacles,' not Olea hansineensis has only about 10 rhinophores) (Kozloff 1974). elongate cerata on its posterior dorsum; it is Foot: No parapodia (lateral flaps that could gray, and found commonly in Zostera beds. fold over dorsum); foot extends laterally Placida dendritica has a long, obvious tail, beyond body (Kozloff 1974). long cerata, and is pale yellow with dark Cerata: Dorsal projections, about 18 (Fig. 1), green lines. It is usually on algae Bryopsis or in two loose branches on both anterior and Codium in the rocky intertidal, and found in posterior halves of dorsum (Kozloff 1974). California and Puget Sound (Williams and Gills: Rather than a circlet of gills, like those Gosliner 1973). present in some other gastropods, they have None of the above are yellowish tan, have branchial processes set in six or seven small black markings, a tubular anus, and live diagonal rows on the sides of the back, on Vaucheria. -
From the Marshall Islands, Including 57 New Records 1
Pacific Science (1983), vol. 37, no. 3 © 1984 by the University of Hawaii Press. All rights reserved Notes on Some Opisthobranchia (Mollusca: Gastropoda) from the Marshall Islands, Including 57 New Records 1 SCOTT JOHNSON2 and LISA M. BOUCHER2 ABSTRACT: The rich opisthobranch fauna of the Marshall Islands has re mained largely unstudied because of the geographic remoteness of these Pacific islands. We report on a long-term collection ofOpisthobranchia assembled from the atolls of Bikini, Enewetak, Kwajalein, Rongelap, and Ujelang . Fifty-seven new records for the Marshall Islands are recorded, raising to 103 the number of species reported from these islands. Aspects ofthe morphology, ecology, devel opment, and systematics of 76 of these species are discussed. THE OPISTHOBRANCH FAUNA OF THE Marshall viously named species are discussed, 57 of Islands, a group of 29 atolls and five single which are new records for the Marshall islands situated 3500 to 4400 km west south Islands (Table 1). west of Honolulu, Hawaii, is rich and varied but has not been reported on in any detail. Pre vious records of Marshall Islands' Opistho METHODS branchia record only 36 species and are largely restricted to three studies. Opisthobranchs The present collections were made on inter collected in the northern Marshalls during the tidal reefs and in shallow water by snorkeling period of nuclear testing (1946 to 1958) and and by scuba diving to depths of 25 m, both now in the U.S. National Museum, along with by day and night. additional material from Micronesia, were Descriptions, measurements, and color studied by Marcus (1965).