Isolation and Identification of Rhizopus Oligosporus Local Isolate Derived from Several Inoculum Sources
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fungi-Rhizopus
Characters of Fungi Some of the most important characters of fungi are as follows: 1. Occurrence 2. Thallus organization 3. Different forms of mycelium 4. Cell structure 5. Nutrition 6. Heterothallism and Homothallism 7. Reproduction 8. Classification of Fungi. 1. Occurrence: Fungi are cosmopolitan and occur in air, water soil and on plants and animals. They prefer to grow in warm and humid places. Hence, we keep food in the refrigerator to prevent bacterial and fungal infestation. 2. Thallus organization: Except some unicellular forms (e.g. yeasts, Synchytrium), the fungal body is a thallus called mycelium. The mycelium is an interwoven mass of thread-like hyphae (Sing, hypha). Hyphae may be septate (with cross wall) and aseptate (without cross wall). Some fungi are dimorphic that found as both unicellular and mycelial forms e.g. Candida albicans. 3. Different forms of mycelium: (a) Plectenchyma (fungal tissue): In a fungal mycelium, hyphae organized loosely or compactly woven to form a tissue called plectenchyma. It is two types: i. Prosenchyma or Prosoplectenchyma: In these fungal tissue hyphae are loosely interwoven lying more or less parallel to each other. ii. Pseudoparenchyma or paraplectenchyma: In these fungal tissue hyphae are compactly interwoven looking like a parenchyma in cross-section. (b) Sclerotia (Gr. Skleros=haid): These are hard dormant bodies consist of compact hyphae protected by external thickened hyphae. Each Sclerotium germinates into a mycelium, on return of favourable condition, e.g., Penicillium. (c) Rhizomorphs: They are root-like compactly interwoven hyphae with distinct growing tip. They help in absorption and perennation (to tide over the unfavourable periods), e.g., Armillaria mellea. -
Press Release
PRESS RELEASE October 27, 2019 RESOBOX East Village 91 E 3rd St, New York, NY 10003 DISCOVER THE VERSATILITY of TOFU ~Japanese Vegan Cooking Event~ Date: Sunday, November 3, 2019 10:00am - 12:00pm Where: RESOBOX East Village 91 E 3rd St, New York, NY 10003 Price: $60 (includes all materials) Contact: Takashi Ikezawa, 718-784-3680, [email protected] Web: https://resobox.com/event/discover-the-versatility-of-tofu-japanese-veGan-cookinG-event/ “Try and Experience the Various Textures of Tofu” “Discover Recipes for Tofu Cuisines” “Taste The Many Textures of Tofu” Event Overview Tofu has one of the few plant-based proteins that contain all of the essential amino acids we need to stay healthy. Tofu – a protein-rich, healthy superfood – is not all the same. It has several types of textures, tastes, and appearances depending on the country of oriGin. For this workshop, participants will cook using three types of Japanese tofu! They will learn the basics of tofu including the differences between soft, medium, and firm Tofu and how to cook each texture. See below for a full below outline of what’s in store: 1. Understanding the characteristics of soft, medium, and firm tofu such as production method, how to choose the riGht tofu, recipes, and more. Expand your knowledGe on Tofu! Participants will learn the characteristic of each texture and how to prepare them while tasting different types of Tofu. 2. Cooking using soft, medium, and firm tofu: 1. Tofu Teriyaki Steak Sandwich • Firm Tofu • Soy Sauce • Brown Sugar • Sweet Sake • Refined Sake • Ginger • Potato Starch • Seasonal VeGetables • Bread 2. -
A Newly Isolated Rhizopus Microsporus Var. Chinensis Capable of Secreting Amyloytic Enzymes with Raw-Starch-Digesting Activity
J. Microbiol. Biotechnol. (2010), 20(2), 383–390 doi: 10.4014/jmb.0907.07025 First published online 24 December 2009 A Newly Isolated Rhizopus microsporus var. chinensis Capable of Secreting Amyloytic Enzymes with Raw-Starch-Digesting Activity Li, Yu-Na1,2, Gui-Yang Shi1,2, Wu Wang1,2*, and Zheng-Xiang Wang1,2* 1The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China 2Research Center of Bio-resource and Bio-energy, School of Bioengineering, Jiangnan University, Wuxi 214122, China Received: July 19, 2009 / Revised: November 15, 2009 / Accepted: November 17, 2009 A newly isolated active producer of raw-starch-digesting are available, but researchers continue to search for new amyloytic enzymes, Rhizopus microsporus var. chinensis amyloytic enzymes that could create new applications. CICIM-CU F0088, was screened and identified by The traditional course of enzymatic starch saccharification morphological characteristics and molecular phylogenetic is a high-energy-consumption procedure, which significantly analyses. This fungus was isolated from the soil of Chinese enhances the cost of starch-related products. Therefore, to glue pudding mill, and produced high levels of amylolytic reduce the cost of starch processing, the importance of activity under solid-state fermentation with supplementation enzymatic saccharification of raw starch without cooking of starch and wheat bran. Results of thin-layer chromatography has become well recognized recently [24, 34]. This has showed there are two kinds of amyloytic enzymes formed generated a worldwide interest in the discovery of several by this strain, including one α-amylase and two glucoamylases. raw-starch-digesting amyloytic enzymes that do not require It was found in the electron microscope experiments that gelatinization and can directly hydrolyze the raw starch in the two glucoamylases can digest raw corn starch and a single step [26, 34]. -
Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Read Book Wagashi and More: a Collection of Simple Japanese
WAGASHI AND MORE: A COLLECTION OF SIMPLE JAPANESE DESSERT RECIPES PDF, EPUB, EBOOK Cooking Penguin | 72 pages | 07 Feb 2013 | Createspace | 9781482376364 | English | United States Wagashi and More: A Collection of Simple Japanese Dessert Recipes PDF Book Similar to mochi, it is made with glutinous rice flour or pounded glutinous rice. Tourists like to buy akafuku as a souvenir, but it should be enjoyed quickly, as it expires after only two days. I'm keeping this one a little under wraps for now but if you happen to come along on one of my tours it might be on the itinerary Next to the velvety base, it can also incorporate various additional ingredients such as sliced chestnuts or figs. For those of you who came on the inaugural Zenbu Ryori tour - shhhhhhhh! Well this was a first. This classic mochi variety combines chewy rice cakes made from glutinous rice and kinako —roasted soybean powder. More about Hishi mochi. The sweet and salty goma dango is often consumed in August as a summer delicacy at street fairs or in restaurants. The base of each mitsumame are see-through jelly cubes made with agar-agar, a thickening agent created out of seaweed. Usually the outside pancake-ish layer is plain with a traditional filling of sweet red beans. Forgot your password? The name of this treat consists of two words: bota , which is derived from botan , meaning tree peony , and mochi , meaning sticky, pounded rice. Dessert Kamome no tamago. Rakugan are traditional Japanese sweets prepared in many different colors and shapes reflecting seasonal, holiday, or regional themes. -
Pouring Plates from Prepared Bottled Media
Pouring Plates from Prepared Bottled Media Primary Hazard Warning Never purchase living specimens without having a disposition strategy in place. When pouring bottles, agar is HOT! Burning can occur. Always handle hot agar bottles with heat-protective gloves. For added protection wear latex or nitrile gloves when working with bacteria, and always wash hands before and after with hot water and soap. Availability Agar is available for purchase year round. Information • Storage: Bottled agar can be stored at room temperature for about six months unless otherwise specified. Never put agar in the freezer. It will cause the agar to breakdown and become unusable. To prevent contamination keep all bottles and Petri dishes sealed until ready to use. • Pouring Plates • Materials Needed: • Draft-free enclosure or Laminar flow hood • 70% isopropyl alcohol • Petri dishes • Microwave or hot water bath or autoclave 1. Melt the agar using one of the following methods: a) Autoclave: Loosen the cap on the agar bottle and autoclave the bottle at 15 psi for five minutes. While wearing heat-protective gloves, carefully remove the hot bottle and let it cool to between 75–55°C before pouring. This takes approximately 15 minutes. b)Water Bath: Loosen the cap on the agar bottle and place it into a water bath. Water temperature should remain at around 100°C. Leave it in the water bath until the agar is completely melted. While wearing heat- protective gloves, carefully remove the hot bottle and let it cool to between 75–55°C before pouring. c) Microwave: Loosen the cap on the agar bottle before microwaving. -
Production of Vitamin B-12 in Tempeh, a Fermented Soybean Food
APPn AND ENvmoNMNTrAL MICROBIOLOGY, Dec. 1977, p. 773-776 Vol. 34, No. 6 Copyright i) 1977 American Society for Microbiology Printed in U.S.A. Production of Vitamin B-12 in Tempeh, a Fermented Soybean Foodt IRENE T. H. LIEM, KEITH H. STEINKRAUS, AND TED C. CRONKtt Cornell University, Geneva, New York 14456 Received for publication 4 March 1977 Several varieties of soybeans contained generally less than 1 ng of vitamin B- 12 per g. It was found that use of a lactic fermentation typical of tropical conditions during the initial soaking of the soybeans did not influence the vitamin B-12 content ofthe resulting tempeh. Pure tempeh molds obtained from different sources did not produce vitamin B-12. It was found that the major source of vitamin B-12 in commercial tempeh purchased in Toronto, Canada, was a bacterium that accompanies the mold during fermentation. Reinoculation of the pure bacterium onto dehulled, hydrated, and sterilized soybeans resulted in the production of 148 ng of vitamin B-12 per g. The presence of the mold, along with the bacterium, did not inhibit or enhance production of vitamin B-12. Nutritionally significant amounts of vitamin B-12 were also found in the Indo- nesian fermented food, ontjom. Indonesian tempeh, a protein-rich vegetarian No reports have been found of Rhizopus species food, is one of the world's first meat analogs. producing vitamin B-12 or B-12-like activity. Mycelia of molds belonging to Rhizopus over- Vitamin B-12 is essential in the human diet, grow hydrated, dehulled, and partially cooked although a minimum daily requirement has not soybeans, knitting them into a firm cake, which been established. -
Tofu Fa with Sweet Peanut Soup
Tofu Fa with Sweet Peanut Soup This a recipe for the traditional Taiwanese dessert made with soy milk. Actually it is a soy custard served with sweet peanut soup. It is a lighter version of tofu in terms of texture. This recipe might sound strange for you if you were never been exposed to it. If you are familiar with dim sum, you might have encountered this dessert, but if you have never tried I encourage you to give this a try. Tofu Fa or toufa…it is a traditional Chinese snack based on soy, like tofu, but much tender and silkier. In Taiwan it is served with cooked peanut soup (sweet), red bean, oatmeal, green beans or a combination of these items, depending of your taste. Here I have it with a sweet peanut soup…yes, it sounds strange right? Yes, but once you try, might my get addicted to it…like my husband… I kind of use the short cut, I used the tofu-fa from a box (comes with a package of dry soy powder and gypsum) but if you want you can make your own soy milk and add gypsum, which is a tofu coagulant. Gypsum is used in some brewers and winemakers to adjust the pH. Some recipes call for gelatin or agar-agar…but these are different from tofu, they are more jelly like, and the texture and consistency are different from tofu. Going back to tofu-fa, I followed the instructions from the box, please make sure that you add the appropriate amount of water for tofu-fa, otherwise you will end up with regular tofu and not the custard like texture. -
Isolation of Mucorales from Biological Environment and Identification of Rhizopus Among the Isolates Using PCR- RFLP
Journal of Shahrekord University of Medical Sciences doi:10.34172/jsums.2019.17 2019;21(2):98-103 http://j.skums.ac.ir Original Article Isolation of Mucorales from biological environment and identification of Rhizopus among the isolates using PCR- RFLP Mahboobeh Madani1* ID , Mohammadali Zia2 ID 1Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran 2Department of Basic Science, (Khorasgan) Isfahan Branch, Islamic Azad University, Isfahan, Iran *Corresponding Author: Mahboobeh Madani, Tel: + 989134097629, Email: [email protected] Abstract Background and aims: Mucorales are fungi belonging to the category of Zygomycetes, found much in nature. Culture-based methods for clinical samples are often negative, difficult and time-consuming and mainly identify isolates to the genus level, and sometimes only as Mucorales. Therefore, applying fast and accurate diagnosis methods such as molecular approaches seems necessary. This study aims at isolating Mucorales for determination of Rhizopus genus between the isolates using molecular methods. Methods: In this descriptive observational study, a total of 500 samples were collected from air and different surfaces and inoculated on Sabouraud Dextrose Agar supplemented with chloramphenicol. Then, the fungi belonging to Mucorales were identified and their pure culture was provided. DNA extraction was done using extraction kit and the chloroform method. After amplification, the samples belonging to Mucorales were identified by observing 830 bp bands. For enzymatic digestion, enzyme BmgB1 was applied for identification of Rhizopus species by formation of 593 and 235 bp segments. Results: One hundred pure colonies belonging to Mucorales were identified using molecular methods and after enzymatic digestion, 21 isolates were determined as Rhizopus species. -
First Record of Rhizopus Oryzae from Stored Apple Fruits in Saudi Arabia
Plant Pathology & Quarantine 8(2): 116–121 (2018) ISSN 2229-2217 www.ppqjournal.org Article Doi 10.5943/ppq/8/2/2 Copyright ©Agriculture College, Guizhou University First record of Rhizopus oryzae from stored apple fruits in Saudi Arabia Al-Dhabaan FA Department of Biology, Science and Humanities College Alquwayiyah, Shaqra University, Saudi Arabia Al-Dhabaan FA 2018 – First record of Rhizopus oryzae from stored apple fruits in Saudi Arabia. Plant Pathology & Quarantine 8(2), 116–121, Doi 10.5943/ppq/8/2/2 Abstract During spring 2017, red delicious and Granny Smith apples with soft rot symptoms were collected from commercial markets in Saudi Arabia. The causal agent was isolated from infected fruits and its pathogenicity was confirmed by inoculation assays. To confirm the identity, total genomic DNA was extracted and multi-locus sequence data targeting two gene markers (ITS, ACT) was sequenced. Phylogenetic analysis confirmed the presence of two distinct clades; Saudi isolate was placed within a clade comprising Rhizopus oryzae and R. delemar reference isolates. Based on morphological characteristics, molecular identification and pathogenicity test, the fungus was identified as Rhizopus oryzae. This is the first report of Rhizopus soft rot caused by R. oryzae from stored apple fruits in Saudi Arabia. Key words – Rhizopus soft rot – phylogeny – pathogenicity – morphological characters – sequence data Introduction Rhizopus soft rot caused by Rhizopus oryzae occurs worldwide and reduces the quantity and quality of harvested vegetables and ornamental crops during storage, transit, and marketing (Amadioha 1996, 2001, Agrios 2005). Rhizopus soft rot is one of the most important postharvest diseases of apple, banana, watermelon, sweet potato and other hosts in Korea (Kwon et al. -
Successful Treatment of Pulmonary Mucormycosis Caused by Rhizopus Microsporus with Posaconazole
Successful Treatment of Pulmonary Mucormycosis Caused by Rhizopus Microsporus With Posaconazole Fan Yuan Southeast University Medical College Jun Chen Nanjing Jinling Hospital: East Region Military Command General Hospital Fang Liu Nanjing Jinling Hospital: East Region Military Command General Hospital Yongchao Dang Nanjing Jinling Hospital: East Region Military Command General Hospital Qingtao Kong Nanjing Jinling Hospital: East Region Military Command General Hospital Hong Sang ( [email protected] ) Nanjing Jinling Hospital: East Region Military Command General Hospital Case report Keywords: pulmonary mucormycosis, Rhizopus microspores, diabetes mellitus, posaconazole Posted Date: March 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-302265/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/7 Abstract Background: Mucormycosis is a rare fungal infection occurring chiey in the lung or the rhino-orbital- cerebral compartment, particularly in patients with immunodeciency or diabetes mellitus. Among Mucorales fungi, Rhizopus spp. are the most common cause of mucormycosis. Case presentation: We report the case of pulmonary mucormycosis caused by Rhizopus microsporus in a young patient with diabetes but no other apparent risk factors. The diagnosis has mainly relied on clinical manifestation, positive pulmonary tissue biopsy, and fungal culture. The patient was successfully treated with posaconazole oral suspension and remains asymptomatic at one-year follow-up. Conclusions: Pulmonary mucormycosis is a life-threatening condition and based on direct microscopy, histopathology, and culture for the diagnosis. Background Mucormycosis is a rare opportunistic infection but is associated with high mortality and morbidity. Mucormycosis occurs most commonly in immunocompromised patients, such as those with poorly controlled diabetes mellitus, solid organ or hematopoietic stem cell transplantation, trauma, and those receiving immunosuppressive therapy [1–3]. -
Genomic Analysis of the Basal Lineage Fungus Rhizopus Oryzae Reveals a Whole-Genome Duplication
Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ma, Li-Jun, Ashraf S. Ibrahim, Christopher Skory, Manfred G. Grabherr, Gertraud Burger, Margi Butler, Marek Elias, et al. 2009. Genomic analysis of the basal lineage fungus rhizopus oryzae reveals a whole-genome duplication. PLoS Genetics 5(7): e1000549. Published Version doi:10.1371/journal.pgen.1000549 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8148898 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication Li-Jun Ma1*, Ashraf S. Ibrahim2, Christopher Skory3, Manfred G. Grabherr1, Gertraud Burger4, Margi Butler5, Marek Elias6, Alexander Idnurm7, B. Franz Lang4, Teruo Sone8, Ayumi Abe8, Sarah E. Calvo1, Luis M. Corrochano9, Reinhard Engels1, Jianmin Fu10, Wilhelm Hansberg11, Jung-Mi Kim12, Chinnappa D. Kodira1, Michael J. Koehrsen1, Bo Liu12, Diego Miranda-Saavedra13, Sinead O’Leary1, Lucila Ortiz- Castellanos14, Russell Poulter5, Julio Rodriguez-Romero9, Jose´ Ruiz-Herrera14, Yao-Qing Shen4, Qiandong Zeng1, James Galagan1, Bruce W. Birren1, Christina A. Cuomo1., Brian L. Wickes10.* 1 The Broad Institute