Quick Guide to Microchip Development Tools
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Practical Electronics
Copyright Ó 2003, Wimborne Publishing Ltd (408 Wimborne Road East, Ferndown, Dorset, BH22 9ND, UK) and TechBites Interactive Inc., (PO Box 857, Madison, Alabama 35758, USA) All rights reserved. WARNING! The materials and works contained within EPE Online — which are made available by Wimborne Publishing Ltd and TechBites Interactive Inc — are copyrighted. You are permitted to make a backup copy of the downloaded file and one (1) hard copy of such materials and works for your personal use. International copyright laws, however, prohibit any further copying or reproduction of such materials and works, or any republication of any kind. TechBites Interactive Inc and Wimborne Publishing Ltd have used their best efforts in preparing these materials and works. However, TechBites Interactive Inc and Wimborne Publishing Ltd make no warranties of any kind, expressed or implied, with regard to the documentation or data contained herein, and specifically disclaim, without limitation, any implied warranties of merchantability and fitness for a particular purpose. Because of possible variances in the quality and condition of materials and workmanship used by readers, EPE Online, its publishers and agents disclaim any responsibility for the safe and proper functioning of reader-constructed projects based on or from information published in these materials and works. In no event shall TechBites Interactive Inc or Wimborne Publishing Ltd be responsible or liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or any other damages in connection with or arising out of furnishing, performance, or use of these materials and works. ISSN 0262 3617 PROJECTS . -
Programming-8Bit-PIC
Foreword Embedded microcontrollers are everywhere today. In the average household you will find them far beyond the obvious places like cell phones, calculators, and MP3 players. Hardly any new appliance arrives in the home without at least one controller and, most likely, there will be several—one microcontroller for the user interface (buttons and display), another to control the motor, and perhaps even an overall system manager. This applies whether the appliance in question is a washing machine, garage door opener, curling iron, or toothbrush. If the product uses a rechargeable battery, modern high density battery chemistries require intelligent chargers. A decade ago, there were significant barriers to learning how to use microcontrollers. The cheapest programmer was about a hundred dollars and application development required both erasable windowed parts—which cost about ten times the price of the one time programmable (OTP) version—and a UV Eraser to erase the windowed part. Debugging tools were the realm of professionals alone. Now most microcontrollers use Flash-based program memory that is electrically erasable. This means the device can be reprogrammed in the circuit—no UV eraser required and no special packages needed for development. The total cost to get started today is about twenty-five dollars which buys a PICkit™ 2 Starter Kit, providing programming and debugging for many Microchip Technology Inc. MCUs. Microchip Technology has always offered a free Integrated Development Environment (IDE) including an assembler and a simulator. It has never been less expensive to get started with embedded microcontrollers than it is today. While MPLAB® includes the assembler for free, assembly code is more cumbersome to write, in the first place, and also more difficult to maintain. -
LPC-Link2 Debug Probe Firmware Programming Rev
LPC-Link2 Debug Probe Firmware Programming Rev. 2.1.0 — 22 January, 2020 User Guide NXP Semiconductors LPC-Link2 Debug Probe Firmware Programming 22 January, 2020 Copyright © 2015-2018 NXP Semiconductors All rights reserved. LPC-Link2 Debug Probe Firmware Programming - All information provided in this document is subject to legal disclaimers © 2015-2018 NXP Semiconductors. All rights reserved. User Guide Rev. 2.1.0 — 22 January, 2020 ii NXP Semiconductors LPC-Link2 Debug Probe Firmware Programming 1. Revision History .................................................................................................. 1 1.1. 2.1.1 ........................................................................................................ 1 1.2. v2.0.0 ....................................................................................................... 1 1.3. v1.8.2 ....................................................................................................... 1 1.4. v1.5.2 ....................................................................................................... 1 1.5. v1.5 ......................................................................................................... 1 2. Introduction ......................................................................................................... 2 3. Quick Start .......................................................................................................... 3 4. Debug Firmware Variants and Drivers ................................................................. -
Management of Programmable Safety Systems
MANAGEMENT OF PROGRAMMABLE SAFETY SYSTEMS erhtjhtyhy JOE LENNER Argonne National Laboratory Advanced Photon Source Safety Interlocks Group 9/11/2019 MANAGEMENT OF PROGRAMMABLE SAFETY SYSTEMS Applicable Standards . IEC 61508 is the parent standard – Applicable in any situation – Used when no applicable child IEC 61800-5-2 standard exists Elec Drives – Very general, many requirements are EN 50128 Railway overly complex ISO 13849 . Child Standards Machinery IEC – Specialize the requirements of IEC 60601 61508 61508 for a specific application Medical Dev IEC 62061 – If you meet the requirements of the Machinery child, you meet the relevant IEC 61511 IEC Process Ind. 50156 requirements of 61508 Furnaces . Best fit for Accelerators – IEC 62061 – ISO 13849 – IEC 61511 2 MANAGEMENT OF PROGRAMMABLE SAFETY SYSTEMS Certified hardware benefits . Use of a single PLC – Eliminates redundant systems and associated wiring. – Ability to clearly separate safety from non-safety tasks – Built-in diagnostics – Safety I/O allows reduction of relays . Programming – Use of certified and proven functions reduces programming effort • Easier to apply = Less errors – Reduces safety and standard programs/tasks • Reduced size of safety program • Reduces review & test time 3 MANAGEMENT OF PROGRAMMABLE SAFETY SYSTEMS Vendor Software Management . Programming tool updates – Only when necessary • The “Microsoft“ effect • Development platform support . Firmware Updates – Quarterly reviews unless alert 4 MANAGEMENT OF PROGRAMMABLE SAFETY SYSTEMS Software . The latest generation -
Extreme Low Power (XLP) PIC® Microcontrollers
XLP PIC® MCUs eXtreme Low Power (XLP) PIC® Microcontrollers www.microchip.com/xlp Looking Beyond Low-Power MCUs Microchip’s XLP PIC® MCUs As more wearables, wireless sensor networks, and other Internet of Things (IoT) enabled smart devices are getting powered from battery, energy conservation becomes paramount. Today’s connected appli- cations must consume little power and, in extreme cases, last for up to 20+ years while running from a single battery. To enable applica- tions like these, products with Microchip’s eXtreme Low Power (XLP) technology offer the industry’s lowest Run and Sleep currents. Benefits of XLP PIC MCUs Low Sleep Currents Battery-Friendly VBAT Battery Back-Up Large Portfolio of XLP with Flexible Wake-Up Features • Automatic switch-over MCUs Sources • Enable battery lifetime upon loss of VDD • 8–121 pins, • Sleep current down greater than 20 years • Maintains Real-Time 4 KB–1 MB Flash to 9 nA • Low-power supervisors Clock/Calendar (RTCC) • Wide selection of • Brown-Out Reset (BOR) for safer operation and user registers packages down to 45 nA (BOR, WDT) • Powered seperately • Active mode currents as • Real-time clock down to • Core Independent Pe- from 1.8–3.6V source low as 30 µA/MHz with 300 nA ripherals (CIPs) take the (coin cell) efficient instruction set • Watch-Dog Timer (WDT) load off the CPU and per- with over 90% single- down to 200 nA form extremely complex cycle instructions tasks in self-sustaining mode at lowest possible energy requirement XLP PIC MCU Application Examples Internet of Things Smart Energy -
MPLAB XC8 PIC Assembler User's Guide
MPLAB® XC8 PIC® Assembler User's Guide Notice to Customers All documentation becomes dated and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions can differ from those in this document. Please refer to our web site (https://www.microchip.com) to obtain the latest documentation available. Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is “DSXXXXXA,” where “XXXXX” is the document number and “A” is the revision level of the document. For the most up-to-date information on development tools, see the MPLAB® IDE online help. Select the Help menu, and then Topics to open a list of available online help files. © 2020 Microchip Technology Inc. User Guide DS50002974A-page 1 Table of Contents Notice to Customers.......................................................................................................................................1 1. Preface....................................................................................................................................................4 1.1. Conventions Used in This Guide..................................................................................................4 1.2. Recommended Reading...............................................................................................................5 1.3. Document Revision History..........................................................................................................5 -
Atmega328p Xplained Mini User Guide
USER GUIDE ATmega328P Xplained Mini User Guide Introduction This user guide describes how to get started with the Atmel® ATmega328P Xplained Mini board. The ATmega328P Xplained Mini evalutation kit is a hardware platform to evaluate the Atmel ATmega328P microcontroller. The evaluation kit comes with a fully integrated debugger that provides seamless integration with Atmel Studio 6.2 (and later version). The kit provides access to the features of the ATmega328P enabling easy integration of the device in a custom design. 42287A-MCU-05/2014 Table of Contents Introduction .................................................................................... 1 1. Getting Started ........................................................................ 3 1.1. Features .............................................................................. 3 1.2. Design Documentation and Related Links .................................. 3 1.3. Board Assembly .................................................................... 3 1.3.1. In Customer Development Assembly ............................. 3 1.3.2. Connecting an Arduino Shield ..................................... 3 1.3.3. Standalone Node ...................................................... 3 1.4. Connecting the Kit ................................................................. 3 1.4.1. Connect the Kit to Atmel Studio ................................... 3 1.4.2. Connect the Target UART to the mEBDG COM Port ......... 3 1.5. Programming and Debugging ................................................. -
AN1673 Using the PIC16F1XXX High-Endurance Flash (HEF) Block
AN1673 Using the PIC16F1XXX High-Endurance Flash (HEF) Block FLASH VS. HIGH-ENDURANCE Author: Lucio Di Jasio Microchip Technology Inc. FLASH Like most other PIC microcontrollers in Flash technology, the PIC16F1XXX series features a INTRODUCTION single-voltage self-write Flash program memory array. The PIC16F1XXX family of general purpose Flash This means that, without additional external hardware microcontrollers features the 8-bit PIC® MCU support, these devices can modify the contents of their enhanced mid-range core. Carefully trading Flash memory at runtime, under firmware control. functionality versus cost, several members of this As an example, this capability is conveniently used to family, including the PIC16F14XX, PIC16F15XX and implement boot loaders, enabling embedded PIC16F17XX, have made a departure from the usual application that can be reprogrammed in the field via a set of peripherals found in previous models to achieve simple serial connection (UART, SPI, I2C™, USB, etc.) a lower price point while still offering a compelling new and without requiring the use of a dedicated in-circuit set of features. Among the several new peripherals programmer/debugger device. introduced, it is worth noting: This capability can also be used to store and/or update • Configurable Logic Cell – a small set of logic calibration data in program memory (obtained at the blocks (unlike a small PLD) that can help directly end of a production line or after product installation). interconnect various peripherals inputs/outputs However, the main limitation of the self-write Flash without CPU intervention. program memory array lies in the relatively small • Complementary Output Generator – the front end number of possible erase/write cycles. -
32-Bit Microcontroller Families Industry’S Broadest and Most Innovative 32-Bit MCU Portfolio
32-bit Microcontrollers 32-bit Microcontroller Families Industry’s Broadest and Most Innovative 32-bit MCU Portfolio www.microchip.com/32bit World-Class 32-bit Microcontrollers Building on the heritage of Microchip Technology’s world-leading 8- and 16-bit microcontrollers, the 32-bit family offers a wide range of products from the industry’s lowest-power to highest-performance MCUs coupled with novel and easy-to-use soft- ware solutions. With a rich ecosystem of development tools, integrated development environments and third-party partners, Microchip’s families of 32-bit microcontrollers accelerate a vast array of embedded designs ranging from secured Internet of Things (IoT) to Functional Safety applications to general-purpose embedded control. Internet of Things Security Functional Safety Graphics and Touch Ultra-Low Power Digital Audio 5V Appliances Automotive Wearables Connected Lighting Motor Control Metering Broad Portfolio with Smart Peripheral Mix and Multiple Performance Options High Performance SAMS, SAME, SAMV Cortex-M7, 600 DMIPS, 512–2048 KB Flash PIC32MZ EF MIPS M-Class, 415 DMIPS, 512–2048 KB Flash Mid-Range PIC32MZ DA PIC32MK MC/GP MIPS microApv™, 330 DMIPS, 32 MB SDRAM, MIPS microApv, 198 DMIPS, 256–1024 KB Flash 1-2 MB Flash SAMD5/E5, SAM4N/4S/4E/4L, SAMG Cortex-M4/M4F, 150 DMIPS, 128–2048 KB Flash e PIC32MX3/4 MIPS M4K, 131/150 DMIPS, 64–512 KB Flash ormanc PIC32MX5/6/7 rf MIPS M4K, 105 DMIPS, 64–512 KB Flash Pe SAM7, SAM3, AVR32 Baseline Legacy 32-bit PIC32MX1/2/5 (XLP) MIPS M4K, 116 DMIPS, 16–512 KB Flash SAMD, SAML, -
Getting Started with STK200 Dragon Introduction This Guide Is Designed to Get You up and Running with Main Software and Hardware
Getting Started with STK200 Dragon Introduction This guide is designed to get you up and running with main software and hardware. As you work through it, there could be lots of details you do not understand, but these are covered in books and other documentation that you can read later. The main software package is AVRStudio, which is Atmel’s Integrated Development Environment or IDE. There is also a plugin C Compiler module called WinAVR that compiles C programs within AVRStudio. The Kanda installer will install these packages and copy documentation to a folder on your hard drive. Default install path is C:\Program Files\STK200 Dragon AVRStudio has its own Atmel-AVR Tools folder in Program Files, and can be run from there or you can run from desktop icon. WinAVR never needs to be run directly, only from AVRStudio. The AVRStudio IDE is designed for writing source code, in C (.c files) or assembler (.asm files). These are then built or compiled into object code (.hex files) for programming into the AVR using ISP or debug files (.elf files) to step through the code. The AVR Dragon hardware is a programmer and In Circuit Emulator (ICE) in one tool. Once source code is built, it can be programmed into the AVR using ISP, which will just run the code or it can be set in Debug mode (using DebugWire or JTAG )that allows you to examine the code operation to find bugs. There are two Debug methods depending on the AVR device you are using • JTAG Mode for AVR devices with 40-pins or more • DebugWire for smaller pin-count devices. -
Power Debugger [USER GUIDE] 2 Atmel-42696D-Power-Debugger User Guide-10/2016 5.2.5
Programmers and Debuggers Power Debugger USER GUIDE Atmel-42696D-Power-Debugger_User Guide-10/2016 Table of Contents 1. The Atmel Power Debugger...................................................................................... 4 1.1. Kit Contents..................................................................................................................................5 2. Getting Started with the Power Debugger................................................................. 6 3. Connecting the Power Debugger...............................................................................8 3.1. Connecting to AVR and SAM Target Devices...............................................................................8 4. Detailed Use Cases.................................................................................................10 4.1. Low-power Application............................................................................................................... 10 4.1.1. Requirements.............................................................................................................. 10 4.1.2. Initial Hardware Setup................................................................................................. 10 4.1.3. Connections.................................................................................................................12 4.1.4. Disabling the debugWIRE Interface.............................................................................13 4.1.5. Disabling On-board Power Supply on the Xplained -
Visual Programming: a Programming Tool for Increasing Mathematics Achivement
ARTICLES VISUAL PROGRAMMING: A PROGRAMMING TOOL FOR INCREASING MATHEMATICS ACHIVEMENT By CHERYL SWANIER * CHERYL D. SEALS ** ELODIE BILLIONNIERE *** * Associate Professor, Mathematics and Computer Science Department, Fort Valley State University ** Associate Professor, Computer Science and Software Engineering Department, Auburn University *** Doctoral Student, Computer Science and Engineering Department, Arizona State University ABSTRACT This paper aims to address the need of increasing student achievement in mathematics using a visual programming language such as Scratch. This visual programming language facilitates creating an environment where students in K-12 education can develop mathematical simulations while learning a visual programming language at the same time. Furthermore, the study of visual programming tools as a means to increase student achievement in mathematics could possibly generate interests within the computer-supported collaborative learning community. According to Jerome Bruner in Children Learn By Doing, "knowing how something is put together is worth a thousand facts about it. It permits you to go beyond it” (Bruner, 1984, p.183). Keywords : Achievement, Creativity, End User Programming, Mathematics Education, K-12, Learning, Scratch, Squeak, Visual Programming INTRODUCTION programming language as a tool to create Across the nation, math scores lag (Lewin, 2006). Students mathematical tutorials. Additionally, this paper provides a are performing lower than ever. Lewin reports, for “the modicum of information as it relates to the educational second time in a generation, education officials are value of visual programming to mathematical rethinking the teaching of math in American schools” achievement. Peppler and Kafai (2007) indicate “game (p.1). It is imperative that higher education, industry, and players program their own games and learn about K-12 collaborate to ascertain a viable solution to the software and interface design.