A Specific Subset of E2 Ubiquitin-Conjugating Enzymes

Total Page:16

File Type:pdf, Size:1020Kb

A Specific Subset of E2 Ubiquitin-Conjugating Enzymes ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 3488–3504 doi:10.1242/jcs.147520 RESEARCH ARTICLE A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently Fabienne C. Fiesel1, Elisabeth L. Moussaud-Lamodie`re1, Maya Ando1 and Wolfdieter Springer1,2,* ABSTRACT 2010; Meissner et al., 2011; Greene et al., 2012) and rapidly degraded (Yamano and Youle, 2013). The gene product of Loss-of-function mutations in the genes encoding PINK1 and Parkin PARKIN is a cytosolic E3 ligase that attaches the small modifier (also known as PARK2) are the most common causes of recessive protein ubiquitin to substrate proteins. FBXO7 encodes a putative Parkinson’s disease. Both together mediate the selective substrate recognition component of a multi-protein E3 ubiquitin degradation of mitochondrial proteins and whole organelles via the ligase complex but also has ubiquitin-independent functions proteasome and the autophagy-lysosome pathway (mitophagy). The (Nelson et al., 2013). Strikingly, PINK1, Parkin and FBXO7 mitochondrial kinase PINK1 activates and recruits the E3 ubiquitin physically associate and functionally cooperate to identify, ligase Parkin to de-energized mitochondria. However, the cognate E2 label and target damaged mitochondria for selective degradation. co-enzymes of Parkin in this ubiquitin-dependent pathway have not Mutations in either gene disrupt this protective pathway; been investigated. Here, we discovered a total of four E2s that either however, they affect distinct steps of a sequential process. positively or negatively regulate the activation, translocation and Upon mitochondrial dysfunction, PINK1 protein is stabilized enzymatic functions of Parkin during mitochondrial quality control. on de-energized organelles. PINK1 accumulation on damaged UBE2D family members and UBE2L3 redundantly charged the mitochondria and its kinase activity are prerequisites for RING-HECT hybrid ligase Parkin with ubiquitin, resulting in its initial the translocation of Parkin from the cytosol. Once localized to activation and translocation to mitochondria. UBE2N, however, mitochondria, Parkin ubiquitylates numerous mitochondrial primarily operated through a different mechanism in order to substrate proteins to facilitate the degradation of individual mediate the proper clustering of mitochondria, a prerequisite for proteins by the 26S proteasome or of whole organelles by the degradation. Strikingly, in contrast to UBE2D, UBE2L3 and UBE2N, autophagy-lysosomal system (Chan et al., 2011; Sarraf et al., depletion of UBE2R1 resulted in enhanced Parkin translocation and 2013). Upon ubiquitin modification of mitochondria, adaptor clustering upon mitochondrial uncoupling. Our study uncovered proteins, such as VCP/p97 (Kim et al., 2013), HDAC6 (Lee et al., redundant, cooperative or antagonistic functions of distinct E2 2010) or p62/SQSTM1 (Geisler et al., 2010), are co-recruited to decode respective ubiquitin tags and facilitate the removal of enzymes in the regulation of Parkin and mitophagy that might substrates. In either case, the E3 ubiquitin ligase activities of Parkin suggest a putative role in Parkinson’s disease pathogenesis. are crucially involved. KEY WORDS: Parkin, PINK1, Mitochondria, Ubiquitin, E2 enzymes, Parkin is known as a broadly neuroprotective, multipurpose Proteasome, Autophagy, Mitophagy E3 ligase that is tightly controlled and modifies numerous unrelated substrate proteins (Walden and Martinez-Torres, 2012). Moreover, Parkin has been shown to catalyze the formation of INTRODUCTION various ubiquitin modifications ranging from (multi-) mono- Parkinson’s disease is the most common neurodegenerative ubiquitin to poly-ubiquitin chains with distinct characteristics movement disorder. Symptoms arise from the selective loss of (Sandebring and Cedazo-Mı´nguez, 2012). Ubiquitin itself dopamine-producing neurons in the substantia nigra. The contains seven internal lysine residues that all can be used to molecular mechanisms for this distinctive neuronal degeneration generate ubiquitin chains of unique topologies and biological are poorly understood. Although most Parkinson’s disease cases functions (Komander and Rape, 2012). In addition, ubiquitin can are sporadic, rare familial forms allow insights into potential form linear chains by intermolecular linkage between its C- and pathogenic mechanisms, such as failure of protein degradation N-termini. Parkin has long been regarded as a RING-type E3 pathways and mitochondrial dysfunctions (Corti et al., 2011). To ubiquitin ligase that utilizes E2 ubiquitin conjugating enzymes to date, three recessive parkinsonism genes, PINK1 (Valente et al., mediate the direct transfer of ubiquitin from the E2 to a substrate 2004), PARKIN (also known as PARK2; Kitada et al., 1998) and protein. Thereby, E2 enzymes bound to the RING finger domain FBXO7 (Di Fonzo et al., 2009), have been linked into a single of an E3 ligase denominate the ubiquitin chain linkages molecular pathway for mitochondrial quality control (Geisler et al., formed. However, recent data has challenged the ubiquitin 2010; Matsuda et al., 2010; Narendra et al., 2010b; Vives-Bauza transfer mechanism for Parkin and other members of the et al., 2010; Burchell et al., 2013). PINK1 encodes a mitochondrial RING-between-RING (RBR) family (Wenzel et al., 2011). Ser/Thr kinase that is cleaved in healthy mitochondria (Jin et al., Similar to HECT-type E3 ubiquitin ligases, Parkin has been shown to accept ubiquitin from an E2 enzyme in a thioester 1Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA. 2Mayo intermediate on its recently discovered active site C431 before Graduate School, Neurobiology of Disease, Jacksonville, FL 32224, USA. transfer onto a lysine residue of a substrate protein. In this case, *Author for correspondence ([email protected]) the E3 ligase itself dictates the linkage type of the growing poly- ubiquitin chain, largely independent of the E2 enzymes (Sheng Received 4 December 2013; Accepted 13 May 2014 et al., 2012). In fact, K48-, K63- and K27-linked ubiquitin chains Journal of Cell Science 3488 RESEARCH ARTICLE Journal of Cell Science (2014) 127, 3488–3504 doi:10.1242/jcs.147520 appear to be successively formed during mitochondrial quality ratio of the intensity of cytoplasmic and nuclear GFP (Cyto:Nuc) control and might facilitate certain aspects along the course (Fig. 1A) upon treatment with the uncoupler carbonylcyanide m- (Geisler et al., 2010; Chan et al., 2011; Birsa et al., 2014). The chlorophenylhydrazone (CCCP). To calculate the percentage of crystal structures of Parkin (Riley et al., 2013; Spratt et al., 2013; Parkin-translocation-positive cells, we used a cut-off at 2.5. With Trempe et al., 2013; Wauer and Komander, 2013), and other RBR- this threshold, approximately 50% of the control-silenced cells type E3 ubiquitin ligases (Duda et al., 2013), have been recently showed Parkin translocation after 2 h of treatment with CCCP, resolved and show an auto-inhibited, ‘closed’ conformation, which allowed us to determine positive and negative modifiers consistent with their generally very low enzymatic activity. alike (Fig. 1B). Recent studies suggest that the activation of Parkin through Combined knockdown of the redundant UBE2D family ‘ubiquitin charging’ is coupled to its enzymatic activity(ies) and its members UBE2D2 and UBE2D3 with a single siRNA that mitochondrial translocation (Iguchi et al., 2013; Lazarou et al., targeted both genes (abbreviated hereafter as UBE2D2/3) 2013; Zheng and Hunter, 2013). Accordingly, Parkin must receive significantly reduced the percentage of Parkin-translocation- a ubiquitin moiety from an E2 enzyme and pass this onto a positive cells. Similarly, knockdown of UBE2L3 or UBE2N each substrate, which might include itself, in order to localize to decreased the percentage by about 50% after 2 h of treatment with mitochondria. Besides a recent study that suggests UBE2A is CCCP (Fig. 1B). Of note, transfection with an siRNA against crucially involved (Haddad et al., 2013), the roles of E2 co- UBE2R1 resulted in significantly more cells with Parkin enzymes for Parkin activation, translocation to and enzymatic translocation compared with control-silenced cells, indicative of actions on mitochondria have not been investigated. an accelerated recruitment to mitochondria. Analyses of the In this study, we aimed to identify E2 co-enzymes that regulate average GFP Cyto:Nuc ratio (Fig. 1C) and distribution frequency the activation and mitochondrial translocation of Parkin upon (Fig. 1D) among the individual cells corroborated the inhibitory uncoupling of the mitochondrial membrane potential. In total, we effects of siRNAs against UBE2D2/3, UBE2L3 and UBE2N, as have previously analyzed 11 out of 35 human, active E2 enzymes well as the accelerated Parkin translocation upon UBE2R1 (van Wijk and Timmers, 2010). Strikingly, we identified four knockdown. Consistent across all measurements, knockdown of E2 cofactors that redundantly, cooperatively or antagonistically UBE2A, UBE2S or UBE2T showed no significant difference regulate the activation and mitochondrial translocation of compared with control-silenced cells. Parkin. We demonstrate that members of the UBE2D family Knockdown efficiency for all E2 enzymes was confirmed and UBE2L3 are able to ‘charge’ Parkin with ubiquitin and are by using western blot analysis and/or quantitative reverse essential for its initial activation. UBE2N,
Recommended publications
  • The Effect of Temperature Adaptation on the Ubiquitin–Proteasome Pathway in Notothenioid Fishes Anne E
    © 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 369-378 doi:10.1242/jeb.145946 RESEARCH ARTICLE The effect of temperature adaptation on the ubiquitin–proteasome pathway in notothenioid fishes Anne E. Todgham1,*, Timothy A. Crombie2 and Gretchen E. Hofmann3 ABSTRACT proliferation to compensate for the effects of low temperature on ’ There is an accumulating body of evidence suggesting that the sub- aerobic metabolism (Johnston, 1989; O Brien et al., 2003; zero Antarctic marine environment places physiological constraints Guderley, 2004). Recently, there has been an accumulating body – on protein homeostasis. Levels of ubiquitin (Ub)-conjugated proteins, of literature to suggest that protein homeostasis the maintenance of – 20S proteasome activity and mRNA expression of many proteins a functional protein pool has been highly impacted by evolution involved in both the Ub tagging of damaged proteins as well as the under these cold and stable conditions. different complexes of the 26S proteasome were measured to Maintaining protein homeostasis is a fundamental physiological examine whether there is thermal compensation of the Ub– process, reflecting a dynamic balance in synthetic and degradation proteasome pathway in Antarctic fishes to better understand the processes. There are numerous lines of evidence to suggest efficiency of the protein degradation machinery in polar species. Both temperature compensation of protein synthesis in Antarctic Antarctic (Trematomus bernacchii, Pagothenia borchgrevinki)and invertebrates (Whiteley et al., 1996; Marsh et al., 2001; Robertson non-Antarctic (Notothenia angustata, Bovichtus variegatus) et al., 2001; Fraser et al., 2002) and fish (Storch et al., 2005). In notothenioids were included in this study to investigate the zoarcid fishes, it has been demonstrated that Antarctic eelpouts mechanisms of cold adaptation of this pathway in polar species.
    [Show full text]
  • UBE2D3 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50Ul [email protected] 100 Ul √ √ Web
    TD2261 UBE2D3 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50ul [email protected] 100 uL √ √ Web www.ab-mart.com.cn Description: Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes 'Lys-11'-, as well as 'Lys-48'-linked polyubiquitination. Cooperates with the E2 CDC34 and the SCF(FBXW11) E3 ligase complex for the polyubiquitination of NFKBIA leading to its subsequent proteasomal degradation. Acts as an initiator E2, priming the phosphorylated NFKBIA target at positions 'Lys-21' and/or 'Lys- 22' with a monoubiquitin. Ubiquitin chain elongation is then performed by CDC34, building ubiquitin chains from the UBE2D3-primed NFKBIA-linked ubiquitin. Acts also as an initiator E2, in conjunction with RNF8, for the priming of PCNA. Monoubiquitination of PCNA, and its subsequent polyubiquitination, are essential events in the operation of the DNA damage tolerance (DDT) pathway that is activated after DNA damage caused by UV or chemical agents during S-phase. Associates with the BRCA1/BARD1 E3 ligase complex to perform ubiquitination at DNA damage sites following ionizing radiation leading to DNA repair. Targets DAPK3 for ubiquitination which influences promyelocytic leukemia protein nuclear body (PML-NB) formation in the nucleus. In conjunction with the MDM2 and TOPORS E3 ligases, functions ubiquitination of p53/TP53. Supports NRDP1-mediated ubiquitination and degradation of ERBB3 and of BRUCE which triggers apoptosis. In conjunction with the CBL E3 ligase, targets EGFR for polyubiquitination at the plasma membrane as well as during its internalization and transport on endosomes. In conjunction with the STUB1 E3 quality control E3 ligase, ubiquitinates unfolded proteins to catalyze their immediate destruction.
    [Show full text]
  • Versatile Roles of K63-Linked Ubiquitin Chains in Trafficking
    Cells 2014, 3, 1027-1088; doi:10.3390/cells3041027 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review Versatile Roles of K63-Linked Ubiquitin Chains in Trafficking Zoi Erpapazoglou 1,2, Olivier Walker 3 and Rosine Haguenauer-Tsapis 1,* 1 Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; E-Mail: [email protected] 2 Current address: Brain and Spine Institute, CNRS UMR 7225, Inserm, U 1127, UPMC-P6 UMR S 1127, 75013 Paris, France 3 Institut des Sciences Analytiques, UMR5280, Université de Lyon/Université Lyon 1, 69100 Villeurbanne, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]. External Editor: Hanjo Hellmann Received: 14 July 2014; in revised form: 14 October 2014 / Accepted: 21 October 2014 / Published: 12 November 2014 Abstract: Modification by Lys63-linked ubiquitin (UbK63) chains is the second most abundant form of ubiquitylation. In addition to their role in DNA repair or kinase activation, UbK63 chains interfere with multiple steps of intracellular trafficking. UbK63 chains decorate many plasma membrane proteins, providing a signal that is often, but not always, required for their internalization. In yeast, plants, worms and mammals, this same modification appears to be critical for efficient sorting to multivesicular bodies and subsequent lysosomal degradation. UbK63 chains are also one of the modifications involved in various forms of autophagy (mitophagy, xenophagy, or aggrephagy). Here, in the context of trafficking, we report recent structural studies investigating UbK63 chains assembly by various E2/E3 pairs, disassembly by deubiquitylases, and specifically recognition as sorting signals by receptors carrying Ub-binding domains, often acting in tandem.
    [Show full text]
  • The HECT Domain Ubiquitin Ligase HUWE1 Targets Unassembled Soluble Proteins for Degradation
    OPEN Citation: Cell Discovery (2016) 2, 16040; doi:10.1038/celldisc.2016.40 ARTICLE www.nature.com/celldisc The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation Yue Xu1, D Eric Anderson2, Yihong Ye1 1Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; 2Advanced Mass Spectrometry Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA In eukaryotes, many proteins function in multi-subunit complexes that require proper assembly. To maintain complex stoichiometry, cells use the endoplasmic reticulum-associated degradation system to degrade unassembled membrane subunits, but how unassembled soluble proteins are eliminated is undefined. Here we show that degradation of unassembled soluble proteins (referred to as unassembled soluble protein degradation, USPD) requires the ubiquitin selective chaperone p97, its co-factor nuclear protein localization protein 4 (Npl4), and the proteasome. At the ubiquitin ligase level, the previously identified protein quality control ligase UBR1 (ubiquitin protein ligase E3 component n-recognin 1) and the related enzymes only process a subset of unassembled soluble proteins. We identify the homologous to the E6-AP carboxyl terminus (homologous to the E6-AP carboxyl terminus) domain-containing protein HUWE1 as a ubiquitin ligase for substrates bearing unshielded, hydrophobic segments. We used a stable isotope labeling with amino acids-based proteomic approach to identify endogenous HUWE1 substrates. Interestingly, many HUWE1 substrates form multi-protein com- plexes that function in the nucleus although HUWE1 itself is cytoplasmically localized. Inhibition of nuclear entry enhances HUWE1-mediated ubiquitination and degradation, suggesting that USPD occurs primarily in the cytoplasm.
    [Show full text]
  • Ubiquitination Is Not Omnipresent in Myeloid Leukemia Ramesh C
    Editorials Ubiquitination is not omnipresent in myeloid leukemia Ramesh C. Nayak1 and Jose A. Cancelas1,2 1Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center and 2Hoxworth Blood Center, University of Cincinnati Academic Health Center, Cincinnati, OH, USA E-mail: JOSE A. CANCELAS - [email protected] / [email protected] doi:10.3324/haematol.2019.224162 hronic myelogenous leukemia (CML) is a clonal tination of target proteins through their cognate E3 ubiq- biphasic hematopoietic disorder most frequently uitin ligases belonging to three different families (RING, Ccaused by the expression of the BCR-ABL fusion HERCT, RING-between-RING or RBR type E3).7 protein. The expression of BCR-ABL fusion protein with The ubiquitin conjugating enzymes including UBE2N constitutive and elevated tyrosine kinase activity is suffi- (UBC13) and UBE2C are over-expressed in a myriad of cient to induce transformation of hematopoietic stem tumors such as breast, pancreas, colon, prostate, lym- cells (HSC) and the development of CML.1 Despite the phoma, and ovarian carcinomas.8 Higher expression of introduction of tyrosine kinase inhibitors (TKI), the dis- UBE2A is associated with poor prognosis of hepatocellu- ease may progress from a manageable chronic phase to a lar cancer.9 In leukemia, bone marrow (BM) cells from clinically challenging blast crisis phase with a poor prog- pediatric acute lymphoblastic patients show higher levels nosis,2 in which myeloid or lymphoid blasts fail to differ- of UBE2Q2
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • HSF-1 Activates the Ubiquitin Proteasome System to Promote Non-Apoptotic
    HSF-1 Activates the Ubiquitin Proteasome System to Promote Non-Apoptotic Developmental Cell Death in C. elegans Maxime J. Kinet#, Jennifer A. Malin#, Mary C. Abraham, Elyse S. Blum, Melanie Silverman, Yun Lu, and Shai Shaham* Laboratory of Developmental Genetics The Rockefeller University 1230 York Avenue New York, NY 10065 USA #These authors contributed equally to this work *To whom correspondence should be addressed: Tel (212) 327-7126, Fax (212) 327- 7129, email [email protected] Kinet, Malin et al. Abstract Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in C. elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and MAPKK signaling control HSF-1, a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET- 70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates. 2 Kinet, Malin et al. Introduction Animal development and homeostasis are carefully tuned to balance cell proliferation and death.
    [Show full text]
  • A Drosophila Ortholog of the Human Cylindromatosis Tumor Suppressor
    RESEARCH ARTICLE 2605 Development 134, 2605-2614 (2007) doi:10.1242/dev.02859 A Drosophila ortholog of the human cylindromatosis tumor suppressor gene regulates triglyceride content and antibacterial defense Theodore Tsichritzis1, Peer C. Gaentzsch3, Stylianos Kosmidis2, Anthony E. Brown3, Efthimios M. Skoulakis2, Petros Ligoxygakis3,* and George Mosialos1,4,* The cylindromatosis (CYLD) gene is mutated in human tumors of skin appendages. It encodes a deubiquitylating enzyme (CYLD) that is a negative regulator of the NF-␬B and JNK signaling pathways, in vitro. However, the tissue-specific function and regulation of CYLD in vivo are poorly understood. We established a genetically tractable animal model to initiate a systematic investigation of these issues by characterizing an ortholog of CYLD in Drosophila. Drosophila CYLD is broadly expressed during development and, in adult animals, is localized in the fat body, ovaries, testes, digestive tract and specific areas of the nervous system. We demonstrate that the protein product of Drosophila CYLD (CYLD), like its mammalian counterpart, is a deubiquitylating enzyme. Impairment of CYLD expression is associated with altered fat body morphology in adult flies, increased triglyceride levels and increased survival under starvation conditions. Furthermore, flies with compromised CYLD expression exhibited reduced resistance to bacterial infections. All mutant phenotypes described were reversible upon conditional expression of CYLD transgenes. Our results implicate CYLD in a broad range of functions associated with fat homeostasis and host defence in Drosophila. KEY WORDS: Cylindromatosis, Drosophila, Fat body, Host defense, NF-kappaB INTRODUCTION disease and it is required for the proper development of T Familial cylindromatosis is an autosomal-dominant predisposition lymphocytes in mice (Costello et al., 2005; Reiley et al., 2006).
    [Show full text]
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • Figure S1. DMD Module Network. the Network Is Formed by 260 Genes from Disgenet and 1101 Interactions from STRING. Red Nodes Are the Five Seed Candidate Genes
    Figure S1. DMD module network. The network is formed by 260 genes from DisGeNET and 1101 interactions from STRING. Red nodes are the five seed candidate genes. Figure S2. DMD module network is more connected than a random module of the same size. It is shown the distribution of the largest connected component of 10.000 random modules of the same size of the DMD module network. The green line (x=260) represents the DMD largest connected component, obtaining a z-score=8.9. Figure S3. Shared genes between BMD and DMD signature. A) A meta-analysis of three microarray datasets (GSE3307, GSE13608 and GSE109178) was performed for the identification of differentially expressed genes (DEGs) in BMD muscle biopsies as compared to normal muscle biopsies. Briefly, the GSE13608 dataset included 6 samples of skeletal muscle biopsy from healthy people and 5 samples from BMD patients. Biopsies were taken from either biceps brachii, triceps brachii or deltoid. The GSE3307 dataset included 17 samples of skeletal muscle biopsy from healthy people and 10 samples from BMD patients. The GSE109178 dataset included 14 samples of controls and 11 samples from BMD patients. For both GSE3307 and GSE10917 datasets, biopsies were taken at the time of diagnosis and from the vastus lateralis. For the meta-analysis of GSE13608, GSE3307 and GSE109178, a random effects model of effect size measure was used to integrate gene expression patterns from the two datasets. Genes with an adjusted p value (FDR) < 0.05 and an │effect size│>2 were identified as DEGs and selected for further analysis. A significant number of DEGs (p<0.001) were in common with the DMD signature genes (blue nodes), as determined by a hypergeometric test assessing the significance of the overlap between the BMD DEGs and the number of DMD signature genes B) MCODE analysis of the overlapping genes between BMD DEGs and DMD signature genes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein UBE2R2
    Catalogue # Aliquot Size U235-30H-20 20 µg U235-30H-50 50 µg UBE2R2 (UBC3B) Protein Recombinant protein expressed in E.coli cells Catalog # U235-30H Lot # J617 -4 Product Description Purity Recombinant human UBE2R2 (UBC3B) (2-end) was expressed in E. coli cells using an N-terminal His tag. The gene accession number is NM_017811 . The purity of UBE2R2 (UBC3B) was Gene Aliases determined to be >90% by densitometry. CDC34B; E2-CDC34B; UBC3B Approx. MW 32 kDa . Formulation Recombinant protein stored in 50mM sodium phosphate, pH 7.0, 300mM NaCl, 150mM imidazole, 0.1mM PMSF, 0.25mM DTT, 25% glycerol. Storage and Stability o Store product at –70 C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Scientific Background UBE2R2 (UBC3B) or ubiquitin-conjugating enzyme E2R 2 encodes a protein similar to the E2 ubiquitin conjugating enzyme UBC3/CDC34. CK2-dependent phosphorylation of this ubiquitin-conjugating enzyme functions by regulating beta-TrCP substrate recognition and induces UBE2R2 (UBC3B) Protein its interaction with beta-TrCP therby enhancing beta- Recombinant protein expressed in E. coli cells catenin degradation. CK2-dependent phosphorylation of CDC34 and UBC3B functions by regulating BTRC substrate Catalog Number U235-30H recognition (1). UBE2R2 complements a yeast cdc34 Specific Lot Number J617-4 temperature-sensitive mutant. Deletion and site-directed Purity >90% mutagenesis demonstrated that CK2 phosphorylated Concentration 0.1 µg/ µl Stability 1yr at –70 oC from date of shipment UBE2R2 in the C-terminal domain at serine-233; Storage & Shipping Store product at –70 oC.
    [Show full text]