EX SITU CONSERVATION of OAK (QUERCUS L.) in BOTANIC GARDENS: a NORTH AMERICAN PERSPECTIVE by Raakel Toppila a Thesis Submitted

Total Page:16

File Type:pdf, Size:1020Kb

EX SITU CONSERVATION of OAK (QUERCUS L.) in BOTANIC GARDENS: a NORTH AMERICAN PERSPECTIVE by Raakel Toppila a Thesis Submitted EX SITU CONSERVATION OF OAK (QUERCUS L.) IN BOTANIC GARDENS: A NORTH AMERICAN PERSPECTIVE by Raakel Toppila A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Public Horticulture Summer 2012 Copyright 2012 Raakel Toppila All Rights Reserved EX SITU CONSERVATION OF OAK (QUERCUS L.) IN BOTANIC GARDENS: A NORTH AMERICAN PERSPECTIVE by Raakel Toppila Approved: __________________________________________________________ Robert E. Lyons, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Blake E. Meyers, Ph.D. Chair of the Department of Plant and Soil Sciences Approved: __________________________________________________________ Robin W. Morgan, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: __________________________________________________________ Charles G. Riordan, Ph.D. Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS Thank you to those who supported and guided me throughout the research and writing of this thesis. To my thesis committee members, Dr. Robert Lyons, Dr. Andrea Kramer and Dr. Randy Wisser, thank you for your mentorship and enthusiasm throughout the process. Thank you to the Longwood Foundation, Longwood Gardens and the University of Delaware for providing the support needed to carry out this work. Additional funding came from a U.S. Forest Service Challenge Cost Share Grant to Botanic Gardens Conservation International U.S. Thank you to the many herbaria and botanists who provide provenance data for the study species and the botanic gardens that provided information about their collections. Particular thanks to the ten botanic gardens that provided leaf tissue for genetic analysis, and the site managers who provided information and access to natural populations of Quercus georgiana for leaf tissue collection. Thank you to Dr. Larry Stritch, National Botanist for the U.S. Forest Service, who suggested and supported ex situ research on these rare oak species, as well as the volunteers and employees at the Chicago Botanic Garden, especially Jeremie Fant, John Keller, Sonia Doshi, Jairus Rossi and Andrea Kramer who spent countless hours in the lab to collect the data used for this study. Finally, thank you to my family and friends who have supported me through my academic pursuits and especially to my husband, Matthew Pelletier, who stood beside me through it all. iii TABLE OF CONTENTS LIST OF TABLES ......................................................................................................... vi LIST OF FIGURES ..................................................................................................... viii ABSTRACT .................................................................................................................. ix Chapter 1. INTRODUCTION ...................................................................................................... 1 1.1 Loss of Biodiversity and Role of Plant Conservation at Botanic Gardens ...................................................................................................... 1 1.2 Why Oaks? ................................................................................................ 3 2. LITERATURE REVIEW ........................................................................................... 6 2.1 What is Ex Situ Conservation? .................................................................. 6 2.1.1 Seed Banks .................................................................................... 6 2.1.2 Cryopreservation ........................................................................... 7 2.1.3 Tissue Culture ................................................................................ 8 2.1.4 Cultivation of Living Collections ................................................ 10 2.2 Ex situ Plant Conservation at Botanic Gardens ....................................... 10 2.2.1 Oaks at Botanic Gardens ............................................................. 12 2.3 The Role of Genetics in Ex Situ Conservation ........................................ 13 2.3.1 Genetic Drift and Inbreeding Depression .................................... 15 2.3.2 Outbreeding Depression and Genetic Swamping ........................ 16 2.3.3 Quantitative Genetics .................................................................. 17 3. SURVEY OF EX SITU LIVING COLLECTIONS OF NORTH AMERICAN NATIVE OAK TAXA ............................................................................................. 20 3.1 Methods ................................................................................................... 20 3.2 Results ..................................................................................................... 22 4. DETAILED SURVEY OF EX SITU LIVING COLLECTIONS OF FOUR OAK TAXA OF CONSERVATION CONCERN ................................................... 24 iv 4.1 Methods ................................................................................................... 24 4.2 Results ..................................................................................................... 26 4.2.1 Quality of Collection Data and Representation of Wild Populations .................................................................................. 27 5. MOLECULAR GENETIC DIVERISTY OF QUERCUS GEORGIANA IN WILD POPULATIONS AND EX SITU LIVING COLLECTIONS ........................ 30 5.1 Materials and Methods ............................................................................ 30 5.1.1 Study Species ............................................................................... 30 5.1.2 Study Sites ................................................................................... 31 5.1.3 Collections ................................................................................... 33 5.1.4 Molecular Data ............................................................................ 35 5.1.5 Analysis ....................................................................................... 36 5.2 Results ..................................................................................................... 38 5.2.1 Descriptive Statistics of Loci ....................................................... 38 5.2.2 Descriptive Statistics of Populations ........................................... 39 5.2.3 Population Genetic Structure ....................................................... 40 6. PHENOTYPIC DIVERSITY IN QUERCUS GEORGIANA .................................... 50 6.1 Methods ................................................................................................... 50 6.2 Results ..................................................................................................... 50 7. DISCUSSION ........................................................................................................... 52 7.1 Survey of Ex Situ Living Collections of North American Native Oak Taxa and Four Oaks of Conservation Concern ................................ 52 7.2 Molecular Genetic Diversity of Quercus georgiana in Wild Populations and Ex Situ Living Collections ............................................ 55 7.3 Comparison of Genetic Diversity in Ex Situ Living Collections of Quercus georgiana to Genetic Diversity in Wild Populations ................ 60 7.4 Phenotypic Diversity in Quercus georgiana ........................................... 64 7.5 Limitations of the Study and Future Research......................................... 66 7.6 Conclusions ............................................................................................. 68 REFERENCES ............................................................................................................. 70 v Appendix A. NUMBER OF BOTANIC GARDENS GROWING 97 OAK TAXA NATIVE NORTH OF MEXICO AND CORRESPONDING NATURESERVE CONSERVATION STATUS RANKS, NATURESERVE CONSERVATION STATUS ADJUSTED RANKS AND IUCN RED-LIST RANKS………..............85 B. 277 BOTANIC GARDENS GROWING 97 OAK TAXA NATIVE NORTH OF MEXICO…… .................................................................................................... 89 vi LIST OF TABLES Table 1. NatureServe conservation status ranks. ................................................... 21 Table 2. Representation of NatureServe ranked North American native oak taxa versus North American native oak taxa in living collections. ......... 23 Table 3. Summary of four oak taxa of conservation concern, status in the wild, distribution, conservation ranks, and habitat descriptions.............. 25 Table 4. Summary of living collections of four oak taxa of conservation concern..................................................................................................... 27 Table 5. Quercus georgiana study populations. .................................................... 33 Table 6. Living collections of Quercus georgiana within ten U.S. botanic gardens that were used for comparison to wild populations.................... 34 Table 7. Summary of eight oak microsatellite loci derived from both wild and living collections ............................................................................... 36 Table 8. Summary statistics for Quercus georgiana by locus ............................... 39 Table 9. Summary statistics for Quercus georgiana by population ...................... 40 Table 10. Results from Analysis of
Recommended publications
  • International Union for the Protection of New Varieties of Plants Geneva
    E TG/COSMO(proj.1) ORIGINAL: English DATE: 2009-07-31 INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA DRAFT * COSMOS; CHOCOLATE COSMOS; YELLOW COSMOS UPOV Code: COSMO_BIP; COSMO_ATR; COSMO_SUL Cosmos bipinnatus Cav.; Cosmos atrosanguineus (Hook.) Voss; Cosmos sulphureus Cav. GUIDELINES FOR THE CONDUCT OF TESTS FOR DISTINCTNESS, UNIFORMITY AND STABILITY prepared by an expert from Japan to be considered by the Technical Working Party for Ornamental Plants and Forest Trees at its forty-second session, to be held in Angers, France, from September 14 to 18, 2009 Alternative Names:* Botanical name English French German Spanish Cosmos bipinnatus Cav., Cosmos, Cosmos Schmuckkörbchen Mirasol, Cosmos atrosanguineus Chocolate cosmos (Kosmee), Cosmos (Hook.) Voss, Fiederblättrige Cosmos sulphureus Cav. Schmuckblume The purpose of these guidelines (“Test Guidelines”) is to elaborate the principles contained in the General Introduction (document TG/1/3), and its associated TGP documents, into detailed practical guidance for the harmonized examination of distinctness, uniformity and stability (DUS) and, in particular, to identify appropriate characteristics for the examination of DUS and production of harmonized variety descriptions. ASSOCIATED DOCUMENTS These Test Guidelines should be read in conjunction with the General Introduction and its associated TGP documents. * These names were correct at the time of the introduction of these Test Guidelines but may be revised or updated. [Readers are advised to consult the UPOV Code, which can be found on the UPOV Website (www.upov.int), for the latest information.] TG/COSMO(proj.1) Cosmos, 2009-07-31 - 2 - TABLE OF CONTENTS PAGE 1. SUBJECT OF THESE TEST GUIDELINE....................................................................................................3 2.
    [Show full text]
  • Native Trees of Georgia
    1 NATIVE TREES OF GEORGIA By G. Norman Bishop Professor of Forestry George Foster Peabody School of Forestry University of Georgia Currently Named Daniel B. Warnell School of Forest Resources University of Georgia GEORGIA FORESTRY COMMISSION Eleventh Printing - 2001 Revised Edition 2 FOREWARD This manual has been prepared in an effort to give to those interested in the trees of Georgia a means by which they may gain a more intimate knowledge of the tree species. Of about 250 species native to the state, only 92 are described here. These were chosen for their commercial importance, distribution over the state or because of some unusual characteristic. Since the manual is intended primarily for the use of the layman, technical terms have been omitted wherever possible; however, the scientific names of the trees and the families to which they belong, have been included. It might be explained that the species are grouped by families, the name of each occurring at the top of the page over the name of the first member of that family. Also, there is included in the text, a subdivision entitled KEY CHARACTERISTICS, the purpose of which is to give the reader, all in one group, the most outstanding features whereby he may more easily recognize the tree. ACKNOWLEDGEMENTS The author wishes to express his appreciation to the Houghton Mifflin Company, publishers of Sargent’s Manual of the Trees of North America, for permission to use the cuts of all trees appearing in this manual; to B. R. Stogsdill for assistance in arranging the material; to W.
    [Show full text]
  • Purebred Dog Breeds Into the Twenty-First Century: Achieving Genetic Health for Our Dogs
    Purebred Dog Breeds into the Twenty-First Century: Achieving Genetic Health for Our Dogs BY JEFFREY BRAGG WHAT IS A CANINE BREED? What is a breed? To put the question more precisely, what are the necessary conditions that enable us to say with conviction, "this group of animals constitutes a distinct breed?" In the cynological world, three separate approaches combine to constitute canine breeds. Dogs are distinguished first by ancestry , all of the individuals descending from a particular founder group (and only from that group) being designated as a breed. Next they are distinguished by purpose or utility, some breeds existing for the purpose of hunting particular kinds of game,others for the performance of particular tasks in cooperation with their human masters, while yet others owe their existence simply to humankind's desire for animal companionship. Finally dogs are distinguished by typology , breed standards (whether written or unwritten) being used to describe and to recognize dogs of specific size, physical build, general appearance, shape of head, style of ears and tail, etc., which are said to be of the same breed owing to their similarity in the foregoing respects. The preceding statements are both obvious and known to all breeders and fanciers of the canine species. Nevertheless a correct and full understanding of these simple truisms is vital to the proper functioning of the entire canine fancy and to the health and well being of the animals which are the object of that fancy. It is my purpose in this brief to elucidate the interrelationship of the above three approaches, to demonstrate how distortions and misunderstandings of that interrelationship now threaten the health of all of our dogs and the very existence of the various canine breeds, and to propose reforms which will restore both balanced breed identity and genetic health to CKC breeds.
    [Show full text]
  • Pedigree Analysis and Optimisation of the Breeding Programme of the Markiesje and the Stabyhoun
    Pedigree analysis and optimisation of the breeding programme of the Markiesje and the Stabyhoun Aiming to improve health and welfare and maintain genetic diversity Harmen Doekes REG.NR.: 920809186050 Major thesis Animal Breeding and Genetics (ABG-80436) January, 2016 Supervisors/examiners: Piter Bijma - Animal Breeding and Genomics Centre, Wageningen University Kor Oldenbroek - Centre for Genetic Resources the Netherlands (CGN), Wageningen UR Jack Windig - Animal Breeding & Genomics Centre, Wageningen UR Livestock Research Thesis: Animal Breeding and Genomics Centre Pedigree analysis and optimisation of the breeding programme of the Markiesje and the Stabyhoun Aiming to improve health and welfare and maintain genetic diversity Harmen Doekes REG.NR.: 920809186050 Major thesis Animal Breeding and Genetics (ABG-80436) January, 2016 Supervisors: Kor Oldenbroek - Centre for Genetic Resources the Netherlands (CGN), Wageningen UR Jack Windig - Animal Breeding & Genomics Centre, Wageningen UR Livestock Research Examiners: Piter Bijma - Animal Breeding and Genomics Centre, Wageningen University Kor Oldenbroek - Centre for Genetic Resources the Netherlands (CGN), Wageningen UR Commissioned by: Nederlandse Markiesjes Vereniging Nederlandse Vereniging voor Stabij- en Wetterhounen Preface This major thesis is submitted in partial fulfilment of the requirements for the degree of Master of Animal Sciences of Wageningen University, the Netherlands. It comprises an unpublished study on the genetic status of two Dutch dog breeds, the Markiesje and the Stabyhoun. that was commissioned by the Breed Clubs of the breeds, the ‘Nederlandse Markiesjes Vereniging’ and the ‘Nederlandse Vereniging voor Stabij- en Wetterhounen’. It was written for readers with limited pre-knowledge. Although the thesis focusses on two breeds, it addresses issues that are found in many dog breeds.
    [Show full text]
  • The Ghost of Outcrossing Past in Downy Brome, an Inbreeding Annual Grass
    Journal of Heredity 2013:104(4):476–490 Published by Oxford University Press on behalf of The American Genetic doi:10.1093/jhered/est019 Association 2013. This work is written by (a) US Government employee(s) Advance Access publication April 5, 2013 and is in the public domain in the US. The Ghost of Outcrossing Past in Downy Brome, an Inbreeding Annual Grass SUSAN E. MEYER, SUDEEP GHIMIRE, SAMUEL DECKER, KEITH R. MERRILL, AND CRAIG E. COLEMAN From the Shrub Sciences Laboratory, US Forest Service, Rocky Mountain Research Station, 735 North 500 East, Provo, UT 84606 (Meyer); Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT (Ghimire, Decker, and Coleman); and Center for Plant Breeding and Applied Plant Genomics, North Carolina State University, Raleigh, NC (Merrill). Address correspondence to Susan Meyer at the address above, or e-mail: [email protected] Abstract We investigated the frequency of outcrossing in downy brome (Bromus tectorum L.), a cleistogamous weedy annual grass, in both common garden and wild populations, using microsatellite and single nucleotide polymorphic (SNP) markers. In the common garden study, 25 lines with strongly contrasting genotypes were planted in close proximity. We fingerprinted 10 seed progeny from 8 individuals of each line and detected 15 first-generation heterozygotes for a t-value (corrected for cryptic crosses) of 0.0082. Different genotypes were significantly overrepresented as maternal versus paternal parents of heterozy- gotes, suggesting gender–function-dependent genetic control of outcrossing rates. In 4 wild populations (>300 individuals each), expected heterozygosity ranged from 0.149 to 0.336, whereas t-values ranged from 0.0027 to 0.0133, indicating high levels of both genetic diversity and inbreeding.
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Download the PDF File
    ISSN 2473-442X CONTENTS Message from Dr. Patrick Griffith, Co-chair, IUCN/SSC CSG 3 Official newsletter of IUCN/SSC Cycad Specialist Group Botanic Garden: In Focus Vol. IV I Issue 2 I December 2019 Montgomery Botanical Center’s Cycad Collection – Focus on research and conservation 5 Michael Calonje & Patrick Griffith Feature Articles Towards an approach for the conservation and illegal trade prevention of South Africa’s endangered Encephalartos spp. 10 James A. R. Clugston, Michelle Van Der Bankand Ronny M. Kobongo Fire is the most important threat for conservation of Dioon merolae (espadaña) in the hill Nambiyigua, municipality of Villaflores, Chiapas, Mexico 13 Miguel Angel Pérez-Farrera & Mauricio Martínez Martínez Ex-situ Cycad Conservation [1]: Public and Private Collections 16 Chip Jones & JS Khuraijam The Cycad Specialist Group (CSG) is a component of the IUCN Species Research and Conservation News Survival Commission (IUCN/SSC). It consists of a group of volunteer The Cycad Extinction Crisis in South Africa 19 experts addressing conservation Wynand van Eeden & Tim Gregory issues related to cycads, a highly What is Ceratozamia becerrae ? 21 threatened group of land plants. The Andrew P. Vovides, Miguel Angel Pérez-Farrera & José Said Gutiérrez-Ortega CSG exists to bring together the world’s cycad conservation expertise, Preliminary Finding: Seed longevity of Encephalartos in controlled storage 23 and to disseminate this expertise to Ngawethu Ngaka and Phakamani Xaba organizations and agencies which can use this guidance to advance cycad Meeting Reports conservation. 2nd Nong Nooch Cycad Horticulture Workshop 25 Official website of CSG: Anders Lindstrom http://www.cycadgroup.org/ Plant Conservation Genetics Workshop 26 Co-Chairs Caroline Iacuaniello, Stephanie Steele & Christy Powell John Donaldson Patrick Griffith CSG Members 28 Vice Chairs Michael Calonje Cristina Lopez-Gallego Red List Authority Coordinator De Wet Bosenberg CSG Newsletter Committee JS Khuraijam, Editor Irene Terry Andrew P.
    [Show full text]
  • Cycad Forensics: Tracing the Origin of Poached Cycads Using Stable Isotopes, Trace Element Concentrations and Radiocarbon Dating Techniques
    Cycad forensics: Tracing the origin of poached cycads using stable isotopes, trace element concentrations and radiocarbon dating techniques by Kirsten Retief Supervisors: Dr Adam West (UCT) and Ms Michele Pfab (SANBI) Submitted in partial fulfillment of the requirements for the degree of Masters of Science in Conservation Biology 5 June 2013 Percy FitzPatrick Institution of African Ornithology, UniversityDepartment of Biologicalof Cape Sciences Town University of Cape Town, Rondebosch Cape Town South Africa 7701 i The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Table of Contents Acknowledgements iii Plagiarism declaration iv Abstract v Chapter 1: Status of cycads and background to developing a forensic technique 1 1. Why are cycads threatened? 2 2. Importance of cycads 4 3. Current conservation strategies 5 4. Stable isotopes in forensic science 7 5. Trace element concentrations 15 6. Principles for using isotopes as a tracer 15 7. Radiocarbon dating 16 8. Cycad life history, anatomy and age of tissues 18 9. Recapitulation 22 Chapter 2: Applying stable isotope and radiocarbon dating techniques to cycads 23 1. Introduction 24 2. Methods 26 2.1 Sampling selection and sites 26 2.2 Sampling techniques 30 2.3 Processing samples 35 2.4 Cellulose extraction 37 2.5 Oxygen and sulphur stable isotopes 37 2.6 CarbonUniversity and nitrogen stable of isotopes Cape Town 38 2.7 Strontium, lead and elemental concentration analysis 39 2.8 Radiocarbon dating 41 2.9 Data analysis 42 3.
    [Show full text]
  • Species Profile: Quercus Oglethorpensis
    Conservation Gap Analysis of Native U.S. Oaks Species profile: Quercus oglethorpensis Emily Beckman, Matt Lobdell, Abby Meyer, Murphy Westwood SPECIES OF CONSERVATION CONCERN CALIFORNIA SOUTHWESTERN U.S. SOUTHEASTERN U.S. Channel Island endemics: Texas limited-range endemics State endemics: Quercus pacifica, Quercus tomentella Quercus carmenensis, Quercus acerifolia, Quercus boyntonii Quercus graciliformis, Quercus hinckleyi, Southern region: Quercus robusta, Quercus tardifolia Concentrated in Florida: Quercus cedrosensis, Quercus dumosa, Quercus chapmanii, Quercus inopina, Quercus engelmannii Concentrated in Arizona: Quercus pumila Quercus ajoensis, Quercus palmeri, Northern region and / Quercus toumeyi Broad distribution: or broad distribution: Quercus arkansana, Quercus austrina, Quercus lobata, Quercus parvula, Broad distribution: Quercus georgiana, Quercus sadleriana Quercus havardii, Quercus laceyi Quercus oglethorpensis, Quercus similis Quercus oglethorpensis W.H.Duncan Synonyms: N/A Common Names: Oglethorpe oak Species profile co-author: Matt Lobdell, The Morton Arboretum Suggested citation: Beckman, E., Lobdell, M., Meyer, A., & Westwood, M. (2019). Quercus oglethorpensis W.H.Duncan. In Beckman, E., Meyer, A., Man, G., Pivorunas, D., Denvir, A., Gill, D., Shaw, K., & Westwood, M. Conservation Gap Analysis of Native U.S. Oaks (pp. 152-157). Lisle, IL: The Morton Arboretum. Retrieved from https://www.mortonarb.org/files/species-profile-quercus-oglethorpensis.pdf Figure 1. County-level distribution map for Quercus oglethorpensis. Source: Biota of North America Program (BONAP).4 Matt Lobdell DISTRIBUTION AND ECOLOGY Quercus oglethorpensis, or Oglethorpe oak, has a disjointed distribution across the southern U.S. Smaller clusters of localities exist in northeastern Louisiana, southeastern Mississippi, and southwestern Alabama, and a more extensive and well-known distribution extends from northeastern Georgia across the border into South Carolina.
    [Show full text]
  • You Really Must See... Adjara Route
    • PRINTED IN GEORGIA • 2012 • GEORGIA IN PRINTED • LE SA OR F NOT vibrant and green line. As soon as you approach the Boulevard Turkey border. The warm sea temperature (over 25 degrees C in you start to feel the salty sea air, mixed with the aroma from the July) combines beautifully with the humid sea and mountain air. hundreds of hundred year old pine and palm trees which line the Sarpi, Gonio and Kvariati are favourites for youngsters from all over www.georgia.travel Email: [email protected] Email: You really must see... Adjara route. Georgia and other countries. It’s a real play-time atmosphere. Play Georgia Tbilisi, 0105, Str, Sanapiro 4, ourism Administration ourism T ational N on the beach all day then party in the bars and clubs till morning. If Georgian WELCOME TO ADJARA Batumi Botanical Garden you can keep up with the pace, there’s no better place to spend the Adjara is a fascinating and unique area, where the sea collides with Just 9km north of Batumi at Mtsvane Kontskhi (Green Cape), the summer. mountain range. One of the must-see regions in Georgia, Adjara Batumi Botanical Garden grows thousands of beautiful species of has fairly built up a superb reputation as one of the best resort plants – there are over 5,000 species of plants. Thanks to Adjara’s Mountain Resorts unique micro-climate, gardens can grow an astonishing variety of One of the many prominent resorts in the Adjara Mountains is areas, with its warm sub-tropical climate, its heady mix of sea and Square).
    [Show full text]
  • Key to Leaves of Eastern Native Oaks
    FHTET-2003-01 January 2003 Front Cover: Clockwise from top left: white oak (Q. alba) acorns; willow oak (Q. phellos) leaves and acorns; Georgia oak (Q. georgiana) leaf; chinkapin oak (Q. muehlenbergii) acorns; scarlet oak (Q. coccinea) leaf; Texas live oak (Q. fusiformis) acorns; runner oak (Q. pumila) leaves and acorns; background bur oak (Q. macrocarpa) bark. (Design, D. Binion) Back Cover: Swamp chestnut oak (Q. michauxii) leaves and acorns. (Design, D. Binion) FOREST HEALTH TECHNOLOGY ENTERPRISE TEAM TECHNOLOGY TRANSFER Oak Identification Field Guide to Native Oak Species of Eastern North America John Stein and Denise Binion Forest Health Technology Enterprise Team USDA Forest Service 180 Canfield St., Morgantown, WV 26505 Robert Acciavatti Forest Health Protection Northeastern Area State and Private Forestry USDA Forest Service 180 Canfield St., Morgantown, WV 26505 United States Forest FHTET-2003-01 Department of Service January 2003 Agriculture NORTH AMERICA 100th Meridian ii iii ACKNOWLEDGMENTS The authors wish to thank all those who helped with this publication. We are grateful for permission to use the drawings illustrated by John K. Myers, Flagstaff, AZ, published in the Flora of North America, North of Mexico, vol. 3 (Jensen 1997). We thank Drs. Cynthia Huebner and Jim Colbert, U.S. Forest Service, Northeastern Research Station, Disturbance Ecology and Management of Oak-Dominated Forests, Morgantown, WV; Dr. Martin MacKenzie, U.S. Forest Service, Northeastern Area State and Private Forestry, Forest Health Protection, Morgantown, WV; Dr. Steven L. Stephenson, Department of Biology, Fairmont State College, Fairmont, WV; Dr. Donna Ford-Werntz, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV; Dr.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]