Exploitation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Population Ecology: Theory, Methods, Lenses Dr. Bill Fagan
Population ecology: Theory, methods, lenses Dr. Bill Fagan Population Ecology & Spatial Ecology A) Core principles of population growth B) Spatial problems and methods for modeling them C) Integrodifference equations as a robust platform Population Ecology & Spatial Ecology A) Core principles of population growth B) Spatial problems and methods for modeling them C) Integrodifference equations as a robust platform Socio – Environmental Issues: 1. Fisheries 2. Invasive Species 3. Biological Control 4. Ecological Footprints 5. Critical Patch Size / Reserve Design A) Core principles of population growth Berryman: On principles, laws, and theory in population ecology. Oikos. 2003 1) Exponential population growth as a null baseline. What causes deviations from that ? The Basics of Discrete Time Models Have Form Nt1 f Nt , Nt1, Nt2 ,... where N is the thing you are measuring and t is an index representing blocks of time. Constant time step = 1 unit (year, month, day, second) Time is discrete, #’s need not be In many cases Nt1 f Nt Reduced Form Status next time step depends only on where system is now. history is unimportant Alternatively: N t 1 f N t , N t 1 , N t 2 ... history is important wide applicability 1) Many ecological phenomenon change discretely - insects don’t hatch out all day long, only in morning - rodents are less mobile near full moon - seeds germinate in spring daily censuses 2) Data were collected at discrete times yearly censuses The Simplest Discrete Time Model N t1 N t “Geometric” Growth Equation N Thing we -
Modeling Techniques
Appendix A Modeling Techniques A.1 Population Growth Models Using Differential Equations Our main goal here is to introduce a few modeling techniques we use throughout this book. We do not intend however to provide here the fundamentals on modeling, a tutorial or a review. For these, we refer to other sources (DeAngelis et al. 1992; Ford 2009; Grimm et al. 2006; Kuang 1993). This Appendix is rather a refresher as well as an example of why using different modeling techniques for one and the same problem can be beneficial to understand biological processes better. We start with the simple exponential population growth to make modeling accessible even to complete beginners. Biologists generally define a population as a collection of individuals that belong to the same species and can potentially breed with each other. One of the best-known early models on population growth was outlined by Malthus (1798). He famously maintained that the human population is predicted to grow in an exponential manner, but the crucial products needed to sustain the population grow in but a linear manner. He argued that these different types of growths will trigger disasters when the population’s needs are not satisfied. The basic exponential growth model consists of a single positive feedback loop that arises from the fact that every individual (N) is predicted to have a fixed number of offspring (r), regardless of the size of the population, and thus also regardless of the remaining resources in the habitat: dN = rN dt (A.1.1) This exponential growth model had a profound effect on biology such as developing the theory of natural selection (Darwin 1859). -
Density Dependence in Demography and Dispersal Generates Fluctuating
Density dependence in demography and dispersal generates fluctuating invasion speeds Lauren L. Sullivana,1, Bingtuan Lib, Tom E. X. Millerc, Michael G. Neubertd, and Allison K. Shawa aDepartment of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108; bDepartment of Mathematics, University of Louisville, Louisville, KY 40292; cDepartment of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX 77005; and dBiology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 Edited by Alan Hastings, University of California, Davis, CA, and approved March 30, 2017 (received for review November 23, 2016) Density dependence plays an important role in population regu- is driven by reproduction and dispersal from high-density pop- lation and is known to generate temporal fluctuations in popu- ulations behind the invasion front (13–15)]. The conventional lation density. However, the ways in which density dependence wisdom of a long-term constant invasion speed is widely applied affects spatial population processes, such as species invasions, (16, 17). are less understood. Although classical ecological theory suggests In contrast to classic approaches that emphasize a long-term that invasions should advance at a constant speed, empirical work constant speed, there is growing empirical recognition that inva- is illuminating the highly variable nature of biological invasions, sion dynamics can be highly variable and idiosyncratic (18–25). which often exhibit nonconstant spreading speeds, even in sim- There are several theoretical explanations for fluctuations in ple, controlled settings. Here, we explore endogenous density invasion speed (which we define here as any persistent tem- dependence as a mechanism for inducing variability in biologi- poral variability in spreading speed), including stochasticity in cal invasions with a set of population models that incorporate either demography or dispersal (24–28) and temporal or spatial density dependence in demographic and dispersal parameters. -
Concept of Population Ecology
Mini Review Int J Environ Sci Nat Res Volume 12 Issue 1 - June 2018 Copyright © All rights are reserved by Nida Tabassum Khan DOI: 10.19080/IJESNR.2018.12.555828 Concept of Population Ecology Nida Tabassum Khan* Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology Engineering and Management Sciences, Pakistan Submission: May 29, 2018; Published: June 06, 2018 *Corresponding author: Nida Tabassum Khan, Department of Biotechnology, Balochistan University, Quetta, Pakistan, Tel: ; Email: Abstract Population ecology deals with the study of the structure and subtleties of a population which comprises of a group of interacting organisms of the same specie that occupies a given area. The demographic structure of a population is a key factor which is characterized by the number of is growing, shrinking or remain constant in terms of its size. individual members (population size) present at each developmental stage of their cycle to identify whether the population of a specific specie Keywords: Population size; Population density; Gene pool; Life tables Introduction of random genetic drift therefore variation is easily sustained Population ecology deals with the study of the structure in large populations than in smaller ones [10]. Natural selection and subtleties of a population which comprises of a group of selects the most favorable phenotypes suited for an organism interacting organisms of the same specie that occupies a given survival thereby reducing variation within populations [11]. area [1]. Populations can be characterized as local which is a Population structure determines the arrays of demographic group of less number of individuals occupying a small area or variation such as mode of reproduction, age, reproduction met which is a group of local populations linked by disbanding frequency, offspring counts, gender ratio of newborns etc within/ members [2]. -
Plant Diversity Increases with the Strength of Negative Density Dependence at the Global Scale
RESEARCH FOREST ECOLOGY predators, pathogens, or herbivores) and/or com- petition for space and resources (2–4, 7). Numer- ous studies have documented the existence of CNDD in one or several plant species (8–12), and Plant diversity increases with the most of these studies explicitly or implicitly as- sume that stronger CNDD maintains higher spe- strength of negative density cies diversity in communities. However, only a handful of studies have explicitly examined dependence at the global scale the link between CNDD and species diversity (4, 11, 13, 14),andnostudyhasexaminedthis relationship across temperate and tropical lat- Joseph A. LaManna,1,2* Scott A. Mangan,2 Alfonso Alonso,3 Norman A. Bourg,4,5 itudes. Despite decades of study, our understand- Warren Y. Brockelman,6,7 Sarayudh Bunyavejchewin,8 Li-Wan Chang,9 ing of how processes at local scales—such as Jyh-Min Chiang,10 George B. Chuyong,11 Keith Clay,12 Richard Condit,13 density-dependent biotic interactions—influence Susan Cordell,14 Stuart J. Davies,15,16 Tucker J. Furniss,17 Christian P. Giardina,14 18 18 19,20 global patterns of biodiversity remains in flux I. A. U. Nimal Gunatilleke, C. V. Savitri Gunatilleke, Fangliang He, 1 15 21 22 23 ( , ). Robert W. Howe, Stephen P. Hubbell, Chang-Fu Hsieh, Both species-specific and more generalized 14 24 25 15,16 Faith M. Inman-Narahari, David Janík, Daniel J. Johnson, David Kenfack, mechanisms can cause CNDD, but only CNDD 3 24 26 17 Lisa Korte, Kamil Král, Andrew J. Larson, James A. Lutz, caused by species-specific mechanisms can main- 27,28 4 29 Sean M. -
"Density Dependence and Independence"
Density Dependence and Advanced article Independence Article Contents . Introduction: Concepts and Importance in Ecology Mark A Hixon, Oregon State University, Corvallis, Oregon, USA . Mechanisms of Density Dependence . Old Debates Resolved Darren W Johnson, Oregon State University, Corvallis, Oregon, USA . Detecting Density Dependence . Future Directions Online posting date: 15th December 2009 Density dependence occurs when the population growth parameter of interest involves population dynamics, rate, or constituent gain rates (e.g. birth and immi- including the population growth rate and the four primary gration) or loss rates (death and emigration), vary caus- demographic (or vital) rates – birth, death, immigration ally with population size or density (N). When these and emigration – although related parameters, such as growth and fecundity, are also investigated. See also: parameters do not vary with N, they are density-inde- Population Dynamics: Introduction pendent. Direct density dependence, where the popu- Use of the words ‘density dependence’ alone normally lation growth rate or gain rates vary as a negative means ‘direct density dependence’ (or compensation): the function of N, or the loss rates vary as a positive function of per capita (proportional) gain rate (population or indi- N, is necessary but not always sufficient for population vidual growth, fecundity, birth or immigration) decreases regulation. The opposite patterns, inverse density as N increases (Figure 1a) or the loss rate (death and/or dependence or the Allee effect, may push endangered emigration) increases as N increases (Figure 1b). The populations towards extinction. Direct density depend- opposite patterns are called inverse density dependence (or ence is caused by competition, and at times, predation. -
Introduction to Theoretical Ecology
Introduction to Theoretical Ecology Natal, 2011 Objectives After this week: The student understands the concept of a biological system in equilibrium and knows that equilibria can be stable or unstable. The student understands the basics of how coupled differential equations can be analyzed graphically, including phase plane analysis and nullclines. The student can analyze the stability of the equilibria of a one-dimensional differential equation model graphically. The student has a basic understanding of what a bifurcation point is. The student can relate alternative stable states to a 1D bifurcation plot (e.g. catastrophe fold). Study material / for further study: This text Scheffer, M. 2009. Critical Transitions in Nature and Society, Princeton University Press, Princeton and Oxford. Scheffer, M. 1998. Ecology of Shallow Lakes. 1 edition. Chapman and Hall, London. Edelstein-Keshet, L. 1988. Mathematical models in biology. 1 edition. McGraw-Hill, Inc., New York. Tentative programme (maybe too tight for the exercises) Monday 9:00-10:30 Introduction Modelling + introduction Forrester diagram + 1D models (stability graphs) 10:30-13:00 GRIND Practical CO2 chamber - Ethiopian Wolf Tuesday 9:00-10:00 Introduction bifurcation (Allee effect) and Phase plane analysis (Lotka-Volterra competition) 10:00-13:00 GRIND Practical Lotka-Volterra competition + Sahara Wednesday 9:00-13:00 GRIND Practical – Sahara (continued) and Algae-zooplankton Thursday 9:00-13:00 GRIND practical – Algae zooplankton spatial heterogeneity Friday 9:00-12:00 GRIND practical- Algae zooplankton fish 12:00-13:00 Practical summary/explanation of results - Wrap up 1 An introduction to models What is a model? The word 'model' is used widely in every-day language. -
Population Genetic Consequences of the Allee Effect and The
Genetics: Early Online, published on July 9, 2014 as 10.1534/genetics.114.167569 Population genetic consequences of the Allee effect and the 2 role of offspring-number variation Meike J. Wittmann, Wilfried Gabriel, Dirk Metzler 4 Ludwig-Maximilians-Universit¨at M¨unchen, Department Biology II 82152 Planegg-Martinsried, Germany 6 Running title: Allee effect and genetic diversity Keywords: family size, founder effect, genetic diversity, introduced species, stochastic modeling 8 Corresponding author: Meike J. Wittmann Present address: Stanford University 10 Department of Biology 385 Serra Mall, Stanford, CA 94305-5020, USA 12 [email protected] 1 Copyright 2014. Abstract 14 A strong demographic Allee effect in which the expected population growth rate is nega- tive below a certain critical population size can cause high extinction probabilities in small 16 introduced populations. But many species are repeatedly introduced to the same location and eventually one population may overcome the Allee effect by chance. With the help of 18 stochastic models, we investigate how much genetic diversity such successful populations har- bor on average and how this depends on offspring-number variation, an important source of 20 stochastic variability in population size. We find that with increasing variability, the Allee effect increasingly promotes genetic diversity in successful populations. Successful Allee-effect 22 populations with highly variable population dynamics escape rapidly from the region of small population sizes and do not linger around the critical population size. Therefore, they are 24 exposed to relatively little genetic drift. It is also conceivable, however, that an Allee effect itself leads to an increase in offspring-number variation. -
AC28 Inf. 30 (English and Spanish Only / Únicamente En Inglés Y Español / Seulement En Anglais Et Espagnol)
AC28 Inf. 30 (English and Spanish only / únicamente en inglés y español / seulement en anglais et espagnol) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ___________________ Twenty-eighth meeting of the Animals Committee Tel Aviv (Israel), 30 August-3 September 2015 REPORT OF THE SECOND MEETING OF THE CFMC/OSPESCA/WECAFC/CRFM WORKING GROUP ON QUEEN CONCH The attached information document has been submitted by the Secretariat on behalf of the FAO Western Central Atlantic Fishery Commission in relation to agenda item 19.* * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC28 Inf. 30 – p. 1 SLC/FIPS/SLM R1097 FAO Fisheries and Aquaculture Report ISSN 2070-6987 WESTERN CENTRAL ATLANTIC FISHERY COMMISSION Report of the SECOND MEETING OF THE CFMC/OSPESCA/WECAFC/CRFM WORKING GROUP ON QUEEN CONCH Panama City, Panama, 18–20 November 2014 DRAFT Prepared for the 28th meeting of the Animals Committee (A final version in English, French and Spanish is expected to be published by October 2015) 1 PREPARATION OF THIS DOCUMENT This is the report of the second meeting of the Caribbean Fisheries Management Council (CFMC), Organization for the Fisheries and Aquaculture Sector of the Central American Isthmus (OSPESCA), Western Central Atlantic Fishery Commission (WECAFC) and the Caribbean Regional Fisheries Mechanism (CRFM) Working Group on Queen Conch, held in Panama City, Panama, from 18 to 20 November 2014. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
STAGE STRUCTURE, DENSITY DEPENDENCE and the EFFICACY of MARINE RESERVES Colette M. St. Mary, Craig W. Osenberg, Thomas K. Frazer
BULLETIN OF MARINE SCIENCE, 66(3): 675–690, 2000 STAGE STRUCTURE, DENSITY DEPENDENCE AND THE EFFICACY OF MARINE RESERVES Colette M. St. Mary, Craig W. Osenberg, Thomas K. Frazer and William J. Lindberg ABSTRACT The habitat requirements of fishes and other marine organisms often change with on- togeny, so many harvested species exhibit such extreme large-scale spatial segregation between life stages that all life stages cannot be protected within a single marine reserve. Nevertheless, most discussions of marine reserves have focused narrowly on single life- history events (e.g., reproduction or settlement) or a single life stage (e.g., adult or re- cruit). Instead, we hypothesize that an effective marine reserve system should often in- clude a diversity of protected habitats, each appropriate to a different life stage. In such a case, the spatial configuration of habitats within reserves, and of separate reserves across larger spatial scales, may affect how marine resources respond to reserve design. We explored these issues by developing a mathematical model of a fish population consist- ing of two benthic life stages (juvenile and adult) that use spatially distinct habitats and examined the population’s response to various management scenarios. Specifically, we varied the sizes of reserves protecting the two life stages and the degree of coupling between juvenile and adult reserves (i.e., the fraction of the protected juvenile stock that migrates into the adult reserve upon maturation). We examined the effects when density dependence operated in only the juvenile stage, only the adult stage, or both. The results demonstrated that population stage structure and the nature of density dependence should be incorporated into the design of marine reserves but did not provide robust support for the general tenet that all life stages must be protected for an effective reserve system. -
Community-Based Population Recovery of Overexploited Amazonian Wildlife
G Model PECON-41; No. of Pages 5 ARTICLE IN PRESS Perspectives in Ecology and Conservation xxx (2017) xxx–xxx ´ Supported by Boticario Group Foundation for Nature Protection www.perspectecolconserv.com Policy Forums Community-based population recovery of overexploited Amazonian wildlife a,∗ b c d e João Vitor Campos-Silva , Carlos A. Peres , André P. Antunes , João Valsecchi , Juarez Pezzuti a Institute of Biological and Health Sciences, Federal University of Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceió 57072-900, AL, Brazil b Centre for Ecology, Evolution and Conservation, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR47TJ, UK c Wildlife Conservation Society Brasil, Federal University of Amazonas, Av. Rodrigo Otavio, 3000, Manaus 69077-000, Amazonas, Brazil d Mamiraua Sustainable Development Institute (IDSM), Estrada da Bexiga 2584, Fonte Boa, Tefé, AM, Brazil e Centre for Advanced Amazon Studies, Federal University of Para, R. Augusto Correa 01, CEP 66075-110, Belém, PA, Brazil a b s t r a c t a r t i c l e i n f o Article history: The Amazon Basin experienced a pervasive process of resource overexploitation during the 20th-century, Received 3 June 2017 which induced severe population declines of many iconic vertebrate species. In addition to biodiversity Accepted 18 August 2017 loss and the ecological consequences of defaunation, food security of local communities was relentlessly threatened because wild meat had a historically pivotal role in protein acquisition by local dwellers. Keywords: Here we discuss the urgent need to regulate subsistence hunting by Amazonian semi-subsistence local Hunting regulation communities, which are far removed from the market and information economy.