Explicit Bounds for the Sum of Reciprocals of Pseudoprimes and Carmichael Numbers

Total Page:16

File Type:pdf, Size:1020Kb

Explicit Bounds for the Sum of Reciprocals of Pseudoprimes and Carmichael Numbers 1 2 Journal of Integer Sequences, Vol. 20 (2017), 3 Article 17.6.4 47 6 23 11 Explicit Bounds for the Sum of Reciprocals of Pseudoprimes and Carmichael Numbers Jonathan Bayless and Paul Kinlaw Husson University 1 College Circle Bangor, ME 04401 USA [email protected] [email protected] Abstract From a 1956 paper of Erd˝os, we know that the base-two pseudoprimes and the Carmichael numbers both have a convergent sum of reciprocals. We prove that the values of these sums are less than 33 and 28, respectively. 1 Introduction By Fermat’s little theorem, if p is a prime number then for all a Z we have ap a (mod p). However, a number p satisfying this property need not be a∈ prime. For all≡a Z, a base-a Fermat pseudoprime (or briefly, an a-pseudoprime) is a composite number ∈n such that gcd(a,n)=1 and an a (mod n). A Carmichael number is an odd composite number n for which an a (mod≡n) for all integers a, and so is an a-pseudoprime for all a with gcd(a,n)=1. ≡ Let P = 341, 561, 645, 1105,... be the set of 2-pseudoprimes, also called Poulet or 2 { } Sarrus numbers, and let P2(x)= n P2 : n x be the corresponding counting function. Let C = 561, 1105, 1729,... be|{ the∈ set of≤ Carmichael}| numbers and write its counting function as{ C(x) = n C :}n x . Erd˝os [11] proved that for sufficiently large x, we have |{ ∈ ≤ }| P2(x) < x/ exp(c1 log x log log x) p 1 and c log x log log log x C(x) < x/ exp 2 log log x for constants c1,c2 > 0. This implies that both sets have asymptotic density zero, as well as the stronger statement that both sets have a bounded sum of reciprocals. Pomerance [18] improved these bounds, showing that log x log log log x P (x) < x/ exp 2 2loglog x for all sufficiently large x, and that the constant c2 in the above bound on C(x) may be taken as 1. In the other direction, it is well known that there are infinitely many pseudoprimes with respect to a given base. In 1994 Alford, Granville and Pomerance [1] proved that there are infinitely many Carmichael numbers. In particular, they proved that C(x) > x2/7 for sufficiently large x. Their work has since been improved by Harman [13] to show that for large x, the inequality C(x) >xα holds for some constant α> 1/3. In this paper we determine explicit upper and lower bounds for the sum of reciprocals of 2-pseudoprimes, as well as for the sum of reciprocals of Carmichael numbers. This extends previous work [4, 5, 3, 14] on reciprocal sums. See [5] for a discussion of reciprocal sums and their importance in number theory. 2 Preliminary lemmas We state several preliminary lemmas. Throughout the paper m,n and k denote positive integers, p denotes a prime number, π(x) is the prime counting function, log x denotes the natural logarithm and P (n) denotes the largest prime factor of n. Put x0 = exp(100) and y0 = exp(10). We begin with Korselt’s criterion [7, Thm. 3.4.6] which provides a useful characterization of Carmichael numbers. Lemma 1 (Korselt’s Criterion). A positive integer n is a Carmichael number if and only if it is composite, squarefree, and for each prime p n we have p 1 n 1. | − | − It follows from Korselt’s criterion that Carmichael numbers are odd and have at least three different prime factors. The following lemma involves certain divisibility properties possessed by all 2-pseudoprimes. In particular, it shows that if a 2-pseudoprime n is divisible by p2 for a prime p, then p must be a Wieferich prime, that is, p 1 2 2 − 1 (mod p ). ≡ It follows that p is greater than or equal to 1093, the smallest Wieferich prime, see [7, p. 31]. Lemma 2. Let n be a 2-pseudoprime. If p2 n then p is a Wieferich prime. Furthermore, if 7 n then n 1 (mod 3). | | ≡ 2 2 2 2 Proof. Suppose that p n and let k be the order of 2 in (Z/p Z)×. Thus k ϕ(p )= p(p 1). n 1 | n 1 2 | − Now 2 − 1 (mod n), so 2 − 1 (mod p ), and thus k n 1, so k does not divide p. ≡ p 1 ≡ 2 | − Thus k p 1, so that 2 − 1 (mod p ). This completes the proof of the first assertion. | − ≡ n 1 n 1 For the second assertion, we have 2 − 1 (mod n), so if 7 n then 2 − 1 (mod 7). The order of 2 modulo 7 is 3, so 3 n 1. ≡ | ≡ | − We will also use explicit versions of several classical theorems. The following modification of [2, Thm. 3.2] gives fairly sharp explicit bounds on the partial sums of the harmonic series. Lemma 3. For all x 1, ≥ 1 1 (log x + γ) < n − x n x ≤ X where γ =0.5772156649 ... denotes Euler’s constant. We will also use the following modification of [3, Lem. 6.2] to bound the sum of reciprocals of numbers in a certain interval and residue class. 9 Lemma 4. Let a Z and d =2 p2, where p denotes the i-th prime number. We have ∈ i i i=2 Y 1 56.25587 < . n d n a(d) 19X≡ 10 <n x0 ≤ Proof. Let b = (1019 d + 1)/d and c = x /d. Without loss of generality, we may assume − 0 that a 0,...,d 1 . By Lemma 3 we have ∈ { − } 1 1 1 1 56.25587 100 log(1019 d +1)+ + < . dk + a ≤ d − − c b d b<k c X≤ We will use Dusart’s bounds [10, Thm. 5.6] on the sum of reciprocals of prime numbers up to x. Lemma 5. For all x 2278383, we have ≥ 1 0.2 (log log x + B) < , p − 3 p x log x ≤ X where B =0.2614972128476 ... denotes the Mertens constant. We will also use Dusart’s bounds [10, Cor. 5.2 & Thm. 5.9]. 3 Lemma 6. For all x> 1 we have x 1 2.53816 π(x) 1+ + , ≤ log x log x log2 x and for all x 599 we have ≥ x 1 π(x) 1+ . ≥ log x log x Lemma 7. For all x 2278382, we have ≥ 1 exp( γ) 0.2 1 − 1 . − p ≥ log x − log3 x p x Y≤ We will also use the following result [9, Lem. 9.6]. Lemma 8. Let f be a multiplicative function such that f(n) 0 for all n, and such that there exist constants A and B such that for all x> 1, we have ≥ f (pα) f(p)log p Ax and log pα B. (1) ≤ pα ≤ p x p α 2 X≤ X X≥ Then, for x> 1, we have x f(n) f(n) (A + B + 1) . ≤ log x n n x n x X≤ X≤ The following lemma makes the implied constants in [9, Lem. 9.7] explicit and modifies [3, Lem. 2.4]. Lemma 9. Let f be a multiplicative function such that 0 f(pα) exp 2α for all primes ≤ ≤ 3 p and integers α 1, and such that f (pα) = p2α/(3 log y) for all p y. Then for all x x 0 and y y , we have≥ ≤ ≥ ≥ 0 1 f(pα) f(n) 9.68765388x 1 . ≤ − p pα n x p x α 0 ! X≤ Y≤ X≥ Proof. We wish to apply Lemma 8, and so we first establish values of A and B to use in inequality (1) above. We have f(p)log p exp(2/3)θ(x) 1.00000075 exp(2/3)x 1.94773551x, (2) ≤ ≤ ≤ p x X≤ using the bound θ(x) < 1.00000075x for all x> 0 [17, Cor. 2]. We also have y y and ≥ 0 f (pα)= p2α/(3 log y) 4 whenever p y. For brevity, let g(t)=(f(t) log t)/t. We have ≤ · g (pα)= g (pα)+ g (pα) . p α 2 p<y0 α 2 p>y0 α 2 X X≥ X X≥ X X≥ Starting to bound the sum with p = 2, observe that α/15 α α(log 2) 2 1/15 1 α g (2 ) · = log2 α 2 − ≤ 2α α 2 α 2 α 2 X≥ X≥ X≥ < 1.23661725. Here we used the fact that 2 α 1 2r r αr − = − (1 r)2 α 2 X≥ − for r < 1. By similar reasoning, | | g (pα) < 1.25448156. 3 p<y0 α 2 ≤X X≥ Let h(t)=(2 e2/3/t)(log t)/(t e2/3)2. By partial summation we have − − (2 e2/3/p)log p g (pα) e4/3 − ≤ (p e2/3)2 p>y0 α 2 p>y0 X X≥ X − 4/3 ∞ = e h(y )π(y ) π(t)h′(t) dt − 0 0 − Zy0 e2/3 ∞ π(t) 2(2 )log t dt <e4/3 h(y )π(y )+ · − t − 0 0 (t e2/3)3 Zy0 − ! e2/3 ∞ 2t 1.1253816(2 ) dt <e4/3 h(y )π(y )+ · − t − 0 0 (t e2/3)3 Zy0 − ! 10 2/3 4/3 1.1253816 4e 3e = e 0.00010166 + · −2 − (e2/3 e10) ! − < 0.00038973. Here we used Lemma 6. Furthermore, for all x x we have ≥ 0 1 1 1.781072775 1 .
Recommended publications
  • Fast Generation of RSA Keys Using Smooth Integers
    1 Fast Generation of RSA Keys using Smooth Integers Vassil Dimitrov, Luigi Vigneri and Vidal Attias Abstract—Primality generation is the cornerstone of several essential cryptographic systems. The problem has been a subject of deep investigations, but there is still a substantial room for improvements. Typically, the algorithms used have two parts – trial divisions aimed at eliminating numbers with small prime factors and primality tests based on an easy-to-compute statement that is valid for primes and invalid for composites. In this paper, we will showcase a technique that will eliminate the first phase of the primality testing algorithms. The computational simulations show a reduction of the primality generation time by about 30% in the case of 1024-bit RSA key pairs. This can be particularly beneficial in the case of decentralized environments for shared RSA keys as the initial trial division part of the key generation algorithms can be avoided at no cost. This also significantly reduces the communication complexity. Another essential contribution of the paper is the introduction of a new one-way function that is computationally simpler than the existing ones used in public-key cryptography. This function can be used to create new random number generators, and it also could be potentially used for designing entirely new public-key encryption systems. Index Terms—Multiple-base Representations, Public-Key Cryptography, Primality Testing, Computational Number Theory, RSA ✦ 1 INTRODUCTION 1.1 Fast generation of prime numbers DDITIVE number theory is a fascinating area of The generation of prime numbers is a cornerstone of A mathematics. In it one can find problems with cryptographic systems such as the RSA cryptosystem.
    [Show full text]
  • The Pseudoprimes to 25 • 109
    MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 151 JULY 1980, PAGES 1003-1026 The Pseudoprimes to 25 • 109 By Carl Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr. Abstract. The odd composite n < 25 • 10 such that 2n_1 = 1 (mod n) have been determined and their distribution tabulated. We investigate the properties of three special types of pseudoprimes: Euler pseudoprimes, strong pseudoprimes, and Car- michael numbers. The theoretical upper bound and the heuristic lower bound due to Erdös for the counting function of the Carmichael numbers are both sharpened. Several new quick tests for primality are proposed, including some which combine pseudoprimes with Lucas sequences. 1. Introduction. According to Fermat's "Little Theorem", if p is prime and (a, p) = 1, then ap~1 = 1 (mod p). This theorem provides a "test" for primality which is very often correct: Given a large odd integer p, choose some a satisfying 1 <a <p - 1 and compute ap~1 (mod p). If ap~1 pi (mod p), then p is certainly composite. If ap~l = 1 (mod p), then p is probably prime. Odd composite numbers n for which (1) a"_1 = l (mod«) are called pseudoprimes to base a (psp(a)). (For simplicity, a can be any positive in- teger in this definition. We could let a be negative with little additional work. In the last 15 years, some authors have used pseudoprime (base a) to mean any number n > 1 satisfying (1), whether composite or prime.) It is well known that for each base a, there are infinitely many pseudoprimes to base a.
    [Show full text]
  • Paul Erdős and the Rise of Statistical Thinking in Elementary Number Theory
    Paul Erd®s and the rise of statistical thinking in elementary number theory Carl Pomerance, Dartmouth College based on the joint survey with Paul Pollack, University of Georgia 1 Let us begin at the beginning: 2 Pythagoras 3 Sum of proper divisors Let s(n) be the sum of the proper divisors of n: For example: s(10) = 1 + 2 + 5 = 8; s(11) = 1; s(12) = 1 + 2 + 3 + 4 + 6 = 16: 4 In modern notation: s(n) = σ(n) − n, where σ(n) is the sum of all of n's natural divisors. The function s(n) was considered by Pythagoras, about 2500 years ago. 5 Pythagoras: noticed that s(6) = 1 + 2 + 3 = 6 (If s(n) = n, we say n is perfect.) And he noticed that s(220) = 284; s(284) = 220: 6 If s(n) = m, s(m) = n, and m 6= n, we say n; m are an amicable pair and that they are amicable numbers. So 220 and 284 are amicable numbers. 7 In 1976, Enrico Bombieri wrote: 8 There are very many old problems in arithmetic whose interest is practically nil, e.g., the existence of odd perfect numbers, problems about the iteration of numerical functions, the existence of innitely many Fermat primes 22n + 1, etc. 9 Sir Fred Hoyle wrote in 1962 that there were two dicult astronomical problems faced by the ancients. One was a good problem, the other was not so good. 10 The good problem: Why do the planets wander through the constellations in the night sky? The not-so-good problem: Why is it that the sun and the moon are the same apparent size? 11 Perfect numbers, amicable numbers, and similar topics were important to the development of elementary number theory.
    [Show full text]
  • Sieving for Twin Smooth Integers with Solutions to the Prouhet-Tarry-Escott Problem
    Sieving for twin smooth integers with solutions to the Prouhet-Tarry-Escott problem Craig Costello1, Michael Meyer2;3, and Michael Naehrig1 1 Microsoft Research, Redmond, WA, USA fcraigco,[email protected] 2 University of Applied Sciences Wiesbaden, Germany 3 University of W¨urzburg,Germany [email protected] Abstract. We give a sieving algorithm for finding pairs of consecutive smooth numbers that utilizes solutions to the Prouhet-Tarry-Escott (PTE) problem. Any such solution induces two degree-n polynomials, a(x) and b(x), that differ by a constant integer C and completely split into linear factors in Z[x]. It follows that for any ` 2 Z such that a(`) ≡ b(`) ≡ 0 mod C, the two integers a(`)=C and b(`)=C differ by 1 and necessarily contain n factors of roughly the same size. For a fixed smoothness bound B, restricting the search to pairs of integers that are parameterized in this way increases the probability that they are B-smooth. Our algorithm combines a simple sieve with parametrizations given by a collection of solutions to the PTE problem. The motivation for finding large twin smooth integers lies in their application to compact isogeny-based post-quantum protocols. The recent key exchange scheme B-SIDH and the recent digital signature scheme SQISign both require large primes that lie between two smooth integers; finding such a prime can be seen as a special case of finding twin smooth integers under the additional stipulation that their sum is a prime p. When searching for cryptographic parameters with 2240 ≤ p < 2256, an implementation of our sieve found primes p where p + 1 and p − 1 are 215-smooth; the smoothest prior parameters had a similar sized prime for which p−1 and p+1 were 219-smooth.
    [Show full text]
  • Results for Wieferich Primes 2
    Results for Wieferich Primes N. A. Carella Abstract: Let v 2 be a fixed integer, and let x 1 and z x be large numbers. ≥ ≥ ≥ The exact asymptotic formula for the number of Wieferich primes p, defined by vp−1 ≡ 1 mod p2, in the short interval [x,x + z] is proposed in this note. The search conducted on the last 100 years have produced two primes p<x = 1015 such that 2p−1 1 mod p2. ≡ The probabilistic and theoretical information within predicts the existence of another base v = 2 prime on the interval [1015, 1040]. Furthermore, a result for the upper bound on the number of Wieferich primes is used to demonstrate that the subset of nonWieferich primes has density 1. AMS Mathematical Subjects Classification: Primary 11A41; Secondary 11B25. Keywords: Distribution of Prime, Wieferiech prime, Finite Rings. Contents 1 Introduction 3 1.1 SummaryofHeuristics. .. .. .. .. .. .. .. .. 3 1.2 ResultsInShortIntervals . ... 4 1.3 AverageOrder .................................. 4 1.4 Guide ....................................... 5 2 Basic Analytic Results 6 2.1 SumsAndProductsOverThePrimes . 6 2.2 TotientsFunctions ............................... 7 2.3 Sums Of Totients Functions Over The Integers . ...... 7 2.4 Sums Of Totients Functions Over The Primes . ..... 9 2.5 Sums Of Totients Functionsc Over Subsets Of Integers . ......... 9 arXiv:1712.08166v2 [math.GM] 5 May 2018 2.6 Problems ..................................... 11 3 Finite Cyclic Groups 13 3.1 MultiplicativeOrders. 13 3.2 MaximalCyclicSubgroups . 14 4 Characteristic Functions 15 4.1 Characteristic Functions Modulo Prime Powers . ........ 15 4.2 Characteristic Functions Modulo n ....................... 16 4.3 Problems ..................................... 17 5 Equivalent Exponential Sums 17 1 results for wieferich primes 2 6 Upper Bound For The Main Term 20 7 Evaluations Of The Main Terms 21 7.1 SumsOverThePrimes.............................
    [Show full text]
  • Composite Numbers That Give Valid RSA Key Pairs for Any Coprime P
    information Article Composite Numbers That Give Valid RSA Key Pairs for Any Coprime p Barry Fagin ID Department of Computer Science, US Air Force Academy, Colorado Springs, CO 80840, USA; [email protected]; Tel.: +1-719-339-4514 Received: 13 August 2018; Accepted: 25 August 2018; Published: 28 August 2018 Abstract: RSA key pairs are normally generated from two large primes p and q. We consider what happens if they are generated from two integers s and r, where r is prime, but unbeknownst to the user, s is not. Under most circumstances, the correctness of encryption and decryption depends on the choice of the public and private exponents e and d. In some cases, specific (s, r) pairs can be found for which encryption and decryption will be correct for any (e, d) exponent pair. Certain s exist, however, for which encryption and decryption are correct for any odd prime r - s. We give necessary and sufficient conditions for s with this property. Keywords: cryptography; abstract algebra; RSA; computer science education; cryptography education MSC: [2010] 11Axx 11T71 1. Notation and Background Consider the RSA public-key cryptosystem and its operations of encryption and decryption [1]. Let (p, q) be primes, n = p ∗ q, f(n) = (p − 1)(q − 1) denote Euler’s totient function and (e, d) the ∗ Z encryption/decryption exponent pair chosen such that ed ≡ 1. Let n = Un be the group of units f(n) Z mod n, and let a 2 Un. Encryption and decryption operations are given by: (ae)d ≡ (aed) ≡ (a1) ≡ a mod n We consider the case of RSA encryption and decryption where at least one of (p, q) is a composite number s.
    [Show full text]
  • Wieferich Primes and Period Lengths for the Expansions of Fractions
    314 MATHEMATICSMAGAZINE Wieferich Primesand PeriodLengths for the Expansionsof Fractions GENE GARZA JEFF YOUNG University of Montevallo Montevallo, Al 35115 [email protected] It is well known that some decimal expansions terminate, while others repeat, at least eventually, in patterns,which may be short or lengthy (we shall call this repeating pattern the period of the expansion). Here we will extend some known results while exploring expansions of fractions in any base. Our goal will be to find a formula for the length of the period of such expansions. The interested reader is referred to the recent award-winning article by Jones and Pearce, who show how to display such decimal expansions graphically [3]. We will consider both the expansions of (the reciprocals of) primes and of com- posites. It would seem that the easier part of this problem would be that of primes. However, there are difficulties/anomalies among primes that make it hard to find a for- mula that works in all cases. The most interesting such case is that of Wieferich primes, whose reciprocals are characterizedby expansions whose periods are the same length as the periods of their squares. For example, the length of the period of 1/1093 is 1092 which is the same as that of 1/10932. This, as we shall see, is not normally the case. For someone seeking a simple formula, this is bad news. However, as our table at the end shows, Wieferich primes are quite rare. Preliminaries Let's review what is meant by the expansion of a fraction and, in particular,the decimal expansion of a fraction.
    [Show full text]
  • The Distribution of Pseudoprimes
    The Distribution of Pseudoprimes Matt Green September, 2002 The RSA crypto-system relies on the availability of very large prime num- bers. Tests for finding these large primes can be categorized as deterministic and probabilistic. Deterministic tests, such as the Sieve of Erastothenes, of- fer a 100 percent assurance that the number tested and passed as prime is actually prime. Despite their refusal to err, deterministic tests are generally not used to find large primes because they are very slow (with the exception of a recently discovered polynomial time algorithm). Probabilistic tests offer a much quicker way to find large primes with only a negligibal amount of error. I have studied a simple, and comparatively to other probabilistic tests, error prone test based on Fermat’s little theorem. Fermat’s little theorem states that if b is a natural number and n a prime then bn−1 ≡ 1 (mod n). To test a number n for primality we pick any natural number less than n and greater than 1 and first see if it is relatively prime to n. If it is, then we use this number as a base b and see if Fermat’s little theorem holds for n and b. If the theorem doesn’t hold, then we know that n is not prime. If the theorem does hold then we can accept n as prime right now, leaving a large chance that we have made an error, or we can test again with a different base. Chances improve that n is prime with every base that passes but for really big numbers it is cumbersome to test all possible bases.
    [Show full text]
  • Cullen Numbers with the Lehmer Property
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000–000 S 0002-9939(XX)0000-0 CULLEN NUMBERS WITH THE LEHMER PROPERTY JOSE´ MAR´IA GRAU RIBAS AND FLORIAN LUCA Abstract. Here, we show that there is no positive integer n such that n the nth Cullen number Cn = n2 + 1 has the property that it is com- posite but φ(Cn) | Cn − 1. 1. Introduction n A Cullen number is a number of the form Cn = n2 + 1 for some n ≥ 1. They attracted attention of researchers since it seems that it is hard to find primes of this form. Indeed, Hooley [8] showed that for most n the number Cn is composite. For more about testing Cn for primality, see [3] and [6]. For an integer a > 1, a pseudoprime to base a is a compositive positive integer m such that am ≡ a (mod m). Pseudoprime Cullen numbers have also been studied. For example, in [12] it is shown that for most n, Cn is not a base a-pseudoprime. Some computer searchers up to several millions did not turn up any pseudo-prime Cn to any base. Thus, it would seem that Cullen numbers which are pseudoprimes are very scarce. A Carmichael number is a positive integer m which is a base a pseudoprime for any a. A composite integer m is called a Lehmer number if φ(m) | m − 1, where φ(m) is the Euler function of m. Lehmer numbers are Carmichael numbers; hence, pseudoprimes in every base. No Lehmer number is known, although it is known that there are no Lehmer numbers in certain sequences, such as the Fibonacci sequence (see [9]), or the sequence of repunits in base g for any g ∈ [2, 1000] (see [4]).
    [Show full text]
  • Sieving by Large Integers and Covering Systems of Congruences
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 20, Number 2, April 2007, Pages 495–517 S 0894-0347(06)00549-2 Article electronically published on September 19, 2006 SIEVING BY LARGE INTEGERS AND COVERING SYSTEMS OF CONGRUENCES MICHAEL FILASETA, KEVIN FORD, SERGEI KONYAGIN, CARL POMERANCE, AND GANG YU 1. Introduction Notice that every integer n satisfies at least one of the congruences n ≡ 0(mod2),n≡ 0(mod3),n≡ 1(mod4),n≡ 1(mod6),n≡ 11 (mod 12). A finite set of congruences, where each integer satisfies at least one them, is called a covering system. A famous problem of Erd˝os from 1950 [4] is to determine whether for every N there is a covering system with distinct moduli greater than N.In other words, can the minimum modulus in a covering system with distinct moduli be arbitrarily large? In regards to this problem, Erd˝os writes in [6], “This is perhaps my favourite problem.” It is easy to see that in a covering system, the reciprocal sum of the moduli is at least 1. Examples with distinct moduli are known with least modulus 2, 3, and 4, where this reciprocal sum can be arbitrarily close to 1; see [10], §F13. Erd˝os and Selfridge [5] conjectured that this fails for all large enough choices of the least modulus. In fact, they made the following much stronger conjecture. Conjecture 1. For any number B,thereisanumberNB,suchthatinacovering system with distinct moduli greater than NB, the sum of reciprocals of these moduli is greater than B. A version of Conjecture 1 also appears in [7].
    [Show full text]
  • Prime Divisors of Sparse Values of Cyclotomic Polynomials and Wieferich Primes
    Journal of Number Theory 201 (2019) 1–22 Contents lists available at ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt General Section Prime divisors of sparse values of cyclotomic ✩ polynomials and Wieferich primes M. Ram Murty ∗, François Séguin Department of Mathematics, Queen’s University, Kingston, Ontario K7L 3N6, Canada a r t i c l e i n f o a b s t r a c t Article history: Bang (1886), Zsigmondy (1892) and Birkhoff and Vandiver Received 17 September 2018 (1904) initiated the study of the largest prime divisors of Received in revised form 31 sequences of the form an − bn, denoted P (an − bn), by December 2018 essentially proving that for integers a >b > 0, P (an − bn) ≥ Accepted 25 February 2019 n +1 for every n > 2. Since then, the problem of finding Available online 20 March 2019 bounds on the largest prime factor of Lehmer sequences, Lucas Communicated by F. Pellarin sequences or special cases thereof has been studied by many, MSC: most notably by Schinzel (1962), and Stewart (1975, 2013). 11B39 In 2002, Murty and Wong proved, conditionally upon the abc − 11N69 conjecture, that P (an − bn) n2 for any > 0. In this 11D45 article, we improve this result for the specific case where b =1. 11A41 Specifically, we obtain a more precise result, and one that is Keywords: dependent on a condition we believe to be weaker than the Lucas sequences abc conjecture. Our result actually concerns the largest prime Wieferich primes factor of the nth cyclotomic polynomial evaluated at a fixed integer a, P (Φn(a)), as we let n grow.
    [Show full text]
  • On Types of Elliptic Pseudoprimes
    journal of Groups, Complexity, Cryptology Volume 13, Issue 1, 2021, pp. 1:1–1:33 Submitted Jan. 07, 2019 https://gcc.episciences.org/ Published Feb. 09, 2021 ON TYPES OF ELLIPTIC PSEUDOPRIMES LILJANA BABINKOSTOVA, A. HERNANDEZ-ESPIET,´ AND H. Y. KIM Boise State University e-mail address: [email protected] Rutgers University e-mail address: [email protected] University of Wisconsin-Madison e-mail address: [email protected] Abstract. We generalize Silverman's [31] notions of elliptic pseudoprimes and elliptic Carmichael numbers to analogues of Euler-Jacobi and strong pseudoprimes. We inspect the relationships among Euler elliptic Carmichael numbers, strong elliptic Carmichael numbers, products of anomalous primes and elliptic Korselt numbers of Type I, the former two of which we introduce and the latter two of which were introduced by Mazur [21] and Silverman [31] respectively. In particular, we expand upon the work of Babinkostova et al. [3] on the density of certain elliptic Korselt numbers of Type I which are products of anomalous primes, proving a conjecture stated in [3]. 1. Introduction The problem of efficiently distinguishing the prime numbers from the composite numbers has been a fundamental problem for a long time. One of the first primality tests in modern number theory came from Fermat Little Theorem: if p is a prime number and a is an integer not divisible by p, then ap−1 ≡ 1 (mod p). The original notion of a pseudoprime (sometimes called a Fermat pseudoprime) involves counterexamples to the converse of this theorem. A pseudoprime to the base a is a composite number N such aN−1 ≡ 1 mod N.
    [Show full text]