The Physical Properties and Cosmic Environments of Quasars in the First Gyr of the Universe

Total Page:16

File Type:pdf, Size:1020Kb

The Physical Properties and Cosmic Environments of Quasars in the First Gyr of the Universe The Physical Properties and Cosmic Environments of Quasars in the First Gyr of the Universe Chiara Mazzucchelli Max-Planck-Institut für Astronomie Heidelberg 2018 Dissertation in Astronomy submitted to the Combined Faculties of the Natural Science and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of Doctor of Natural Sciences put forward by Chiara Mazzucchelli born in Gallarate, Italy Oral examination: 12 July 2018 The Physical Properties and Cosmic Environments of Quasars in the First Gyr of the Universe Chiara Mazzucchelli Max-Planck-Institut für Astronomie Referees: Prof. Dr. Hans-Walter Rix Prof. Dr. Jochen Heidt Abstract Luminous quasars at redshift z &6, i.e. .1 Gyr after the Big Bang, are formidable probes of the early universe, at the edge of the Epoch of Reionization. These sources are predicted to be found in high–density peaks of the dark matter distribution at that time, surrounded by overdensities of galaxies. In this thesis, we present a search for and study of the most distant quasars, from the properties of their innermost regions, to those of their host galax- ies and of their Mpc–scale environments. We search for the highest redshift quasars in the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1, PS1), discovering six new objects at z &6.5. Using optical/near–infrared spectroscopic data, we perform a homo- geneous analysis of the properties of 15 quasars at z& 6.5. In short : 1) The majority of z &6.5 show large blueshifts of the broad CIV 1549 Å emission line, suggesting the presence of strong 9 winds/outflows; 2) They already host supermassive black holes (∼ 0.3 − 5 × 10 M ) in their centers, which are accreting at a rate comparable to a luminosity–matched sample at z ∼1; 3) No evolution of the Fe II/Mg II abundance ratio with cosmic time is observed; 4) The sizes of their surrounding ionized bubbles weakly decrease with redshift. We present new millime- ter observations of the dust continuum and of the [CII] 158 mm emission line (one of the main coolant of the intergalactic medium) in the host galaxies of four quasars, providing new accu- rate redshifts and [CII]/infrared luminosities. We study the Mpc–scale environment of a z ∼5.7 quasar, via observations with broad– and narrow–band filters. We recover no overdensities of galaxies. Among the potential explanations for these findings, are that the ionizing radia- tion from the quasar prevents galaxy formation, the sources in the fields are dust–obscured, or quasars do not live in the most massive dark matter halos. Finally, we report sensitive optical/near–infrared follow–up observations of gas–rich companion galaxies to four quasars at z &6, firstly detected with the Atacama Large Millimeter Array (ALMA). With the exception of one source, we detect no emission from the stellar population of these galaxies. Our limits on 10 −1 their stellar masses (< 10 M ) and unobscured star formation rates (<few M yr ) suggest that the companions are highly dust obscured and/or harboring a modest stellar content. In synthesis, in this thesis we show the large range of parameters of the most distant quasars, and the variety of their environments, with the aim of shading light on massive galaxy and black hole formation in the first Gyr of the universe. Zusammenfassung Leuchtstarke Quasare bei Rotverschiebungen z &6, also <1 Gyr nach dem Urknall, eignen sich wunderbar, um das frühe Universum zu untersuchen, kurz nach der Reionisationsepoche. Man vermutet, dass sich diese Objekte in den dichtesten Gebieten der damaligen Verteilung von dunkler Materie angesammelt haben und daher von vielen Galaxien umgeben werden soll- ten. In dieser Arbeit präsentieren wir eine Suche nach den weit entferntesten Quasaren und un- tersuchen die Eigenschaften der Galaxien und die Umgebungen der Quasare. Wir suchen die hoechst rotverschobenen Quasare in der Panoramic Survey Telescope and Rapid Response Sys- tem 1 (Pan-STARRS1, PS1) und finden sechs neue Objekte bei z &6.5. Wir nutzen optische und infrarote Spektren, mit denen wir eine homogene Analyse der Eigenschaften von 15 Quasaren bei z >6,5 durchführen. Unsere Ergebnisse zeigen: 1) Die Mehrheit der Quasare zeigt grosse Verschiebungen zu blauen Wellenlängen der CIV 1549Å Emissionslinie, was auf starke Winde zurueckschliessen lässt. 2) Im Zentrum der Quasare befinden sich super massereiche schwarze 9 Löcher (∼ 0.3 − 5 × 10 M ), die ähnliche Akkretionsraten aufweisen wie Quasare bei z ∼1. 3) Wir finden keine Entwicklung des Verhältnisses von Fe II/Mg II mit zunehmender Rotver- schiebung. 4) Die Größe der sie umgebende ionisierten Zone nimmt leicht ab mit zunehmender Rotverschiebung der Quasare. Zudem präsentieren wir neue Beobachtungen im Millimeter Wellenlängenbereich des Staubs und der [CII] Emissionslinie (welche hauptsächlich für die Kühlung des Intergalaktischen Mediums zuständig ist) in den Galaxien von vier Quasaren, die eine akkurate Bestimmung der Rotverschiebung und der [CII]/infraroten Helligkeiten er- lauben. Wir untersuchen die Umgebung eines Quasars bei z ∼5.7 auf Mpc Skalen durch Beobachtungen von Weit- und Schmalbandfiltern. Wir finden jedoch keine signifikant re- ichere Umgebung an Galaxien. Eine mögliche Erklärung für unsere Ergebnisse ist, dass die ionisierende Strahlung des Quasars die Entstehung von Galaxien verhindert, dass die Galax- ien durch Staub verdeckt sind, oder dass sich Quasare nicht in besonders dichten Regionen befinden. Schlussendlich präsentieren wir optische und infrarote Beobachtungen von gasre- ichen Begleitgalaxien von vier Quasaren bei z &6, die zuerst mit dem Atacama Large Millime- ter Array (ALMA) detektiert wurden. Mit Ausnahme eines Quasars, finden wir keine Emis- sion einer Sternpopulation in diesen Galaxien. Unsere Einschränkungen für die Sternmassen 10 −1 (< 10 M ) und Sternentstehungsraten (< einige M yr ) legen nahe, dass die Begleitgalax- ien stark von Staub verdunkelt werden und/oder nur sehr wenige Sterne beherbergen. Zusam- menfassend lässt sich sagen, dass wir in dieser Arbeit eine weite Spanne an Parameter der weit entferntesten Quasare und deren Umgebungen analysieren, um die Entstehung massereicher Galaxien und schwarzer Löcher im ersten Gyr unseres Universums zu verstehen. ix Publications Part of this work has appeared in the publications: • Mazzucchelli, C., Bañados, E., Venemans, B. P., et al., Physical Properties of 15 Quasars at z &6.5, ApJ, 849, 91 • Mazzucchelli, C., Bañados, E., Decarli, R., et al., No overdensity of Lyman-Alpha Emitting Galaxies around a Quasar at z ∼5.7, ApJ, 834, 83 xi A Mariano xiii Contents 1 Introduction 1 1.1 Elements of Cosmology.................................1 1.1.1 Cosmological Principles and Robertson-Walker Metric...........1 1.1.2 Cosmological Redshift..............................2 1.1.3 Hubble Law and Cosmological Parameters..................3 1.1.4 Age of the Universe...............................3 1.1.5 Cosmological Distances.............................3 Comoving and Proper Distance.........................3 Luminosity Distance...............................4 Angular Diameter Distance...........................4 1.2 The Epoch of Reionization................................5 1.3 The First Galaxies.....................................6 1.4 Quasars: Discovery and Basic Elements........................ 10 1.4.1 The Discovery of the First Quasars....................... 10 1.4.2 Quasars Basic Components........................... 10 1.4.3 Black Hole Masses Estimates.......................... 14 1.5 High–Redshift Quasars.................................. 16 1.5.1 The First Supermassive Black Holes...................... 17 1.5.2 The Host Galaxies of Distant Quasars..................... 19 1.5.3 Quasars as probes of the IGM in the EoR................... 19 1.5.4 Quasars Environments.............................. 21 UV–based Mpc–Scale Observations...................... 21 IR–based kpc–Scale Observations....................... 22 2 Physical Properties of 15 Quasars at z & 6.5 27 2.1 The Pan–STARRS1 Survey................................ 27 2.2 Candidate Selection.................................... 28 2.2.1 Catalog Search.................................. 28 Pan-STARRS1................................... 28 ALLWISE Survey................................. 29 UKIDSS and VHS Surveys............................ 30 DECaLS...................................... 30 2.2.2 Forced photometry on PS1 images....................... 30 2.2.3 SED Fit....................................... 31 2.3 Observations........................................ 32 2.3.1 Imaging and spectroscopic confirmation................... 33 2.3.2 Spectroscopic follow-up of z &6.44 quasars.................. 34 2.3.3 NOEMA observations.............................. 38 xiv 2.4 Individual notes on six new quasars from PS1.................... 40 2.5 Analysis.......................................... 41 2.5.1 Redshifts...................................... 41 2.5.2 Absolute magnitude at 1450Å.......................... 44 2.5.3 Quasar continuum................................ 44 2.5.4 C IV blueshifts................................... 47 2.5.5 Mg II and Fe II emission modeling........................ 48 2.5.6 Black Hole Masses................................ 53 2.5.7 Black Hole Seeds................................. 58 2.5.8 Fe II/ Mg II ..................................... 58 2.5.9 Infrared and [CII] luminosities in Quasar Host Galaxies........... 61 2.5.10 Near Zones.................................... 66 2.6 Discussion and Summary...............................
Recommended publications
  • An Outline of Stellar Astrophysics with Problems and Solutions
    An Outline of Stellar Astrophysics with Problems and Solutions Using Maple R and Mathematica R Robert Roseberry 2016 1 Contents 1 Introduction 5 2 Electromagnetic Radiation 7 2.1 Specific intensity, luminosity and flux density ............7 Problem 1: luminous flux (**) . .8 Problem 2: galaxy fluxes (*) . .8 Problem 3: radiative pressure (**) . .9 2.2 Magnitude ...................................9 Problem 4: magnitude (**) . 10 2.3 Colour ..................................... 11 Problem 5: Planck{Stefan-Boltzmann{Wien{colour (***) . 13 Problem 6: Planck graph (**) . 13 Problem 7: radio and visual luminosity and brightness (***) . 14 Problem 8: Sirius (*) . 15 2.4 Emission Mechanisms: Continuum Emission ............. 15 Problem 9: Orion (***) . 17 Problem 10: synchrotron (***) . 18 Problem 11: Crab (**) . 18 2.5 Emission Mechanisms: Line Emission ................. 19 Problem 12: line spectrum (*) . 20 2.6 Interference: Line Broadening, Scattering, and Zeeman splitting 21 Problem 13: natural broadening (**) . 21 Problem 14: Doppler broadening (*) . 22 Problem 15: Thomson Cross Section (**) . 23 Problem 16: Inverse Compton scattering (***) . 24 Problem 17: normal Zeeman splitting (**) . 25 3 Measuring Distance 26 3.1 Parallax .................................... 27 Problem 18: parallax (*) . 27 3.2 Doppler shifting ............................... 27 Problem 19: supernova distance (***) . 28 3.3 Spectroscopic parallax and Main Sequence fitting .......... 28 Problem 20: Main Sequence fitting (**) . 29 3.4 Standard candles ............................... 30 Video: supernova light curve . 30 Problem 21: Cepheid distance (*) . 30 3.5 Tully-Fisher relation ............................ 31 3.6 Lyman-break galaxies and the Hubble flow .............. 33 4 Transparent Gas: Interstellar Gas Clouds and the Atmospheres and Photospheres of Stars 35 2 4.1 Transfer equation and optical depth .................. 36 Problem 22: optical depth (**) . 37 4.2 Plane-parallel atmosphere, Eddington's approximation, and limb darkening ..................................
    [Show full text]
  • Probing the High-Redshift Universe with SPICA: Toward the Epoch of Reionization and Beyond
    Publications of the Astronomical Society of Australia (PASA) doi: 10.1017/pas.2018.xxx. Probing the High-Redshift Universe with SPICA: Toward the Epoch of Reionization and Beyond E. Egami1, S. Gallerani2, R. Schneider3, A. Pallottini2,4,5,6, L. Vallini7, E. Sobacchi2, A. Ferrara2, S. Bianchi8, M. Bocchio8, S. Marassi9, L. Armus10, L. Spinoglio11, A. W. Blain12, M. Bradford13, D. L. Clements14, H. Dannerbauer15,16, J. A. Fernández-Ontiveros11,15,16, E. González-Alfonso17, M. J. Griffin18, C. Gruppioni19, H. Kaneda20, K. Kohno21, S. C. Madden22, H. Matsuhara23, P. Najarro24, T. Nakagawa23, S. Oliver25, K. Omukai26, T. Onaka27, C. Pearson28, I. Perez- Fournon15,16, P. G. Pérez-González29, D. Schaerer30, D. Scott31, S. Serjeant32, J. D. Smith33, F. F. S. van der Tak34,35, T. Wada24, and H. Yajima36 1Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721, USA 2Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy 3Dipartimento di Fisica “G. Marconi”, Sapienza Universitá di Roma, P.le A. Moro 2, 00185 Roma, Italy 4Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 5Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Ave., Cambridge CB3 0HE, UK 6Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, Roma, 00184, Italy 7Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands 8INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 9INAF, Osservatorio
    [Show full text]
  • Monthly Newsletter of the Durban Centre - March 2018
    Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively.
    [Show full text]
  • 16Th HEAD Meeting Session Table of Contents
    16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113
    [Show full text]
  • NASA's Goddard Space Flight Center Laboratory for Astronomy & Solar
    NASA's Goddard Space Flight Center Laboratory for Astronomy & Solar Physics Greenbelt, Maryland, 20771 The following report covers the period from July results from the first year of operations that were truly 2002 through September 2003. stunning. The WMAP measurements constrain models of structure formation, the geometry of the universe, and 1 INTRODUCTION inflation. The results indicate that the universe has a flat The Laboratory for Astronomy & Solar Physics (i.e. Euclidean) geometry. Initial observations of polar- (LASP) is a Division of the Space Sciences Directorate ization were reported, the first detection of reionization, at NASA Goddard Space Flight Center (GSFC). Mem- and accurate values for many cosmological parameters. bers of LASP conduct a broad program of observational Thirteen papers on the results were published in a spe- and theoretical scientific research. Observations are car- cial issue of the Astrophysical Journal. At the same time ried out from space-based observatories, balloons, and the results were announced, all the data from the first ground-based telescopes at wavelengths extending from year were made public in the new Legacy Archive for Mi- the EUV to the sub-millimeter. Research projects cover crowave Background Data Analsyis (LAMBDA). Gary the fields of solar and stellar astrophysics, the interstellar Hinshaw, Ed Wollack, Al Kogut, and Principal Investi- and intergalactic medium, active galactic nuclei, galaxy gator Chuck Bennett are members of the WMAP team formation and evolution, and studies of the cosmic mi- at GSFC. WMAP is still operating well, and we look crowave background radiation. forward to new results in the coming year. Studies of the sun are carried out in the gamma- The Reuven Ramaty High Energy Solar Spectro- ray, x-ray, EUV/UV and visible portions of the spec- scopic Imager (RHESSI), also provided dramatic new trum from space and the ground.
    [Show full text]
  • Keith Horne: Refereed Publications Papers Submitted: 425. “A
    Keith Horne: Refereed Publications Papers Submitted: 427. “The Lick AGN Monitoring Project 2016: Velocity-Resolved Hβ Lags in Luminous Seyfert Galaxies.” V.U, A.J.Barth, H.A.Vogler, H.Guo, T.Treu, et al. (202?). ApJ, submitted (01 Oct 2021). 426. “Multi-wavelength Optical and NIR Variability Analysis of the Blazar PKS 0027-426.” E.Guise, S.F.H¨onig, T.Almeyda, K.Horne M.Kishimoto, et al. (202?). (arXiv:2108.13386) 425. “A second planet transiting LTT 1445A and a determination of the masses of both worlds.” J.G.Winters, et al. (202?) ApJ, submitted (30 Jul 2021). (arXiv:2107.14737) 424. “A Different-Twin Pair of Sub-Neptunes orbiting TOI-1064 Discovered by TESS, Characterised by CHEOPS and HARPS” T.G.Wilson et al. (202?). ApJ, submitted (12 Jul 2021). 423. “The LHS 1678 System: Two Earth-Sized Transiting Planets and an Astrometric Companion Orbiting an M Dwarf Near the Convective Boundary at 20 pc” M.L.Silverstein, et al. (202?). AJ, submitted (24 Jun 2021). 422. “A temperate Earth-sized planet with strongly tidally-heated interior transiting the M8 dwarf LP 791-18.” M.Peterson, B.Benneke, et al. (202?). submitted (09 May 2021). 421. “The Sloan Digital Sky Survey Reverberation Mapping Project: UV-Optical Accretion Disk Measurements with Hubble Space Telescope.” Y.Homayouni, M.R.Sturm, J.R.Trump, K.Horne, C.J.Grier, Y.Shen, et al. (202?). ApJ submitted (06 May 2021). (arXiv:2105.02884) Papers in Press: 420. “Bayesian Analysis of Quasar Lightcurves with a Running Optimal Average: New Time Delay measurements of COSMOGRAIL Gravitationally Lensed Quasars.” F.R.Donnan, K.Horne, J.V.Hernandez Santisteban (202?) MNRAS, in press (28 Sep 2021).
    [Show full text]
  • OPTICAL IMAGING of VERY LUMINOUS INFRARED GALAXY SYSTEMS: PHOTOMETRIC PROPERTIES and LATE EVOLUTION Santiago Arribas,1,2 Howard Bushouse, and Ray A
    The Astronomical Journal, 127:2522–2543, 2004 May # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. OPTICAL IMAGING OF VERY LUMINOUS INFRARED GALAXY SYSTEMS: PHOTOMETRIC PROPERTIES AND LATE EVOLUTION Santiago Arribas,1,2 Howard Bushouse, and Ray A. Lucas Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218; [email protected], [email protected], [email protected] Luis Colina Instituto de Estructura de la Materia, CSIC, Serrano 119, E-28006 Madrid, Spain; [email protected] and Kirk D. Borne George Mason University, School of Computational Sciences; and NASA Goddard Space Flight Center, Greenbelt, MD 20771; [email protected] Received 2003 November 7; accepted 2004 February 17 ABSTRACT 11 A sample of 19 low-redshift (0:03 < z < 0:07), very luminous infrared galaxy [VLIRG: 10 L < L(8– 12 1000 m) < 10 L ] systems (30 galaxies) has been imaged in B, V,andI using ALFOSC with the Nordic Optical Telescope. These objects cover a luminosity range that is key to linking the most luminous infrared galaxies with the population of galaxies at large. As previous morphological studies have reported, most of these objects exhibit features similar to those found in ultraluminous infrared galaxies (ULIRGs), which suggests that they are also undergoing strong interactions or mergers. We have obtained photometry for all of these VLIRG systems, the individual galaxies (when detached), and their nuclei, and the relative behavior of these classes has been studied in optical color-magnitude diagrams. The observed colors and magnitudes for both the systems and the nuclei lie parallel to the reddening vector, with most of the nuclei having redder colors than the galaxy disks.
    [Show full text]
  • Centaurus Kentaur
    Lateinischer Name: Deutscher Name: Cen Centaurus Kentaur Atlas Karte (2000.0) Kulmination um Cambridge 17 Mitternacht: Star Atlas 20, 21, Sky Atlas Cen_chart.gif Cen_chart.gif 25 6. April Deklinationsbereich: -64° ... -30° Fläche am Himmel: 1060° 2 Benachbarte Sternbilder: Ant Car Cir Cru Hya Lib Lup Mus Vel Mythologie und Geschichte: Die Zentauren waren in der griechischen Mythologie meist wilde Mischwesen mit dem Oberkörper eines Menschen bis zur Hüfte, darunter dem Leib eines Pferdes. Der Zentaur Chiron aber war dagegen sehr weise und besonders in der Medizin, Musik und Botanik bewandert. Er war der Lehrer des Achill und des Asklepios. Chiron war auch der Beschützer vieler Helden und hat angeblich die Sternbilder "erfunden". Selbst an den Himmel versetzt wurde er, nachdem ihn Herkules aus Versehen mit einem vergifteten Pfeil getroffen hatte (diese Erklärung wird manchmal auch für Sagittarius überliefert, einen anderen "himmlischen" Zentauren). Am Himmel soll er den in einen Wolf verwandelten König Lykaon (Lupus ) in Schach halten. Das Sternbild war den Griechen bekannt, da es infolge der Präzession der Erdachse vor 2000-3000 Jahren vom Mittelmeerraum, Unterägypten und Vorderasien aus voll gesehen werden konnte. [bk7 ] Sternbild: Centaurus ist ein ausgedehntes Sternbild mit ungewöhnlich vielen hellen Sternen und einer Fläche von 1060 Quadratgrad, südlich von Hydra . Das Zentrum kulminiert jeweils etwa am 6. April um Mitternacht. Zwischen den Hufen des Zentauren befindet sich das Kreuz des Südens . [bk9 , bk15 ] Interessante Objekte:
    [Show full text]
  • GRAVITY+: Towards Faint Science, All Sky, High Contrast, Milli-Arcsecond Optical Interferometric Imaging
    GRAVITY+: Towards Faint Science, All Sky, High Contrast, Milli-Arcsecond Optical Interferometric Imaging White Paper and Proposal For the GRAVITY+ Consortium (MPE, LESIA, IPAG, UoC, CENTRA, MPIA, UoS): F. Eisenhauer1 (PI), P. Garcia2,3,4 (CoI), R. Genzel1,5, S. Hönig6 (CoI*), L. Kreidberg7,8 (CoI), J.-B. Le Bouquin9 (CoI), P. Léna10, T. Paumard10 (CoI), C. Straubmeier11 (CoI) Senior Team Members and Associated Partners: A. Amorim2,12, W. Brandner8, M. Carbillet13, V. Cardoso2,14, Y. Clénet10, R. Davies1, D. Defrère15, T. de Zeeuw1,16, G. Duvert9, A. Eckart11,17, S. Esposito18, M. Fabricius1,19, N.M. Förster Schreiber1, P. Gandhi6, E. Gendron10, S. Gillessen1, D. Gratadour10, K.-H. Hofmann17, M. Horrobin11, M. Ireland20, P. Kervella10, S. Kraus21, S. Lacour10, O. Lai22, B. Lopez22, D. Lutz1, F. Martinache22, A. Meilland22, F. Millour22, T. Ott1, R. Oudmaijer23, F. Patru10, K. Perraut9, G. Perrin10, R. Petrov22, S. Quanz24, S. Rabien1, A. Riccardi18, R. Saglia1,19, J. Sánchez Bermúdez8,25, D. Schertl17, J. Schubert1, F. Soulez26, E. Sturm1, L.J. Tacconi1, M. Tallon26, I. Tallon-Bosc26, E. Thiébaut26, F. Vidal10, G. Weigelt17, A. Ziad13 Supporters: O. Absil15, A. Alonso-Herrero27, R. Bender1,19, M. Benisty9,28, J.-P. Berger9, E. Banados8, C. Boisson29, J. Bouvier9, P. Caselli1, A. Cassan30, B. Chazelas31, A. Chiavassa32, F. Combes33, V. Coudé du Foresto10, J. Dexter1,34, C. Dougados9, Th. Henning8, T. Herbst8, J. Kammerer20, M. Kishimoto35, L. Labadie11, A.-M. Lagrange9, A. Marconi36, A. Matter13, Z. Meliani29, F. Ménard9, J. Monnier37, D. Mourard13, H. Netzer38, N. Neumayer8, B. Peterson39,40,41, P.-O. Petrucci9, J.-U. Pott8, H.W.
    [Show full text]
  • An ISOCAM Survey Through Gravitationally Lensing Galaxy Clusters. IV
    Astronomy & Astrophysics manuscript no. 1782ms October 30, 20181 (DOI: will be inserted by hand later) An ISOCAM survey through gravitationally lensing galaxy clusters. ⋆ IV. Luminous infrared galaxies in Cl 0024+1654 and the dynamical status of clusters D. Coia1, B. McBreen1, L. Metcalfe2,3, A. Biviano4, B. Altieri2, S. Ott5, B. Fort6, J.-P. Kneib7,8, Y. Mellier6,9, M.-A. Miville-Deschˆenes10 , B. O’Halloran1,11, and C. Sanchez-Fernandez2 . 1 Department of Experimental Physics, University College, Belfield, Dublin 4, Ireland. 2 XMM-Newton Science Operations Centre, European Space Agency, Villafranca del Castillo, P.O. Box 50727, 28080 Madrid, Spain. 3 ISO Data Centre, European Space Agency, Villafranca del Castillo, P.O. Box 50727, 28080 Madrid, Spain. 4 INAF/Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131, Trieste, Italy. 5 Science Operations and Data Systems Division of ESA, ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands. 6 Institut d’Astrophysique de Paris, 98 bis boulevard Arago, 75014 Paris, France. 7 Observatoire Midi-Pyr´en´ees, 14 avenue Edouard Belin, 31400 Toulouse, France. 8 California Institute of Technology, Pasadena, CA 91125, USA. 9 Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris, France. 10 Canadian Institute for Theoretical Astrophysics, 60 St-George Street, Toronto, Ontario, M5S 3H8, Canada. 11 Dunsink Observatory, Castleknock, Dublin 15, Ireland. Received 30 July 2003 / Accepted 26 October 2004 Abstract. Observations of the core of the massive cluster Cl 0024+1654, at a redshift z ∼ 0.39, were obtained with the Infrared Space Observatory using ISOCAM at 6.7 µm (hereafter 7 µm) and 14.3 µm (hereafter 15 µm).
    [Show full text]
  • The Radio Core Structure of the Luminous Infrared Galaxy NGC 4418 a Young Clustered Starburst Revealed? E
    A&A 566, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323303 & c ESO 2014 Astrophysics The radio core structure of the luminous infrared galaxy NGC 4418 A young clustered starburst revealed? E. Varenius1,J.E.Conway1, I. Martí-Vidal1, S. Aalto1, R. Beswick2, F. Costagliola3, and H.-R. Klöckner4 1 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden e-mail: [email protected] 2 Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK 3 Instituto de Astrofísica de Andalucía, Glorieta de la Astronomá, s/n, 18008 Granada, Spain 4 Max-Planck-Institut für Radioastronomie, auf dem Hügel 69, 53121 Bonn, Germany Received 20 December 2013 / Accepted 13 February 2014 ABSTRACT Context. The galaxy NGC 4418 contains one of the most compact obscured nuclei within a luminous infrared galaxy (LIRG) in the nearby Universe. This nucleus contains a rich molecular gas environment and an unusually high ratio of infrared-to-radio luminosity (q-factor). The compact nucleus is powered by either a compact starburst or an active galactic nucleus (AGN). Aims. The aim of this study is to constrain the nature of the nuclear region (starburst or AGN) within NGC 4418 via very-high- resolution radio imaging. Methods. Archival data from radio observations using the European Very Long Baseline Interferometry Network (EVN) and Multi- Element Radio Linked Interferometer Network (MERLIN) interferometers are imaged. Sizes and flux densities are obtained by fitting Gaussian intensity distributions to the image. The average spectral index of the compact radio emission is estimated from measurements at 1.4 GHz and 5.0 GHz.
    [Show full text]
  • George Mason University Center for Earth Observing and Space
    1 George Mason University Center for Earth Observing and Space Research Fairfax, Virginia 22030-4444 ͓S0002-7537͑93͒04051-X͔ This report covers the astronomy-related activities of the 2. OBSERVATIONAL ASTRONOMY & Center for Earth Observing and Space Research ͑CEOSR͒,a MULTIFREQUENCY DATA ANALYSIS component of the School of Computational Sciences ͑SCS͒ Jie Zhang, K. P. Dere, R. A. Howard ͑NRL͒, and V. Both- at George Mason University, for the period October 1, 2001 mer ͑MPI, Germany͒ have identified the solar coronal mass to September 30, 2002. Faculty and postdocs in the CEOSR ejection ͑CME͒ sources for 27 major geomagnetic storms program were J. Beall, P. Becker, R. Ellsworth, J. Guillory, occurring between 1996 and 2000. Observations of CMEs M. Kafatos, L. Ozernoy, R. Sambruna, S. Satyapal, M. Sum- and their solar surface origins were obtained using the Large- mers, L. Titarchuk, A. Vourlidas, J. Wallin, K. Wood, R. Angle and Spectrometric Coronagraph ͑LASCO͒ and the Yang, and J. Zhang. S. Roy was a visiting faculty member. Extreme-ultraviolet Imaging Telescope ͑EIT͒ instruments on Further program information is available at http:// the SOHO spacecraft. They find that 16 of the 27 ͑59%͒ www.ceosr.gmu.edu. major geomagnetic storms are identified with unique FSH CMEs. Six of the 27 events ͑22%͒ are associated with mul- tiple FSH CMEs. These six events show complex solar wind flows and complex geomagnetic activity, which are probably the result of multiple halo CMEs interacting in interplanetary 1. INTRODUCTION space. A complex event occurs when multiple FSH CMEs ͑ ͒ We begin by noting the sad passing of Dr.
    [Show full text]