Lab 03: Introduction to GENBANK and FASTA Files; BLAST
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
T-Coffee Documentation Release Version 13.45.47.Aba98c5
T-Coffee Documentation Release Version_13.45.47.aba98c5 Cedric Notredame Aug 31, 2021 Contents 1 T-Coffee Installation 3 1.1 Installation................................................3 1.1.1 Unix/Linux Binaries......................................4 1.1.2 MacOS Binaries - Updated...................................4 1.1.3 Installation From Source/Binaries downloader (Mac OSX/Linux)...............4 1.2 Template based modes: PSI/TM-Coffee and Expresso.........................5 1.2.1 Why do I need BLAST with T-Coffee?.............................6 1.2.2 Using a BLAST local version on Unix.............................6 1.2.3 Using the EBI BLAST client..................................6 1.2.4 Using the NCBI BLAST client.................................7 1.2.5 Using another client.......................................7 1.3 Troubleshooting.............................................7 1.3.1 Third party packages......................................7 1.3.2 M-Coffee parameters......................................9 1.3.3 Structural modes (using PDB)................................. 10 1.3.4 R-Coffee associated packages................................. 10 2 Quick Start Regressive Algorithm 11 2.1 Introduction............................................... 11 2.2 Installation from source......................................... 12 2.3 Examples................................................. 12 2.3.1 Fast and accurate........................................ 12 2.3.2 Slower and more accurate.................................... 12 2.3.3 Very Fast........................................... -
Sequencing Alignment I Outline: Sequence Alignment
Sequencing Alignment I Lectures 16 – Nov 21, 2011 CSE 527 Computational Biology, Fall 2011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 12:00-1:20 Johnson Hall (JHN) 022 1 Outline: Sequence Alignment What Why (applications) Comparative genomics DNA sequencing A simple algorithm Complexity analysis A better algorithm: “Dynamic programming” 2 1 Sequence Alignment: What Definition An arrangement of two or several biological sequences (e.g. protein or DNA sequences) highlighting their similarity The sequences are padded with gaps (usually denoted by dashes) so that columns contain identical or similar characters from the sequences involved Example – pairwise alignment T A C T A A G T C C A A T 3 Sequence Alignment: What Definition An arrangement of two or several biological sequences (e.g. protein or DNA sequences) highlighting their similarity The sequences are padded with gaps (usually denoted by dashes) so that columns contain identical or similar characters from the sequences involved Example – pairwise alignment T A C T A A G | : | : | | : T C C – A A T 4 2 Sequence Alignment: Why The most basic sequence analysis task First aligning the sequences (or parts of them) and Then deciding whether that alignment is more likely to have occurred because the sequences are related, or just by chance Similar sequences often have similar origin or function New sequence always compared to existing sequences (e.g. using BLAST) 5 Sequence Alignment Example: gene HBB Product: hemoglobin Sickle-cell anaemia causing gene Protein sequence (146 aa) MVHLTPEEKS AVTALWGKVN VDEVGGEALG RLLVVYPWTQ RFFESFGDLS TPDAVMGNPK VKAHGKKVLG AFSDGLAHLD NLKGTFATLS ELHCDKLHVD PENFRLLGNV LVCVLAHHFG KEFTPPVQAA YQKVVAGVAN ALAHKYH BLAST (Basic Local Alignment Search Tool) The most popular alignment tool Try it! Pick any protein, e.g. -
Comparative Analysis of Multiple Sequence Alignment Tools
I.J. Information Technology and Computer Science, 2018, 8, 24-30 Published Online August 2018 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2018.08.04 Comparative Analysis of Multiple Sequence Alignment Tools Eman M. Mohamed Faculty of Computers and Information, Menoufia University, Egypt E-mail: [email protected]. Hamdy M. Mousa, Arabi E. keshk Faculty of Computers and Information, Menoufia University, Egypt E-mail: [email protected], [email protected]. Received: 24 April 2018; Accepted: 07 July 2018; Published: 08 August 2018 Abstract—The perfect alignment between three or more global alignment algorithm built-in dynamic sequences of Protein, RNA or DNA is a very difficult programming technique [1]. This algorithm maximizes task in bioinformatics. There are many techniques for the number of amino acid matches and minimizes the alignment multiple sequences. Many techniques number of required gaps to finds globally optimal maximize speed and do not concern with the accuracy of alignment. Local alignments are more useful for aligning the resulting alignment. Likewise, many techniques sub-regions of the sequences, whereas local alignment maximize accuracy and do not concern with the speed. maximizes sub-regions similarity alignment. One of the Reducing memory and execution time requirements and most known of Local alignment is Smith-Waterman increasing the accuracy of multiple sequence alignment algorithm [2]. on large-scale datasets are the vital goal of any technique. The paper introduces the comparative analysis of the Table 1. Pairwise vs. multiple sequence alignment most well-known programs (CLUSTAL-OMEGA, PSA MSA MAFFT, BROBCONS, KALIGN, RETALIGN, and Compare two biological Compare more than two MUSCLE). -
Chapter 6: Multiple Sequence Alignment Learning Objectives
Chapter 6: Multiple Sequence Alignment Learning objectives • Explain the three main stages by which ClustalW performs multiple sequence alignment (MSA); • Describe several alternative programs for MSA (such as MUSCLE, ProbCons, and TCoffee); • Explain how they work, and contrast them with ClustalW; • Explain the significance of performing benchmarking studies and describe several of their basic conclusions for MSA; • Explain the issues surrounding MSA of genomic regions Outline: multiple sequence alignment (MSA) Introduction; definition of MSA; typical uses Five main approaches to multiple sequence alignment Exact approaches Progressive sequence alignment Iterative approaches Consistency-based approaches Structure-based methods Benchmarking studies: approaches, findings, challenges Databases of Multiple Sequence Alignments Pfam: Protein Family Database of Profile HMMs SMART Conserved Domain Database Integrated multiple sequence alignment resources MSA database curation: manual versus automated Multiple sequence alignments of genomic regions UCSC, Galaxy, Ensembl, alignathon Perspective Multiple sequence alignment: definition • a collection of three or more protein (or nucleic acid) sequences that are partially or completely aligned • homologous residues are aligned in columns across the length of the sequences • residues are homologous in an evolutionary sense • residues are homologous in a structural sense Example: 5 alignments of 5 globins Let’s look at a multiple sequence alignment (MSA) of five globins proteins. We’ll use five prominent MSA programs: ClustalW, Praline, MUSCLE (used at HomoloGene), ProbCons, and TCoffee. Each program offers unique strengths. We’ll focus on a histidine (H) residue that has a critical role in binding oxygen in globins, and should be aligned. But often it’s not aligned, and all five programs give different answers. -
How to Generate a Publication-Quality Multiple Sequence Alignment (Thomas Weimbs, University of California Santa Barbara, 11/2012)
Tutorial: How to generate a publication-quality multiple sequence alignment (Thomas Weimbs, University of California Santa Barbara, 11/2012) 1) Get your sequences in FASTA format: • Go to the NCBI website; find your sequences and display them in FASTA format. Each sequence should look like this (http://www.ncbi.nlm.nih.gov/protein/6678177?report=fasta): >gi|6678177|ref|NP_033320.1| syntaxin-4 [Mus musculus] MRDRTHELRQGDNISDDEDEVRVALVVHSGAARLGSPDDEFFQKVQTIRQTMAKLESKVRELEKQQVTIL ATPLPEESMKQGLQNLREEIKQLGREVRAQLKAIEPQKEEADENYNSVNTRMKKTQHGVLSQQFVELINK CNSMQSEYREKNVERIRRQLKITNAGMVSDEELEQMLDSGQSEVFVSNILKDTQVTRQALNEISARHSEI QQLERSIRELHEIFTFLATEVEMQGEMINRIEKNILSSADYVERGQEHVKIALENQKKARKKKVMIAICV SVTVLILAVIIGITITVG 2) In a text editor, paste all your sequences together (in the order that you would like them to appear in the end). It should look like this: >gi|6678177|ref|NP_033320.1| syntaxin-4 [Mus musculus] MRDRTHELRQGDNISDDEDEVRVALVVHSGAARLGSPDDEFFQKVQTIRQTMAKLESKVRELEKQQVTIL ATPLPEESMKQGLQNLREEIKQLGREVRAQLKAIEPQKEEADENYNSVNTRMKKTQHGVLSQQFVELINK CNSMQSEYREKNVERIRRQLKITNAGMVSDEELEQMLDSGQSEVFVSNILKDTQVTRQALNEISARHSEI QQLERSIRELHEIFTFLATEVEMQGEMINRIEKNILSSADYVERGQEHVKIALENQKKARKKKVMIAICV SVTVLILAVIIGITITVG >gi|151554658|gb|AAI47965.1| STX3 protein [Bos taurus] MKDRLEQLKAKQLTQDDDTDEVEIAVDNTAFMDEFFSEIEETRVNIDKISEHVEEAKRLYSVILSAPIPE PKTKDDLEQLTTEIKKRANNVRNKLKSMERHIEEDEVQSSADLRIRKSQHSVLSRKFVEVMTKYNEAQVD FRERSKGRIQRQLEITGKKTTDEELEEMLESGNPAIFTSGIIDSQISKQALSEIEGRHKDIVRLESSIKE LHDMFMDIAMLVENQGEMLDNIELNVMHTVDHVEKAREETKRAVKYQGQARKKLVIIIVIVVVLLGILAL IIGLSVGLK -
The ELIXIR Core Data Resources: Fundamental Infrastructure for The
Supplementary Data: The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences The “Supporting Material” referred to within this Supplementary Data can be found in the Supporting.Material.CDR.infrastructure file, DOI: 10.5281/zenodo.2625247 (https://zenodo.org/record/2625247). Figure 1. Scale of the Core Data Resources Table S1. Data from which Figure 1 is derived: Year 2013 2014 2015 2016 2017 Data entries 765881651 997794559 1726529931 1853429002 2715599247 Monthly user/IP addresses 1700660 2109586 2413724 2502617 2867265 FTEs 270 292.65 295.65 289.7 311.2 Figure 1 includes data from the following Core Data Resources: ArrayExpress, BRENDA, CATH, ChEBI, ChEMBL, EGA, ENA, Ensembl, Ensembl Genomes, EuropePMC, HPA, IntAct /MINT , InterPro, PDBe, PRIDE, SILVA, STRING, UniProt ● Note that Ensembl’s compute infrastructure physically relocated in 2016, so “Users/IP address” data are not available for that year. In this case, the 2015 numbers were rolled forward to 2016. ● Note that STRING makes only minor releases in 2014 and 2016, in that the interactions are re-computed, but the number of “Data entries” remains unchanged. The major releases that change the number of “Data entries” happened in 2013 and 2015. So, for “Data entries” , the number for 2013 was rolled forward to 2014, and the number for 2015 was rolled forward to 2016. The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences 1 Figure 2: Usage of Core Data Resources in research The following steps were taken: 1. API calls were run on open access full text articles in Europe PMC to identify articles that mention Core Data Resource by name or include specific data record accession numbers. -
Bioinformatics Study of Lectins: New Classification and Prediction In
Bioinformatics study of lectins : new classification and prediction in genomes François Bonnardel To cite this version: François Bonnardel. Bioinformatics study of lectins : new classification and prediction in genomes. Structural Biology [q-bio.BM]. Université Grenoble Alpes [2020-..]; Université de Genève, 2021. En- glish. NNT : 2021GRALV010. tel-03331649 HAL Id: tel-03331649 https://tel.archives-ouvertes.fr/tel-03331649 Submitted on 2 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES préparée dans le cadre d’une cotutelle entre la Communauté Université Grenoble Alpes et l’Université de Genève Spécialités: Chimie Biologie Arrêté ministériel : le 6 janvier 2005 – 25 mai 2016 Présentée par François Bonnardel Thèse dirigée par la Dr. Anne Imberty codirigée par la Dr/Prof. Frédérique Lisacek préparée au sein du laboratoire CERMAV, CNRS et du Computer Science Department, UNIGE et de l’équipe PIG, SIB Dans les Écoles Doctorales EDCSV et UNIGE Etude bioinformatique des lectines: nouvelle classification et prédiction dans les génomes Thèse soutenue publiquement le 8 Février 2021, devant le jury composé de : Dr. Alexandre de Brevern UMR S1134, Inserm, Université Paris Diderot, Paris, France, Rapporteur Dr. -
To Find Information About Arabidopsis Genes Leonore Reiser1, Shabari
UNIT 1.11 Using The Arabidopsis Information Resource (TAIR) to Find Information About Arabidopsis Genes Leonore Reiser1, Shabari Subramaniam1, Donghui Li1, and Eva Huala1 1Phoenix Bioinformatics, Redwood City, CA USA ABSTRACT The Arabidopsis Information Resource (TAIR; http://arabidopsis.org) is a comprehensive Web resource of Arabidopsis biology for plant scientists. TAIR curates and integrates information about genes, proteins, gene function, orthologs gene expression, mutant phenotypes, biological materials such as clones and seed stocks, genetic markers, genetic and physical maps, genome organization, images of mutant plants, protein sub-cellular localizations, publications, and the research community. The various data types are extensively interconnected and can be accessed through a variety of Web-based search and display tools. This unit primarily focuses on some basic methods for searching, browsing, visualizing, and analyzing information about Arabidopsis genes and genome, Additionally we describe how members of the community can share data using TAIR’s Online Annotation Submission Tool (TOAST), in order to make their published research more accessible and visible. Keywords: Arabidopsis ● databases ● bioinformatics ● data mining ● genomics INTRODUCTION The Arabidopsis Information Resource (TAIR; http://arabidopsis.org) is a comprehensive Web resource for the biology of Arabidopsis thaliana (Huala et al., 2001; Garcia-Hernandez et al., 2002; Rhee et al., 2003; Weems et al., 2004; Swarbreck et al., 2008, Lamesch, et al., 2010, Berardini et al., 2016). The TAIR database contains information about genes, proteins, gene expression, mutant phenotypes, germplasms, clones, genetic markers, genetic and physical maps, genome organization, publications, and the research community. In addition, seed and DNA stocks from the Arabidopsis Biological Resource Center (ABRC; Scholl et al., 2003) are integrated with genomic data, and can be ordered through TAIR. -
A SARS-Cov-2 Sequence Submission Tool for the European Nucleotide
Databases and ontologies Downloaded from https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btab421/6294398 by guest on 25 June 2021 A SARS-CoV-2 sequence submission tool for the European Nucleotide Archive Miguel Roncoroni 1,2,∗, Bert Droesbeke 1,2, Ignacio Eguinoa 1,2, Kim De Ruyck 1,2, Flora D’Anna 1,2, Dilmurat Yusuf 3, Björn Grüning 3, Rolf Backofen 3 and Frederik Coppens 1,2 1Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium, 1VIB Center for Plant Systems Biology, 9052 Ghent, Belgium and 2University of Freiburg, Department of Computer Science, Freiburg im Breisgau, Baden-Württemberg, Germany ∗To whom correspondence should be addressed. Associate Editor: XXXXXXX Received on XXXXX; revised on XXXXX; accepted on XXXXX Abstract Summary: Many aspects of the global response to the COVID-19 pandemic are enabled by the fast and open publication of SARS-CoV-2 genetic sequence data. The European Nucleotide Archive (ENA) is the European recommended open repository for genetic sequences. In this work, we present a tool for submitting raw sequencing reads of SARS-CoV-2 to ENA. The tool features a single-step submission process, a graphical user interface, tabular-formatted metadata and the possibility to remove human reads prior to submission. A Galaxy wrap of the tool allows users with little or no bioinformatic knowledge to do bulk sequencing read submissions. The tool is also packed in a Docker container to ease deployment. Availability: CLI ENA upload tool is available at github.com/usegalaxy- eu/ena-upload-cli (DOI 10.5281/zenodo.4537621); Galaxy ENA upload tool at toolshed.g2.bx.psu.edu/view/iuc/ena_upload/382518f24d6d and https://github.com/galaxyproject/tools- iuc/tree/master/tools/ena_upload (development) and; ENA upload Galaxy container at github.com/ELIXIR- Belgium/ena-upload-container (DOI 10.5281/zenodo.4730785) Contact: [email protected] 1 Introduction Nucleotide Archive (ENA). -
Six-Fold Speed-Up of Smith-Waterman Sequence Database Searches Using Parallel Processing on Common Microprocessors
Six-fold speed-up of Smith-Waterman sequence database searches using parallel processing on common microprocessors Running head: Six-fold speed-up of Smith-Waterman searches Torbjørn Rognes* and Erling Seeberg Institute of Medical Microbiology, University of Oslo, The National Hospital, NO-0027 Oslo, Norway Abstract Motivation: Sequence database searching is among the most important and challenging tasks in bioinformatics. The ultimate choice of sequence search algorithm is that of Smith- Waterman. However, because of the computationally demanding nature of this method, heuristic programs or special-purpose hardware alternatives have been developed. Increased speed has been obtained at the cost of reduced sensitivity or very expensive hardware. Results: A fast implementation of the Smith-Waterman sequence alignment algorithm using SIMD (Single-Instruction, Multiple-Data) technology is presented. This implementation is based on the MMX (MultiMedia eXtensions) and SSE (Streaming SIMD Extensions) technology that is embedded in Intel’s latest microprocessors. Similar technology exists also in other modern microprocessors. Six-fold speed-up relative to the fastest previously known Smith-Waterman implementation on the same hardware was achieved by an optimised 8-way parallel processing approach. A speed of more than 150 million cell updates per second was obtained on a single Intel Pentium III 500MHz microprocessor. This is probably the fastest implementation of this algorithm on a single general-purpose microprocessor described to date. Availability: Online searches with the software are available at http://dna.uio.no/search/ Contact: [email protected] Published in Bioinformatics (2000) 16 (8), 699-706. Copyright © (2000) Oxford University Press. *) To whom correspondence should be addressed. -
Homology & Alignment
Protein Bioinformatics Johns Hopkins Bloomberg School of Public Health 260.655 Thursday, April 1, 2010 Jonathan Pevsner Outline for today 1. Homology and pairwise alignment 2. BLAST 3. Multiple sequence alignment 4. Phylogeny and evolution Learning objectives: homology & alignment 1. You should know the definitions of homologs, orthologs, and paralogs 2. You should know how to determine whether two genes (or proteins) are homologous 3. You should know what a scoring matrix is 4. You should know how alignments are performed 5. You should know how to align two sequences using the BLAST tool at NCBI 1 Pairwise sequence alignment is the most fundamental operation of bioinformatics • It is used to decide if two proteins (or genes) are related structurally or functionally • It is used to identify domains or motifs that are shared between proteins • It is the basis of BLAST searching (next topic) • It is used in the analysis of genomes myoglobin Beta globin (NP_005359) (NP_000509) 2MM1 2HHB Page 49 Pairwise alignment: protein sequences can be more informative than DNA • protein is more informative (20 vs 4 characters); many amino acids share related biophysical properties • codons are degenerate: changes in the third position often do not alter the amino acid that is specified • protein sequences offer a longer “look-back” time • DNA sequences can be translated into protein, and then used in pairwise alignments 2 Find BLAST from the home page of NCBI and select protein BLAST… Page 52 Choose align two or more sequences… Page 52 Enter the two sequences (as accession numbers or in the fasta format) and click BLAST. -
Assembly Exercise
Assembly Exercise Turning reads into genomes Where we are • 13:30-14:00 – Primer Design to Amplify Microbial Genomes for Sequencing • 14:00-14:15 – Primer Design Exercise • 14:15-14:45 – Molecular Barcoding to Allow Multiplexed NGS • 14:45-15:15 – Processing NGS Data – de novo and mapping assembly • 15:15-15:30 – Break • 15:30-15:45 – Assembly Exercise • 15:45-16:15 – Annotation • 16:15-16:30 – Annotation Exercise • 16:30-17:00 – Submitting Data to GenBank Log onto ILRI cluster • Log in to HPC using ILRI instructions • NOTE: All the commands here are also in the file - assembly_hands_on_steps.txt • If you are like me, it may be easier to cut and paste Linux commands from this file instead of typing them in from the slides Start an interactive session on larger servers • The interactive command will start a session on a server better equipped to do genome assembly $ interactive • Switch to csh (I use some csh features) $ csh • Set up Newbler software that will be used $ module load 454 A norovirus sample sequenced on both 454 and Illumina • The vendors use different file formats unknown_norovirus_454.GACT.sff unknown_norovirus_illumina.fastq • I have converted these files to additional formats for use with the assembly tools unknown_norovirus_454_convert.fasta unknown_norovirus_454_convert.fastq unknown_norovirus_illumina_convert.fasta Set up and run the Newbler de novo assembler • Create a new de novo assembly project $ newAssembly de_novo_assembly • Add read data to the project $ addRun de_novo_assembly unknown_norovirus_454.GACT.sff