The Role of the Brain in Perception

Total Page:16

File Type:pdf, Size:1020Kb

The Role of the Brain in Perception BEHAVIORAL AND BRAIN SCIENCES (2001) 24, 939–1031 Printed in the United States of America A sensorimotor account of vision and visual consciousness J. Kevin O’Regan Laboratoire de Psychologie Expérimentale, Centre National de Recherche Scientifique, Université René Descartes, 92774 Boulogne Billancourt, France [email protected] http://nivea.psycho.univ-paris5.fr Alva Noë Department of Philosophy, University of California at Santa Cruz, Santa Cruz, CA 95064 [email protected] http://www2.ucsc.edu/people/anoe/ Abstract: Many current neurophysiological, psychophysical, and psychological approaches to vision rest on the idea that when we see, the brain produces an internal representation of the world. The activation of this internal representation is assumed to give rise to the experience of seeing. The problem with this kind of approach is that it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness. An alternative proposal is made here. We propose that seeing is a way of acting. It is a particular way of exploring the environment. Activity in internal representations does not generate the experience of seeing. The out- side world serves as its own, external, representation. The experience of seeing occurs when the organism masters what we call the gov- erning laws of sensorimotor contingency. The advantage of this approach is that it provides a natural and principled way of accounting for visual consciousness, and for the differences in the perceived quality of sensory experience in the different sensory modalities. Sev- eral lines of empirical evidence are brought forward in support of the theory, in particular: evidence from experiments in sensorimotor adaptation, visual “filling in,” visual stability despite eye movements, change blindness, sensory substitution, and color perception. Keywords: action; change blindness; consciousness; experience; perception; qualia; sensation; sensorimotor 1. Introduction 1.1. The puzzle of visual experience What is visual experience and where does it occur? Kevin O’Regan moved to Paris in 1975 after studying theoretical physics in England, to work in experimental It is generally thought that somewhere in the brain an in- psychology at the Centre National de Recherche Scien- ternal representation of the outside world must be set up tifique. After his Ph.D. on eye movements in reading he which, when it is activated, gives us the experience that we showed the existence of an optimal position for the eye all share of the rich, three-dimensional, colorful world. Cor- to fixate in words. His interest in the problem of the per- tical maps – those cortical areas where visual information ceived stability of the visual world led him to question seems to be retinotopically organized – might appear to be established notions of the nature of visual perception, good candidates for the locus of perception. and to recently discover, with collaborators, the phe- Cortical maps undoubtedly exist, and they contain infor- nomenon of “change blindness.” His current work in- mation about the visual world. But the presence of these volves exploring the empirical consequences of the new maps and the retinotopic nature of their organization can- approach to vision. not in itself explain the metric quality of visual phenome- Alva Noë is a philosopher at the University of Califor- nology. Nor can it explain why activation of cortical maps nia, Santa Cruz. He received a Ph.D. in philosophy from should produce visual experience. Something extra would Harvard University and a B. Phil. from Oxford Univer- sity, and he has been a Research Associate of the Cen- appear to be needed in order to make excitation in cortical ter for Cognitive Studies at Tufts University. He has maps provide, in addition, the subjective impression of see- published articles on topics in the philosophy of per- ing. ception, philosophy of mind, and other areas, including A number of proposals have come forth in recent years a previous Behavioral and Brain Sciences target article to suggest how this might come about. For example, it has on perceptual completion. He is currently at work on a been suggested, from work with blindsight patients, that book on the relation between perception and action, consciousness in vision may derive from a “commentary” and he is a co-editor of Vision and Mind: Selected Read- system situated somewhere in the fronto-limbic complex ings in the Philosophy of Perception (MIT Press, forth- (taken to include the prefrontal cortex, insula and claus- coming). trum; cf. Weiskrantz 1997, p. 226). Crick and Koch (1990), © 2001 Cambridge University Press 0140-525X/01 $12.50 939 O’Regan & Noë: A sensorimotor account of vision and visual consciousness Llinas and Ribary (1993), Singer (1993), and Singer and certainly true that retinal influx comes together in relatively Gray (1995) suggest that consciousness might be correlated circumscribed areas of the brain, and that this may provide with particular states of the brain involving coherent oscil- an architectural advantage in the neural implementation of lations in the 40–70 Hz range, which would serve to bind the calculations necessary to generate visual-type sensa- together the percepts pertaining to a particular conscious tions. But what is it about these pathways that generates the moment.1 Penrose (1994) and Hameroff (1994) suggest different sensations? Surely the choice of a particular sub- that the locus of consciousness might be a quantum process set of neurons or particular cortical regions cannot, in itself, in neurons’ microtubules. Edelman (1989) holds that re- explain why we attribute visual rather than auditory qua- entrant signaling between cortical maps might give rise to lities to this influx. We could suppose that the neurons consciousness. A variety of other possibilities that might involved are of a different kind, with, say, different neuro- constitute the “neural correlate of consciousness” has been transmitters, but then why and how do different neuro- compiled by Chalmers (1996b). transmitters give rise to different experiences? We could A problem with proposals of this kind is that they do lit- say that the type of calculation done in the different corti- tle to elucidate the mystery of visual consciousness (as cal areas is different, but then we must ask, how could cal- pointed out by, for example, Chalmers 1996b). For even if culations ever give rise to experience? The hard work is left one particular mechanism – for example, coherent oscilla- undone. Much still needs to be explained. tions in a particular brain area – were proven to correlate perfectly with behavioral measures of consciousness, the problem of consciousness would simply be pushed back 1.3. An alternative approach: The sensorimotor into a deeper hiding place: the question would now be- contingency theory come, why and how should coherent oscillations ever gen- The present paper seeks to overcome the difficulties de- erate consciousness? After all, coherent oscillations are ob- scribed above by adopting a different approach to the prob- served in many other branches of science, where they do lem of visual experience. Instead of assuming that vision not generate consciousness. And even if consciousness is as- consists in the creation of an internal representation of the sumed to arise from some new, previously unknown mech- outside world whose activation somehow generates visual anism, such as quantum-gravity processes in tubules, the experience, we propose to treat vision as an exploratory ac- puzzle still remains as to what exactly it is about tubules that tivity. We then examine what this activity actually consists allows them to generate consciousness, when other physi- in. The central idea of our new approach is that vision is a cal mechanisms do not. mode of exploration of the world that is mediated by knowl- edge of what we call sensorimotor contingencies. We show 1.2. What are sensory modalities? that problems about the nature of visual consciousness, the qualitative character of visual experience, and the differ- In addition to the problem of the origin of experience dis- ence between vision and other sensory modalities, can now, cussed in the preceding paragraphs, there is the problem of from the new standpoint, all be approached in a natural differences in the felt quality of visual experience. Why is way, without appealing to mysterious or arcane explanatory the experience of red more like the experience of pink than devices. it is like that of black? And, more generally, why is seeing red very different from hearing a sound or smelling a smell? It is tempting to think that seeing red is like seeing pink 2. The structure of vision because the neural stimulation going on when we see some- thing red is similar to that underlying our perception of pink: As stated above, we propose that vision is a mode of explo- almost the same ratios of long, medium and short wave- ration of the world that is mediated by knowledge, on the length photoreceptors will be stimulated by red and pink. part of the perceiver, of what we call sensorimotor contin- But note that though this seems reasonable, it does not suf- gencies. We now explore this claim in detail. fice: there is no a priori reason why similar neural processes should generate similar percepts.2 If neural activity is just 2.1. Sensorimotor contingencies induced an arbitrary code, then an explanation is needed for the par- by the visual apparatus ticular sensory experience that will be associated with each element of the code. Why, for example, should more in- Imagine a team of engineers operating a remote-controlled tense neural activity provoke more intense experiences? underwater vessel exploring the remains of the Titanic, and And what exactly is the mapping function: is it linear, loga- imagine a villainous aquatic monster that has interfered rithmic, or a power function? And why is it one of these with the control cable by mixing up the connections to and rather than another? Even these questions leave open the from the underwater cameras, sonar equipment, robot arms, more fundamental question of how a neural code could actuators, and sensors.
Recommended publications
  • Harnad (1994) Computation Is Just Interpretable Symbol Manipulation
    Computation Is Just Interpretable Symbol Manipulation: Cognition Isn't http://www.ecs.soton.ac.uk/~harnad/Papers/Harnad/harnad94.computa... Harnad, S. (1994) Computation Is Just Interpretable Symbol Manipulation: Cognition Isn't. Special Issue on "What Is Computation" Minds and Machines 4:379-390 [Also appears in French translation in "Penser l'Esprit: Des Sciences de la Cognition a une Philosophie Cognitive," V. Rialle & D. Fisette, Eds. Presses Universite de Grenoble. 1996] COMPUTATION IS JUST INTERPRETABLE SYMBOL MANIPULATION; COGNITION ISN'T Stevan Harnad Department of Psychology University of Southampton Highfield, Southampton SO17 1BJ UNITED KINGDOM email:[email protected] ftp://cogsci.ecs.soton.ac.uk/pub/harnad/ http://cogsci.ecs.soton.ac.uk/~harnad/ gopher://gopher.princeton.edu/11/.libraries/.pujournals phone: +44 703 592582 fax: +44 703 594597 ABSTRACT: Computation is interpretable symbol manipulation. Symbols are objects that are manipulated on the basis of rules operating only on the symbols' shapes , which are arbitrary in relation to what they can be interpreted as meaning. Even if one accepts the Church/Turing Thesis that computation is unique, universal and very near omnipotent, not everything is a computer, because not everything can be given a systematic interpretation; and certainly everything can't be given every systematic interpretation. But even after computers and computation have been successfully distinguished from other kinds of things, mental states will not just be the implementations of the right symbol systems, because of the symbol grounding problem: The interpretation of a symbol system is not intrinsic to the system; it is projected onto it by the interpreter.
    [Show full text]
  • Affective Sentience and Moral Protection
    Rochester Institute of Technology RIT Scholar Works Articles Faculty & Staff Scholarship 1-9-2021 Affective sentience and moral protection Russell Powell Boston University Irina Mikhalevich Rochester Institute of Technology Follow this and additional works at: https://scholarworks.rit.edu/article Recommended Citation Powell, Russell and Mikhalevich, Irina (2020) Affective sentience and moral protection. Animal Sentience 29(35). DOI: 10.51291/2377-7478.1668 This Article is brought to you for free and open access by the Faculty & Staff Scholarship at RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Animal Sentience 2020.397: Powell & Mikhalevich Response to Commentary on Invertebrate Minds Affective sentience and moral protection Response to Commentary on Mikhalevich & Powell on Invertebrate Minds Russell Powell Department of Philosophy, Boston University Irina Mikhalevich Department of Philosophy, Rochester Institute of Technology Abstract: We have structured our response according to five questions arising from the commentaries: (i) What is sentience? (ii) Is sentience a necessary or sufficient condition for moral standing? (iii) What methods should guide comparative cognitive research in general, and specifically in studying invertebrates? (iv) How should we balance scientific uncertainty and moral risk? (v) What practical strategies can help reduce biases and morally dismissive attitudes toward invertebrates? Russell Powell, Associate Professor of Philosophy, Boston University, specializes in philosophical problems in evolutionary biology and bioethics. Website Irina Mikhalevich, Assistant Professor of Philosophy, Rochester Institute of Technology, specializes in conceptual and methodological problems in comparative cognitive science and their implications for the treatment of nonhuman animals.
    [Show full text]
  • Pupil Responses Associated with Coloured Afterimages Are Mediated by the Magno-Cellular Pathway
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aston Publications Explorer Vision Research 43 (2003) 1423–1432 www.elsevier.com/locate/visres Pupil responses associated with coloured afterimages are mediated by the magno-cellular pathway S. Tsujimura *, J.S. Wolffsohn, B. Gilmartin Neurosciences Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK Received 14 August 2002; received in revised form 27 January 2003 Abstract Sustained fixation of a bright coloured stimulus will, on extinction of the stimulus and continued steady fixation, induce an afterimage whose colour is complementary to that of the initial stimulus; an effect thought to be caused by fatigue of cones and/or of cone-opponent processes to different colours. However, to date, very little is known about the specific pathway that causes the coloured afterimage. Using isoluminant coloured stimuli recent studies have shown that pupil constriction is induced by onset and offset of the stimulus, the latter being attributed specifically to the subsequent emergence of the coloured afterimage. The aim of the study was to investigate how the offset pupillary constriction is generated in terms of input signals from discrete functional elements of the magno- and/or parvo-cellular pathways, which are known principally to convey, respectively, luminance and colour signals. Changes in pupil size were monitored continuously by digital analysis of an infra-red image of the pupil while observers viewed isoluminant green pulsed, ramped or luminance masked stimuli presented on a computer monitor. It was found that the amplitude of the offset pupillary constriction decreases when a pulsed stimulus is replaced by a temporally ramped stimulus and is eliminated by a luminance mask.
    [Show full text]
  • Real Time Measurement and Processing of Pupillary Light Reflex for Early Detection of Disease
    Journal of Computers Real Time Measurement and Processing of Pupillary Light Reflex for Early Detection of Disease Ippei Torii*, Takahito Niwa Aichi Institute of Technology, Dept. of Information Science, 1247 Yachigusa, Yakusa-cho, Toyota, Aichi, Japan. * Corresponding author. Tel.: 81-565-48-8121; email: mac[aitech.ac.jp Manuscript submitted January 10, 2019; accepted March 8, 2019. doi: 10.17706/jcp.14.3.161-169 Abstract: Recently, pupillary measurements have begun to be considered effective in the diagnosis of various physical conditions. Apart from optic neuropathy and retinal disorders, which are ocular diseases, diversions can be expected in the diagnosis of autonomic disturbance due to sympathetic and parasympathetic nerve disorders, cranial nerve disorders, cerebral infarction, depression, and diabetes. In this study, we have developed a real-time pupil diameter measuring system that is inexpensive and does not require a complicated device. When strong light is projected onto the eyeball, this system can measure the reaction time until the start of miosis, the time to achieve maximal miosis, and the difference in reaction speed of the left and right eyes. With this system, the status of a disease can be judged based on the distance from the threshold value. Key words: Real time measurement, eye movement, early detection of disease, image processing. 1. Introduction There are approximately one hundred million photoreceptor cells in the retina of human eyes. Light that shines on those cells is converted to nerve signals, which transmit the information to the brain, resulting in the visual recognition of objects. When light is radiated onto the eye, the pupillary light reflex is triggered, causing the pupillary diameter to decrease with a time delay of less than 1 sec.
    [Show full text]
  • Visual Cortex in Humans 251
    Author's personal copy Visual Cortex in Humans 251 Visual Cortex in Humans B A Wandell, S O Dumoulin, and A A Brewer, using fMRI, and we discuss the main features of the Stanford University, Stanford, CA, USA V1 map. We then summarize the positions and proper- ties of ten additional visual field maps. This represents ã 2009 Elsevier Ltd. All rights reserved. our current understanding of human visual field maps, although this remains an active field of investigation, with more maps likely to be discovered. Finally, we Human visua l cortex comprises 4–6 billion neurons that are organ ized into more than a dozen distinct describe theories about the functional purpose and functional areas. These areas include the gray matter organizing principles of these maps. in the occi pital lobe and extend into the temporal and parietal lobes . The locations of these areas in the The Size and Location of Human Visual intact human cortex can be identified by measuring Cortex visual field maps. The neurons within these areas have a variety of different stimulus response proper- The entirety of human cortex occupies a surface area 2 ties. We descr ibe how to measure these visual field on the order of 1000 cm and ranges between 2 and maps, their locations, and their overall organization. 4 mm in thickness. Each cubic millimeter of cortex contains approximately 50 000 neurons so that neo- We then consider how information about patterns, objects, color s, and motion is analyzed and repre- cortex in the two hemispheres contain on the order of sented in these maps.
    [Show full text]
  • Listening to Dance...With Our Bodies and Minds Jordan
    Interdisciplinary Panel 4: Looking and listening Listening to dance...with our bodies and minds Stephanie Jordan, Research Professor in Dance, Director of Centre for Dance Research, Roehampton University Through our bodies, we empathise not only with dance, but also with its accompanying music. So, what happens when we experience dance and music together, or ‘choreomusically’? Evidence now suggests that audio, visual and motor imagery share a common representational and neuropsychological base, even though music can be subversive as much as supportive in the partnership with dance. In this regard, might it be useful to explore the interface between perception and empathy in our discussion of dance and music? In experiencing dance and music together, is the response one of integration or of two (or even more) separate ‘voices’ or ‘bodies’, each of which invites empathetic response or ‘virtual motion’? My paper raises questions about how we respond to choreomusical structures, drawing from my experience of integrating ideas from cognitive science into dance analysis (independently and in experimental workshops). My research, though primarily from the point of view of perception, raises key questions about empathetic responses to, or embodiment of, the two simultaneously-presented media. Although a number of valuable crossmodal studies deal with basic temporal and spatial concepts, there are few to date that have foregrounded relations (or structural meetings) between the more complex and extended stimuli of actual dance and music. In the two seminal experiments (Krumhansl and Schenk (1997); Mitchell and Gallaher (2001)), empirical evidence demonstrated that dance can reflect musical formal divisions, pitch level, dynamics and emotions.
    [Show full text]
  • 2010 Program Meeting Schedule
    Vision Sciences Society 10th Annual Meeting, May 7-12, 2010 Naples Grande Resort & Club, Naples, Florida Program Contents Board, Review Committee & Staff . 2 Satellite Events. 22 Keynote Address . 3 Club Vision Dance Party. 22 Meeting Schedule . 4 Open House . 23 Schedule-at-a-Glance . 6 Member-Initiated Symposia . 24 Poster Schedule . 8 Friday Sessions . 29 Talk Schedule . 10 Saturday Sessions . 33 Young Investigator Award . 11 Sunday Sessions . 43 Abstract Numbering System. 11 Monday Sessions . 53 VSS Dinner and Demo Night . 12 Tuesday Sessions . 58 VSS Public Lecture . 15 Wednesday Sessions . 68 VSS at ARVO . 15 Topic Index. 71 Attendee Resources . 16 Author Index . 74 Exhibitors . 19 Hotel Floorplan . 86 Travel Awards . 21 Advertisements. 89 Board, Review Committee & Staff Board of Directors Abstract Review Committee Tony Movshon (2011), President David Alais Laurence Maloney New York University Marty Banks Ennio Mingolla Pascal Mamassian (2012), President Elect Irving Biederman Cathleen Moore CNRS & Université Paris 5 Geoff Boynton Shin’ya Nishida Eli Brenner Tony Norcia Bill Geisler (2010), Past President Angela Brown Aude Oliva University of Texas, Austin David Burr Alice O’Toole Marisa Carrasco (2012), Treasurer Patrick Cavanagh John Reynolds New York University Marvin Chun Anna Roe Barbara Dosher (2013) Jody Culham Brian Rogers University of California, Irvine Greg DeAngelis Jeff Schall James Elder Brian Scholl Karl Gegenfurtner (2013) Steve Engel David Sheinberg Justus-Liebig Universität Giessen, Germany Jim Enns Daniel Simons
    [Show full text]
  • Action and Perception Are Temporally Coupled by a Common Mechanism That Leads to a Timing Misperception
    The Journal of Neuroscience, January 28, 2015 • 35(4):1493–1504 • 1493 Behavioral/Cognitive Action and Perception Are Temporally Coupled by a Common Mechanism That Leads to a Timing Misperception Elena Pretegiani,1,2 Corina Astefanoaei,3 XPierre M. Daye,1,4 Edmond J. FitzGibbon,1 Dorina-Emilia Creanga,3 Alessandra Rufa,2 and XLance M. Optican1 1Laboratory of Sensorimotor Research, NEI, NIH, DHHS, Bethesda, Maryland, 20892-4435, 2EVA-Laboratory, University of Siena, 53100 Siena, Italy, 3Alexandru Ioan Cuza University, Physics Faculty, 700506 Iasi, Romania, and 4Institut du cerveau et de la moelle´pinie e `re (ICM), INSERM UMRS 975, 75013 Paris, France We move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.g., a saccade) has been widely studied with the gap/overlap paradigm with temporal asynchronies (TA) between peripheral target onset and fixation point offset (gap, synchronous, or overlap). However, whether the subjects perceive the gap or overlap, and when they perceive it, has not been studied. We adapted the gap/overlap paradigm to study the temporal coupling of action and perception. Human subjects made saccades to targets with different TAs with respect to fixation point offset and reported whether they perceived the stimuli as separated by a gap or overlapped in time. Both saccadic and perceptual report reaction times changed in the same way as a function of TA. The TA dependencies of the time change for action and perception were very similar, suggesting a common neural substrate.
    [Show full text]
  • Sensory Memory Is Allocated Exclusively to the Current Event-Segment
    Sensory memory is allocated exclusively to the current event-segment Item Type Article Authors Tripathy, Srimant P.; Ögmen, H. Citation Tripathy SP and Ögmen H (2018) Sensory memory is allocated exclusively to the current event-segment. Frontiers in Psychology. 9: 1435. Rights (c) 2018 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (http:// creativecommons.org/licenses/by/4.0/) Download date 28/09/2021 02:42:01 Link to Item http://hdl.handle.net/10454/16722 ORIGINAL RESEARCH published: 07 September 2018 doi: 10.3389/fpsyg.2018.01435 Sensory Memory Is Allocated Exclusively to the Current Event-Segment Srimant P. Tripathy 1* and Haluk Ögmenˇ 2 1 School of Optometry and Vision Science, University of Bradford, Bradford, United Kingdom, 2 Department of Electrical and Computer Engineering, University of Denver, Denver, CO, United States The Atkinson-Shiffrin modal model forms the foundation of our understanding of human memory. It consists of three stores (Sensory Memory (SM), also called iconic memory, Short-Term Memory (STM), and Long-Term Memory (LTM)), each tuned to a different time-scale. Since its inception, the STM and LTM components of the modal model have undergone significant modifications, while SM has remained largely unchanged, Edited by: representing a large capacity system funneling information into STM. In the laboratory, Qasim Zaidi, visual memory is usually tested by presenting a brief static stimulus and, after a delay, University at Buffalo, United States asking observers to report some aspect of the stimulus. However, under ecological Reviewed by: Ronald A. Rensink, viewing conditions, our visual system receives a continuous stream of inputs, which University of British Columbia, Canada is segmented into distinct spatio-temporal segments, called events.
    [Show full text]
  • The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
    Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life.
    [Show full text]
  • The Davida Teller Award Lecture, 2016 Visual Brain Development: A
    Journal of Vision (2017) 17(3):26, 1–24 1 The Davida Teller Award Lecture, 2016 Visual Brain Development: A review of ‘‘Dorsal Stream Vulnerability’’—motion, mathematics, amblyopia, actions, and attention # Janette Atkinson University College London, London, UK $ Research in the Visual Development Unit on ‘‘dorsal stream vulnerability’ (DSV) arose from research in two Introduction somewhat different areas. In the first, using cortical milestones for local and global processing from our neurobiological model, we identified cerebral visual Emerging cortical function and infant cortical impairment in infants in the first year of life. In the impairment second, using photo/videorefraction in population refractive screening programs, we showed that infant The work discussed at the beginning of this review spectacle wear could reduce the incidence of strabismus arose out of the first twenty years of my research with and amblyopia, but many preschool children, who had Oliver Braddick and our team in the Visual Develop- been significantly hyperopic earlier, showed visuo-motor ment Unit in Cambridge, particularly John Wattam- and attentional deficits. This led us to compare Bell and Shirley Anker (Atkinson, 2000). We began by developing dorsal and ventral streams, using sensitivity devising new methods, both behavioral (automated to global motion and form as signatures, finding deficits forced-choice preferential looking) and electrophysio- in motion sensitivity relative to form in children with logical (steady-state VEP/VERP—Visual Evoked Po- Williams syndrome, or perinatal brain injury in tential/Visual Event Related Potential) to measure the hemiplegia or preterm birth. Later research showed that normal visual capacities of infants such as acuity and this DSV was common across many disorders, both ‘‘ ’’ contrast sensitivity, over the first years of life (Atkin- genetic and acquired, from autism to amblyopia.
    [Show full text]
  • Body Schema Plasticity After Tool-Use Lucilla Cardinali
    Body schema plasticity after tool-use Lucilla Cardinali To cite this version: Lucilla Cardinali. Body schema plasticity after tool-use. Human health and pathology. Université Claude Bernard - Lyon I, 2011. English. NNT : 2011LYO10295. tel-00868427 HAL Id: tel-00868427 https://tel.archives-ouvertes.fr/tel-00868427 Submitted on 1 Oct 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre 295-2011 Année 2011 THESE DE L‘UNIVERSITE DE LYON Délivrée par L’UNIVERSITE CLAUDE BERNARD LYON 1 ECOLE DOCTORALE Neurosciences et Cognition DIPLOME DE DOCTORAT (arrêté du 7 août 2006) soutenue publiquement le 25.11.11 par Mlle Lucilla CARDINALI TITRE : BODY SCHEMA PLASTICITY AFTER TOOL-USE Directeur de thèse: dr. Alessandro Farnè, Ph.D. JURY: Pr. Angelo MARAVITA, M.D., Ph.D. (Rapporteur) Prof. Chris DIJKERMAN, M.D., Ph.D. (Rapporteur) Dr. Frederique de VIGNEMONT, Ph.D., D.R. Pr. Yves ROSSETTI M.D., Ph.D. Dr. Alessandro FARNE’, Ph.D., D.R. : UNIVERSITE CLAUDE BERNARD - LYON 1 Président de l’Université M. A. Bonmartin Vice-président du Conseil d’Administration M. le Professeur G. Annat Vice-président du Conseil des Etudes et de la Vie Universitaire M.
    [Show full text]