The Ecological Role of Rhizophytic Green Algae in Soft-Bottom Habitats

Total Page:16

File Type:pdf, Size:1020Kb

The Ecological Role of Rhizophytic Green Algae in Soft-Bottom Habitats University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 The cologE ical Role of Rhizophytic Green Algae in Soft-bottom Habitats Laura Bedinger University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, and the Ecology and Evolutionary Biology Commons Scholar Commons Citation Bedinger, Laura, "The cE ological Role of Rhizophytic Green Algae in Soft-bottom Habitats" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/3972 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Ecological Role of Rhizophytic Green Algae in Soft-bottom Habitats by Laura Ann Bedinger A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Integrative Biology College of Arts and Sciences University of South Florida Major Professor: Susan S. Bell, Ph.D. Clinton J. Dawes, Ph.D. Peter D. Stiling, Ph.D. Kevin S. Beach, Ph.D. Date of Approval: May 3, 2012 Keywords: Bryopsidales, rhizoid, Florida, seagrass bed, biomass, succession, disturbance, vegetative reproduction, regeneration, secondary metabolite, fouling Copyright © 2012, Laura Ann Bedinger DEDICATION This dissertation is dedicated to my amazing husband Matt and my loving parents Gail and Mike. Without their continued support and encouragement this dissertation would not have been possible. It is also dedicated to the ocean and the algae for being a source of inspiration. ACKNOWLEDGMENTS I would like to express my gratitude to my major professor, Susan Bell, for the guidance and support she has provided throughout my doctoral degree and for helping me expand my knowledge of marine ecology. Clinton Dawes graciously shared his knowledge of marine botany, provided helpful feedback on my work, introduced me to scanning electron microscopy, and was very helpful throughout my degree, for all of which I am grateful. Valerie Paul was a great summer fellowship mentor and I thoroughly enjoyed my summer at SMS, Fort Pierce where I learned a lot. Thanks go to Peter Stiling and Kevin Beach for serving on my committee and their input into my research and manuscripts. Financial support was provided by a Link Foundation/Smithsonian Institution Fellowship, a Tharp Summer Fellowship from USF Biology, a Summer Pre-doctoral Fellowship from USF Graduate School, Fern Garden Club, Orange Blossom Garden Club, and Sigma Xi. Thanks go to many graduate students and post docs for their help and friendship as I pursued this doctorate including: Jenny Peterson, Mike Middlebrooks, Justin Krebs, Kerry Bohl, Theresa Meickle, Katie Basiotis, Amy Erickson, Lesley Porter Baggett, Louise Firth, Stacy Villanueva, Alison Meyers, and Michael Meads. Many people at USF deserve thanks for contributing in a variety of ways to my research or other aspects my graduate student career. These people include: Christine Brubaker, Mary Parrish, Betty Loraamm, Skip Pierce, Frederick Essig, Jim Garey, Jason Rohr, and John Lawrence. Many undergraduates helped me complete this research both in the field and in the lab. Sam Shiver, Jennifer Strykowski, and Natalie McCune all contributed many, many hours, braving cold, heat, and thunderstorms in the field and tedium in the lab. I would like to thank Holly Gray for drawing the first figure in Chapter Three. And lastly, but most importantly, I thank Matt Neilson for his tremendous support and fantastic home-cooked meals. TABLE OF CONTENTS List of Tables ............................................................................................................... iii List of Figures ................................................................................................................ v Abstract ........................................................................................................................vii Chapter One: A Synoptic Review of the Ecology of Rhizophytic Green Algae ................ 1 Rhizophytic Algae and Rhizoids .......................................................................... 1 The Importance of Rhizophytic Algae .................................................................. 3 Rhizophytic Algae, Succession, and Interaction with Seagrasses .......................... 4 Other Community Level Interactions ................................................................... 6 Organization of This Dissertation ....................................................................... 10 Literature Cited .................................................................................................. 11 Chapter Two: Rhizophytic Algal Communities of Shallow, Coastal Habitats in Florida: Components Above and Below the Sediment Surface ....................... 16 Introduction ....................................................................................................... 16 Methods ............................................................................................................. 19 Data analysis .......................................................................................... 23 Results .............................................................................................................. 25 Plant community composition ................................................................ 25 Aboveground thalli ................................................................................. 27 Sediments ............................................................................................... 28 Holdfasts ................................................................................................ 29 Above- and belowground comparisons ................................................... 33 Discussion ......................................................................................................... 35 Plant community composition ................................................................ 35 Above- and belowground components .................................................... 38 Ecological implications .......................................................................... 42 Conclusions ............................................................................................ 43 Literature Cited .................................................................................................. 44 Chapter Three: Regeneration and Recolonization of Rhizophytic Green Algae (Bryopsidales, Chlorophyta) by Vegetative Reproduction in Field Experiments ........................................................................................... 64 Introduction ....................................................................................................... 64 Methods ............................................................................................................. 70 Overview of study design and locations .................................................. 70 Regeneration from manipulated holdfasts ............................................... 71 i Holdfast size and regeneration ................................................................ 72 Recruitment of new plants ...................................................................... 73 Results ............................................................................................................... 75 Regeneration from manipulated holdfasts ............................................... 75 Holdfast size, regeneration, and handling control .................................... 76 Recruitment of new plants ...................................................................... 78 Discussion.......................................................................................................... 82 Summary ................................................................................................ 89 Literature Cited .................................................................................................. 90 Chapter Four: Secondary Metabolites Are Not Used by Rhizophytic Green Algae (Order Bryopsidales) to Inhibit Surface Fouling ................................... 112 Introduction ..................................................................................................... 112 Methods ........................................................................................................... 114 Collection and Handling of Seaweeds ................................................... 114 Surface Extractions ............................................................................... 114 Whole Plant Extractions ....................................................................... 115 Analysis of Extracts .............................................................................. 116 Surface Morphology ............................................................................. 116 Results ............................................................................................................ 117 Discussion........................................................................................................ 118 Literature Cited ................................................................................................ 120 Appendix A: Holdfast-Handling
Recommended publications
  • Frontiers in Zoology Biomed Central
    Frontiers in Zoology BioMed Central Research Open Access Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life Katharina Händeler*1, Yvonne P Grzymbowski1, Patrick J Krug2 and Heike Wägele1 Address: 1Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany and 2Department of Biological Sciences, California State University, Los Angeles, California, 90032-8201, USA Email: Katharina Händeler* - [email protected]; Yvonne P Grzymbowski - [email protected]; Patrick J Krug - [email protected]; Heike Wägele - [email protected] * Corresponding author Published: 1 December 2009 Received: 26 June 2009 Accepted: 1 December 2009 Frontiers in Zoology 2009, 6:28 doi:10.1186/1742-9994-6-28 This article is available from: http://www.frontiersinzoology.com/content/6/1/28 © 2009 Händeler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Among metazoans, retention of functional diet-derived chloroplasts (kleptoplasty) is known only from the sea slug taxon Sacoglossa (Gastropoda: Opisthobranchia). Intracellular maintenance of plastids in the slug's digestive epithelium has long attracted interest given its implications for understanding the evolution of endosymbiosis. However, photosynthetic ability varies widely among sacoglossans; some species have no plastid retention while others survive for months solely on photosynthesis. We present a molecular phylogenetic hypothesis for the Sacoglossa and a survey of kleptoplasty from representatives of all major clades. We sought to quantify variation in photosynthetic ability among lineages, identify phylogenetic origins of plastid retention, and assess whether kleptoplasty was a key character in the radiation of the Sacoglossa.
    [Show full text]
  • Morphometric Analysis of Surface Utricles in Halimeda Tuna (Bryopsidales, Ulvophyceae) Reveals Variation in Their Size and Symmetry Within Individual Segments
    S S symmetry Article Morphometric Analysis of Surface Utricles in Halimeda tuna (Bryopsidales, Ulvophyceae) Reveals Variation in Their Size and Symmetry within Individual Segments Jiri Neustupa * and Yvonne Nemcova Department of Botany, Faculty of Science, Charles University, Prague, 12801 Benatska 2, Czech Republic; [email protected] * Correspondence: [email protected] Received: 26 June 2020; Accepted: 20 July 2020; Published: 1 August 2020 Abstract: Calcifying marine green algae of genus Halimeda have siphonous thalli composed of repeated segments. Their outer surface is formed by laterally appressed peripheral utricles which often form a honeycomb structure, typically with varying degrees of asymmetry in the individual polygons. This study is focused on a morphometric analysis of the size and symmetry of these polygons in Mediterranean H. tuna. Asymmetry of surface utricles is studied using a continuous symmetry measure quantifying the deviation of polygons from perfect symmetry. In addition, the segment shapes are also captured by geometric morphometrics and compared to the utricle parameters. The area of surface utricles is proved to be strongly related to their position on segments, where utricles near the segment bases are considerably smaller than those located near the apical and lateral margins. Interestingly, this gradient is most pronounced in relatively large reniform segments. The polygons are most symmetric in the central parts of segments, with asymmetry uniformly increasing towards the segment margins. Mean utricle asymmetry is found to be unrelated to segment shapes. Systematic differences in utricle size across different positions might be related to morphogenetic patterns of segment development, and may also indicate possible small-scale variations in CaCO3 content within segments.
    [Show full text]
  • Cultured Udotea Flabellum (Chlorophyta)
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2011, Article ID 969275, 7 pages doi:10.1155/2011/969275 Research Article Enhanced Antitumoral Activity of Extracts Derived from Cultured Udotea flabellum (Chlorophyta) Rosa Moo-Puc,1, 2 Daniel Robledo,1 and Yolanda Freile-Pelegrin1 1 Department of Marine Resources, Cinvestav, Km 6 Carretera Antigua a Progreso, Cordemex, A.P. 73, 97310 M´erida, YUC, Mexico 2 Unidad de Investigacion´ M´edica Yucatan,´ Unidad M´edica de Alta Especialidad, Centro M´edico Ignacio Garc´ıa T´ellez, Instituto Mexicano del Seguro Social; 41 No 439 x 32 y 34, Colonia Industrial CP, 97150 M´erida, YUC, Mexico Correspondence should be addressed to Daniel Robledo, [email protected] Received 16 January 2011; Accepted 3 June 2011 Copyright © 2011 Rosa Moo-Puc et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Very few studies have been performed to evaluate the effect of culture conditions on the production or activity of active metabolites in algae. Previous studies suggest that the synthesis of bioactive compounds is strongly influenced by irradiance level. To investigate whether the antiproliferative activity of Udotea flabellum extracts is modified after cultivation, this green alga was cultured under four photon flux densities (PFD) for 30 days. After 10, 20, and 30 days, algae were extracted with dichloromethane: methanol and screened for antiproliferative activity against four human cancer cell lines (laryngeal—Hep-2, cervix—HeLa, cervix squamous— SiHa and nasopharynx—KB) by SRB assay.
    [Show full text]
  • Species-Specific Consequences of Ocean Acidification for the Calcareous Tropical Green Algae Halimeda
    Vol. 440: 67–78, 2011 MARINE ECOLOGY PROGRESS SERIES Published October 28 doi: 10.3354/meps09309 Mar Ecol Prog Ser Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda Nichole N. Price1,*, Scott L. Hamilton2, 3, Jesse S. Tootell2, Jennifer E. Smith1 1Center for Marine Biodiversity and Conservation, Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, USA 2 Ecology, Evolution and Marine Biology Department, University of California, Santa Barbara, California 93106, USA 3Moss Landing Marine Laboratories, 8272 Moss Landing Rd., Moss Landing, California 95039, USA ABSTRACT: Ocean acidification (OA), resulting from increasing dissolved carbon dioxide (CO2) in surface waters, is likely to affect many marine organisms, particularly those that calcify. Recent OA studies have demonstrated negative and/or differential effects of reduced pH on growth, development, calcification and physiology, but most of these have focused on taxa other than cal- careous benthic macroalgae. Here we investigate the potential effects of OA on one of the most common coral reef macroalgal genera, Halimeda. Species of Halimeda produce a large proportion of the sand in the tropics and are a major contributor to framework development on reefs because of their rapid calcium carbonate production and high turnover rates. On Palmyra Atoll in the cen- tral Pacific, we conducted a manipulative bubbling experiment to investigate the potential effects of OA on growth, calcification and photophysiology of 2 species of Halimeda. Our results suggest that Halimeda is highly susceptible to reduced pH and aragonite saturation state but the magni- tude of these effects is species specific.
    [Show full text]
  • Ecology of Mesophotic Macroalgae and Halimeda Kanaloana Meadows in the Main Hawaiian Islands
    ECOLOGY OF MESOPHOTIC MACROALGAE AND HALIMEDA KANALOANA MEADOWS IN THE MAIN HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BOTANY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGY) AUGUST 2012 By Heather L. Spalding Dissertation Committee: Celia M. Smith, Chairperson Michael S. Foster Peter S. Vroom Cynthia L. Hunter Francis J. Sansone i © Copyright by Heather Lee Spalding 2012 All Rights Reserved ii DEDICATION This dissertation is dedicated to the infamous First Lady of Limu, Dr. Isabella Aiona Abbott. She was my inspiration for coming to Hawai‘i, and part of what made this place special to me. She helped me appreciate the intricacies of algal cross-sectioning, discover tela arachnoidea, and understand the value of good company (and red wine, of course). iii ACKNOWLEDGEMENTS I came to Hawai‘i with the intention of doing a nice little intertidal project on macroalgae, but I ended up at the end of the photic zone. Oh, well. This dissertation would not have been possible without the support of many individuals, and I am grateful to each of them. My committee has been very patient with me, and I appreciate their constant encouragement, gracious nature, and good humor. My gratitude goes to Celia Smith, Frank Sansone, Peter Vroom, Michael Foster, and Cindy Hunter for their time and dedication. Dr. Isabella Abbott and Larry Bausch were not able to finish their tenure on my committee, and I thank them for their efforts and contributions.
    [Show full text]
  • The Spread of the Native Macroalga Caulerpa Filiformis
    University of Technology Sydney The spread of the native macroalga Caulerpa filiformis By Sofie Voerman A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy School of the Environment, Faculty of Science February 2017 CERTIFICATE OF ORIGINAL AUTHORSHIP I c ertify that the work in this thes is has not previous ly been s ubmitted for a degree nor has it been s ubmitted as part of requirements for a degree except as part of the collaborative doctoral degree and/or fully ac knowledge d within the text. I als o certify that the thes is has been written by me. Any help that I have rec eived in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information s ourc es and literature us ed are indic ated in the thes is . S ignature of S tude nt: Date: Acknowledgements There are many people to thank who supported me along this journey. Without you this work would not have been possible. First and foremost, I owe my sincerest thanks to my primary advisor Paul Gribben. I am extremely grateful to Paul, in the first place to putting his trust in me and have me come over to this country. From day one, Paul has been incredibly supportive, pushing me to pursue paths with always my best interest in mind. Thank you for allowing me the freedom to pursue my ideas, and for always being there to back me up, no matter where they led. It was a privilege to be able to pick your brain on things, with your great knowledge on all things ecology, and inspiring views of “the bigger picture” on things.
    [Show full text]
  • Seaweed Species Diversity from Veraval and Sikka Coast, Gujarat, India
    Int.J.Curr.Microbiol.App.Sci (2020) 9(11): 3667-3675 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 11 (2020) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2020.911.441 Seaweed Species Diversity from Veraval and Sikka Coast, Gujarat, India Shivani Pathak*, A. J. Bhatt, U. G. Vandarvala and U. D. Vyas Department of Fisheries Resource Management, College of Fisheries Science, Veraval, Gujarat, India *Corresponding author ABSTRACT The aim of the present investigation focused on a different group of seaweeds observed K e yw or ds from Veraval and Sikka coasts, Gujarat from September 2019 to February 2020, to understand their seaweeds diversity. Seaweed diversity at Veraval and Sikka coasts has Seaweeds diversity, been studied for six months the using belt transect random sampling method. It was Veraval, Sikka observed that seaweeds were not found permanently during the study period but some species were observed only for short periods while other species occurred for a particular season. A total of 50 species of seaweeds were recorded in the present study, of which 17 Article Info species belong to green algae, 14 species belong to brown algae and 19 species of red Accepted: algae at Veraval and Sikka coasts. Rhodophyceae group was dominant among all the 24 October 2020 classes. There were variations in species of marine macroalgae between sites and Available Online: seasons.During the diversity survey, economically important species like Ulva lactuca, U. 10 November 2020 fasciata, Sargassum sp., and Caulerpa sp., were reported.
    [Show full text]
  • Photosynthetic Responses of Halimeda Scabra (Chlorophyta, Bryopsidales) to Interactive Effects of Temperature, Ph, and Nutrients and Its Carbon Pathways
    Photosynthetic responses of Halimeda scabra (Chlorophyta, Bryopsidales) to interactive effects of temperature, pH, and nutrients and its carbon pathways Daily Zuñiga-Rios, Román Manuel Vásquez-Elizondo, Edgar Caamal and Daniel Robledo Department of Marine Resources, Cinvestav, Merida, Yucatan, Mexico ABSTRACT In this study, we evaluated the interactive effects of temperature, pH, and nutrients on photosynthetic performance in the calcareous tropical macroalga Halimeda scabra. A significant interaction among these factors on gross photosynthesis (Pgross) was found. The highest values of Pgross were reached at the highest temperature, pH, and nutrient enrichment tested and similarly in the control treatment (no added nutrients) ◦ at 33 C at the lowest pH. The Q10 Pgross values confirmed the effect of temperature − only under nutrient enrichment scenarios. Besides the above, bicarbonate (HCO3 ) absorption was assessed by the content of carbon stable isotope (δ13C) in algae tissue and by its incorporation into photosynthetic products, as well as by carbonic anhydrase (CA) inhibitors (Acetazolamide, AZ and Ethoxyzolamide, EZ) assays. The labeling 13 − of δ C revealed this species uses both, CO2 and HCO3 forms of Ci relying on a CO2 Concentration Mechanism (CCM). These results were validated by the EZ-AZ inhibition assays in which photosynthesis inhibition was observed, indicating the action of internal CA, whereas AZ inhibitor did not affect maximum photosynthesis (Pmax). The incorporation of 13C isotope into aspartate in light and dark treatments
    [Show full text]
  • Cultured Udotea Flabellum (Chlorophyta)
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2011, Article ID 969275, 7 pages doi:10.1155/2011/969275 Research Article Enhanced Antitumoral Activity of Extracts Derived from Cultured Udotea flabellum (Chlorophyta) Rosa Moo-Puc,1, 2 Daniel Robledo,1 and Yolanda Freile-Pelegrin1 1 Department of Marine Resources, Cinvestav, Km 6 Carretera Antigua a Progreso, Cordemex, A.P. 73, 97310 M´erida, YUC, Mexico 2 Unidad de Investigacion´ M´edica Yucatan,´ Unidad M´edica de Alta Especialidad, Centro M´edico Ignacio Garc´ıa T´ellez, Instituto Mexicano del Seguro Social; 41 No 439 x 32 y 34, Colonia Industrial CP, 97150 M´erida, YUC, Mexico Correspondence should be addressed to Daniel Robledo, [email protected] Received 16 January 2011; Accepted 3 June 2011 Copyright © 2011 Rosa Moo-Puc et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Very few studies have been performed to evaluate the effect of culture conditions on the production or activity of active metabolites in algae. Previous studies suggest that the synthesis of bioactive compounds is strongly influenced by irradiance level. To investigate whether the antiproliferative activity of Udotea flabellum extracts is modified after cultivation, this green alga was cultured under four photon flux densities (PFD) for 30 days. After 10, 20, and 30 days, algae were extracted with dichloromethane: methanol and screened for antiproliferative activity against four human cancer cell lines (laryngeal—Hep-2, cervix—HeLa, cervix squamous— SiHa and nasopharynx—KB) by SRB assay.
    [Show full text]
  • Field Biology of Halimeda Tuna (Bryopsidales, Chlorophyta) Across a Depth Gradient: Comparative Growth, Survivorship, Recruitment, and Reproduction
    Hydrobiologia 501: 149–166, 2003. 149 © 2003 Kluwer Academic Publishers. Printed in the Netherlands. Field biology of Halimeda tuna (Bryopsidales, Chlorophyta) across a depth gradient: comparative growth, survivorship, recruitment, and reproduction Peter S. Vroom1∗, Celia M. Smith1, James A. Coyer2, Linda J. Walters3, Cynthia L. Hunter4, Kevin S. Beach5 & Jennifer E. Smith1 1Deparment of Botany, University of Hawai‘i at Manoa, 3190 Maile Way, Honolulu, HI 96822, U.S.A. 2Department of Marine Biology, University of Groningen, Kerklaan 30, PO Box 14 9750 AA Haren, The Netherlands 3Department of Biology, University of Central Florida, 4000 Central Florida Bvld., Orlando, FL 32816, U.S.A. 4Waikiki Aquarium, 2777 Kalakaua Ave., Honolulu, HI 96815, U.S.A. 5Department of Biology, University of Tampa, 401 W. Kennedy Bvld., Tampa, FL 33606, U.S.A. ∗Corresponding author: current address: National Marine Fisheries Service, Kewalo Research Facility, 1125B Ala Moana Bvld., Honolulu, HI 96814, U.S.A. Fax: 808-592-7013, E-mail: [email protected] Received 6 August 2002; in revised form 12 May 2003; accepted 26 May 03 Key words: Halimeda tuna, coral reef, alizarin, Florida Keys, Ericthonius brasiliensis, Dictyota Abstract Growth, survivorship, recruitment, and reproduction of Halimeda tuna, a dominant green alga in many reef systems of the Florida Keys, were monitored at a shallow back reef (4–7m) and deep reef slope (15–22 m) on Conch Reef. Despite lower light intensities and similar grazing pressures, amphipod infestations, and epiphyte loads at both sites, the deeper site exhibited significantly higher growth rates in summer months over a 4-year period than found for the shallow population, possibly because of higher nutrient levels at depth and photoinhibition of shallow plants.
    [Show full text]
  • CALCAREOUS ALGAE of a TROPICAL LAGOON Primary Productivity, Calcification and Carbonate Production
    CALCAREOUS ALGAE OF A TROPICAL LAGOON Primary Productivity, Calcification and Carbonate Production JUMA WALAKU KANGWE DOCTORAL DISSERTATION IN PLANT PHYSIOLOGY DEPARTMENT OF BOTANY STOCKHOLM UNIVERSITY SWEDEN 2006 © 2006 Juma Kangwe ISBN 91-7155-187-5 PrintCenter Stockholm 2005 Front cover: A meadow of Halimeda opuntia exposed to air during lowest spring tides of the day in Chwaka bay. Back cover: Top: A mixed Halimeda meadow and Udotea species can be seen in the middle (Photo by Katrin Österlund). Below: Rhodolith (left) and H. opuntia (right) meadows in Chwaka bay. 2 To my parents; The late father mzee Walaku Kangwe My mummy Kuyeya Mpanjilwa And my wife Mariana Kangwe 3 ABSTRACT The green algae of the genus Halimeda Lamouroux (Chlorophyta, Bryopsidales) and the encrusting loose- lying red coralline algae (Rhodophyta, Corallinales) known as rhodoliths are abundant and widespread in all oceans. They significantly contribute to primary productivity while alive and production of CaCO3 rich sediment materials on death and decay. Carbonate rich sediments are important components in the formation of Coral Reefs and as sources of inorganic carbon (influx) in tropical and subtropical marine environments. This study was initiated to attempt to assess their ecological significance with regard to the above mentioned roles in a tropical lagoon system, Chwaka bay (Indian Ocean), and to address some specific objectives on the genus Halimeda (Chlorophyta, Bryopsidales) and the loose-lying coralline algae (rhodoliths). Four Halimeda species were taxonomically identified in the area. The species identified are the most common inhabitants of the world’s tropical and subtropical marine environments, and no new species were encountered.
    [Show full text]
  • Chlorophyta, Udoteaceae) Depositadas No Herbário Prof
    XIII JORNADA DE ENSINO, PESQUISA E EXTENSÃO – JEPEX 2013 – UFRPE: Recife, 09 a 13 de dezembro. ANÁLISE TAXONÔMICA DAS EXSICATAS DO GÊNERO UDOTEA J.V. LAMOUR. (CHLOROPHYTA, UDOTEACEAE) DEPOSITADAS NO HERBÁRIO PROF. VASCONCELOS SOBRINHO (PEUFR). Mayara Caroline Barbosa dos Santos Rocha1, Maria de Fátima de Oliveira-Carvalho2, Sônia Maria Barreto Pereira3. Introdução Udotea é um gênero calcificado de algas verdes, pertencente à Ordem Bryopsidales (Chlorophyta). Seus representantes se caracterizam por apresentar talo ereto, fixo ao substrato por um sistema rizoidal, do qual se origina um pedúnculo (estipe) e porção terminal laminar plana ou afunilada, dotada de filamentos com ou sem apêndices laterais (Littler & Littler, 1990; Pereira, 2011). Nos mares tropicais, as espécies de talos calcificados estão entre os principais produtores primários em recifes de corais e contribuem também na estrutura dos mesmos (Leliaert et al., 2012).Mundialmente, são reconhecidos 34 táxons infragenéricos (Guiry & Guiry, 2013). No Brasil, apenas oito táxons infragenéricos foram reconhecidos (Moura, 2010), sendo que a maioria de suas informações está baseada em levantamentos florísticos realizados em diversas localidades. Através desses estudos, representantes de Udotea foram coletados e depositados em herbários nacionais indexados. Atualmente verifica-se que a maioria desse material depositado, está identificada a nível genérico e/ou identificado erroneamente. A presente pesquisa faz parte do projeto intitulado “Taxonomia e filogenia dos gêneros Halimeda J. V. Lamour. e Udotea J. V. Lamour. (Bryopsidales – Chlorophyta) no Brasil” e teve como objetivo analisar as exsicatas de Udotea depositadas no Herbário Prof. Vasconcelos Sobrinho (PEUFR) da Universidade Federal Rural de Pernambuco coletadas na costa nordestina. Material e métodos Foram analisadas no Laboratório de Ficologia (LABOFIC) da Universidade Federal Rural de Pernambuco, as exsicatas depositadas no Herbário PEUFR coletadas na costa dos estados de Pernambuco, Paraíba, Rio Grande do Norte e Ceará.
    [Show full text]